教案吧 > 初中教案 > 九年级教案 >

教案九年级数学

时间: 新华 九年级教案

教案可以帮助教师更好地评估学生的学习效果,以便更好地调整教学策略,以达到更好的教学效果。怎么写好教案九年级数学?小编给大家分享一些教案九年级数学,方便大家学习。

教案九年级数学篇1

教学目标:

1.知识与技能:

(1)能证明等腰梯形的性质和判定定理

(2)会利用这些定理计算和证明一些数学问题

2.过程与方法:

通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。

3.情感态度与价值观:

通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。

重点、难点:

重点:等腰梯形的性质和判定

难点:如何应用等腰梯形的性质和判定解决具体问题。

教学过程

(一)知识梳理:

知识点1:等腰梯形的性质1

(1)文字语言:等腰梯形同一底上的两底角相等。

(2)数学语言:

在梯形ABCD中

∵AD‖BC,AB=CD

∴∠B=∠C

∠A=∠D(等腰梯形同一底上的两个底角相等)

(3)本定理的作用:在梯形中常用的添加辅助线——平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。

知识点2:等腰梯形的性质2

(1)文字语言:等腰梯形的两条对角线相等

(2)数学语言:

在梯形ABCD中

∵AD‖BC,AB=DC

∴AC=BD(等腰梯形对角线相等)

(3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。

知识点3:等腰梯形的判定

(1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。

(2)数学语言:在梯形ABCD中∵∠B=∠C

∴梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)

(3)本定理的作用:在梯形中常用添加辅助线——补全三角形把原来的梯形化为两个三角形

(4)说明:

①判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。

②判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。

【典型例题】

例1.我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。

(1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工具不限)

(2)在(1)的条件下,若AC⊥BD,DE⊥BC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。

解:(1)略。

(2)DE=(AD+BC)

过D作DF‖AC交BC延长线于点F

∵AD‖BC,∴四边形ACFD是平行四边形

∴AD=CF,AC=DF

∵AC=BD

∴BD=DF

又∵AC⊥BD,∴BD⊥DF即△BDF为等腰直角三角形

∵DE⊥BF,则DE=BF,

∴DE=(BC+CF)=(BC+AD)

例2.如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m,斜坡BC与下底CD的夹角为60°,路基高AE为,求下底CD的宽。

解:过点B作BF⊥CD于F

∵四边形ABCD是等腰梯形

∴BC=AD

∵BF=AE,BF⊥CD,AE⊥CD

∵Rt△BCF≌Rt△ADE

在Rt△BCF中,∠C=60°

∴∠CBF=30°

∴CF=BC即BC=2CF

∴BC2=CF2+BF2

即∴CF=2

∵AB‖CD,BF⊥CD,AE⊥CD

∴四边形ABFE是矩形

∴EF=AB=6m

∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)

例3.已知如图,梯形ABCD中,AB‖DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F

(1)请写出图中4组相等的线段。(已知的相等线段除外)

(2)选择(1)中你所写的一组相等线段,说说它们相等的理由。

解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG

(2)证明AG=BG,因为在梯形ABCD中,

AB‖DC,AD=BC,所以梯形ABCD为等腰梯形

∴∠GAB=∠GBA

∴AG=BG

课堂小结:

本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。

教案九年级数学篇2

目标

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用。

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用。

重点

中心对称图形的有关概念及其它们的运用。

难点

区别关于中心对称的两个图形和中心对称图形。

一、复习引入

1、(老师口问)口答:关于中心对称的两个图形具有什么性质?

(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

关于中心对称的两个图形是全等图形。

2、(学生活动)作图题。

(1)作出线段AO关于O点的对称图形,如图所示。

(2)作出三角形AOB关于O点的对称图形,如图所示。

延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示。

二、探索新知

从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合。

上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示。

∵AO=OC,BO=OD,∠AOB=∠COD

∴△AOB≌△COD

∴AB=CD

也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合。

因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形。

老师点评:老师边提问学生边解答的特点。

(学生活动)例2请说出中心对称图形具有什么特点?

老师点评:中心对称图形具有匀称美观、平稳的特点。

例3求证:如图,任何具有对称中心的四边形是平行四边形。

分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分。

证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形。

三、课堂小结(学生归纳,老师点评)

本节课应掌握:

1、中心对称图形的有关概念;

2、应用中心对称图形解决有关问题。

四、作业布置

教材第70页习题8,9,10。

教案九年级数学篇3

九年级数学教学计划上册初三学年下学期的复习教学,是整合升华学科知识,培养提高应试能力的重要环节。复习教学工作的好坏,直接关系到中考的成功与否。为保障毕业班复习教学取得良好成效,

以为指导,以复习课型模式研究,提高课堂效益为重点,面向全体学生,优生优培,中程生提高,困难生稳中求进;依纲据本,抓住重点,突破难点,强化薄弱环节;加强教情,学情研究,强化中考的研究,大面积提高教学成绩,促进初三复习教学工作又好又快发展。

1、提高认识,全力以赴,进入冲刺状态

首先,每位初三教师要充分认识复习教学的重要性,增强责任重于泰山,质量压倒一切的责任感,树立认真就是水平,负责就是能力的观念,发扬关键时刻冲得上豁得出的拼搏精神,全力以赴,聚精会神,专心致志,真真正正进入冲刺状态,苦战100天,用成绩说话,坚决夺取今年中考的全面胜利。其次,全体教师要以毕业班工作的大局为重,服从安排,听从指挥,不管是级部的安排,还是各备课组的布置,都要扎扎实实贯彻执行,将落实进行到底。纪律严明,政令畅通,是工作胜利的保障。要彻底杜绝有令不行,有禁不止的以自我为中心的个人主义的不良作风。第三,全体教师要增强精诚合作的团队意识,实实在在搞好团结。团结出力量,团结出成绩。在初三这个集体内坚决反对那种意气用事,挑拨离间的行为。有意见,有矛盾当面说开,大事讲原则,小事讲风格;有困难,有问题,大家齐帮助,共协商,形成一个和谐,融洽的工作氛围。

2、周密计划,科学安排

各学科现已完成教学进度,学期开始即转入总复习阶段。总体时间安排是3月上旬4月中旬45天左右为第一轮复习,以课本知识的疏理,归纳,总结为主;备课组自编讲学稿一套。4月下旬5月中旬30天左右,以课外拓展为主,以专题复习为主。5月下旬6月中考前,主要是整合升华阶段,综合模拟为主,训练应试能力与技巧。

三轮复习的具体思路是:

一轮复习本着全面,扎实,系统,灵活的指导思想,一是做到四个坚持,即:坚持把复习的重点放在基础知识上;坚持补弱纠偏,重在一轮;坚持改进课堂教学,提高复习效率;坚持面向全体,实现大面积丰收。二是落实四个为主,即以基础知识的复习为主,以低中档题目的训练为主,以学科内综合为主,以小综合训练为主。三是处理好三个关系,即:基础和能力的关系(强化基础,提升能力),扬长与补弱的关系,复习知识与做题的关系(做题的目的是回扣知识提升能力)。四是确保两项常规的落实,即教师的教学常规和学生学习常规的落实。

二轮复习本着巩固,完善,综合,提高的指导思想,采取专题复习加综合训练的复习模式,突出五个强化,即①强化时间观念;②强化研究:重点研究两纲(教学大纲和考试说明),两题(综合题和能力题),两课(复习课和讲评课),两生(优生和困难生),两法(教学方法和学习方法),两情(教情和学情);③强化训练:立足三个讲好,增强五个针对性。三个讲好:讲好专题,讲好试卷,讲好练习;五个针对性:针对目标生讲,针对中考新模式指向讲,针对二轮复习能力要求讲,针对反馈的问题讲,针对典型题目讲;④强化应试技巧与规范化,最大限度降低非知识性丢分;⑤强化学生心理调控,加强心理辅导,使学生以一种积极的心态复习,以必胜的信念参加中考。

三轮复习以回扣,模拟,完善,调整为指导思想。抓回扣做到四化要求,即:回扣教材提纲化,回扣基础系统化,回扣形式习题化,回扣时间具体化;抓模拟做到四性要求,即试题体现基础性,考试体现模拟性,答题体现规范性,讲解体现系统性。逐步达到完善知识体系,适应考试要求,调整教与学的方向,升华应试技能的目的。

3,细致研究教材,考试说明,中考试题,做到有的放矢。

各任课教师要加强对初中学段本学科教材的通研。教材是中考命题的依托,一方面要熟悉教材的整体编排体系,编写体例,重点难点,另一方面又要熟悉每个单元的教学目标,知识结构,知识点和能力训练点,教法和学法等。要在通研教材的基础上,把教材重新划分若干个大单元,以利系统复习。

4,组织好大型考试,搞好质量分析

级部组织的综合拉练,模拟考试,要做到考务严密,分析透彻,补漏措施具体,使每一次考试成为学生学习的加油站,教师教学的里程碑,教学质量的大会诊。

5,重视非智力因素培养,加强学法指导

全体教师要从只重视学生的`智力因素转移到重视智力因素与非智力因素协调发展上来,特别应突出对学生学习兴趣与动力激发,学习习惯与品质养成,理想教育与成功教育等方面的研究和强化。各任课教师要系统有序地教给学生本学科的学习方法,并注意跟上个别指导。班主任要利用一定时间,如每次考试后安排23名学生现身说法,介绍学习方法和学习经验。对学生授之以渔而非授之以鱼,可起到事半功倍之成效。

6,因材施教,加强学生的分层次教育。

首先,切实贯彻优生优培,中间生提高,困难生稳中求进的原则。全体教师要增强优生优培意识,调整优生优培策略,要特别关注各班第一名,将其作为重点中的重点悉心培养。对本班前10名的学生要重点培养,增加升入重点高中的数量,提高本班优秀率。各科教师要注意中程生的各科平衡发展,尤其是加强中程生薄弱学科的特殊对待,在课堂提问,试卷批阅等环节要注意对中程生倾斜,使其尽快优化,以提高平均分,增加其升入高中的机会。对学习困难生,更要多一份耐心,要想方设法鼓舞其信心,利用复习的机会掌握一些基本知识,提高平均分,顺利完成学业,以此提升平均分。

7,落实备考的关键环节

(1)是要把好集体备课关。继续加大落实集体备课力度,要求备课组长分好工,每人重点备某一部分,选好该部分的练习题,然后主备人利用教研活动时间主讲,其他教师补充,提出建议,最后确定教案。

(2)是要把好材料关。初三复习过程中学生所用的复习材料必须经过各备课组长以及各任课教师严格筛选,不经过集体研究的练习题决不发给学生。在选题时要按考点进行梳理,按中考能力的要求选题,题型,题量要尽量安排得全面,条理,有序,所选题目要尽量联系生活实际,贴近中考,体现新情景,新材料,便于训练利用已有知识解决新问题的能力。控制所选题目的难度,以中,低档难度题目为主,少选难题,杜绝偏题怪题。

(3)是要把好阅批统计关。凡定时作业,练习,测试,必须有布置,有检查,认真批改,有查必评,有错必纠。杜绝练习,试题不批阅,不统计,凭感觉讲评的现象。

(4)是要把好讲评关。根据批阅统计情况,有的放矢进行讲评,要讲学生所需,切忌面面俱到。要求学生多用启发式,讨论式,引导学生总结出规律和方法。

(5)切忌就题论题。

(6)是要把握好学生落实关。学生是否能够复习好,落实是关键。要留给学生自我反思,整改,消化的时间,要求学生从第一次拉练起,建立错题本,查失分,写考情分析,确立新目标,老师要做到跟踪检查,让部分学生二次过关。

教学措施

实行分轮复习

第一轮重点复习巩固基础知识,以课本基本知识为依据,列出每章的知识网络,有利于学生对知识掌握的系统化,以训练基本技能为主的试题辅以练习,强化训练,加深印象。第二轮复习在第一轮分项复习的基础上,进行综合类型题的复习,包括几何应用,代数应用,几何综合,代数综合等方面的综合练习。第三轮主要是做中考模拟试题,让学生熟悉考试类型题,同时提高学生应试的心理素质。最后阶段,根据学生对知识掌握的程度,查漏补缺,因材施教。

教学基本用书

(一)本学期的教学用书参考《初中数学教与学》,《浙江中考》,《三年中考优化试卷》。

(二)自编讲学稿一套。

时间安排

2月26日2月28日第二章《简单事件的概率》

3月1日3月9日第四章《投影与三视图》

3月10日4月中旬复习基础知识

4月中旬5月上旬分项训练

5月上旬5月底综合训练做模拟试题

5月底到最后根据情况查漏补缺。

教案九年级数学篇4

教材分析:

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:

1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:

1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

板书设计:

一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。

问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。

学生学习活动评价设计:

本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。

教学反思:

1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。

3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

教案九年级数学篇5

教学目标

1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。

2、会用因式分解法解某些一元二次方程。

3、进一步让学生体会“降次”化归的思想。

重点难点

重点:,掌握用因式分解法解某些一元二次方程。

难点:用因式分解法将一元二次方程转化为一元一次方程。

教学过程

(一)复习引入1、提问:

(1)解一元二次方程的基本思路是什么?

(2)现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法?

2、用两种方法解方程:9(1-3x)2=25

(二)创设情境

说明:可用因式分解法或直接开平方法解此方程。解得x1=,,x2=-。

1、说一说:因式分解法适用于解什么形式的一元二次方程。

归纳结论:因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。

2、想一想:展示课本1.1节问题二中的方程0.01t2-2t=0,这个方程能用因式分解法解吗?

(三)探究新知

引导学生探索用因式分解法解方程0.01t2-2t=0,解答课本1.1节问题二。

把方程左边因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0

解得tl=0,t2=200。

t1=0表明小明与小亮第一次相遇;t2=200表明经过200s小明与小亮再次相遇。

(四)讲解例题

1、展示课本P.8例3。

按课本方式引导学生用因式分解法解一元二次方程。

2、让学生讨论P.9“说一说”栏目中的问题。

要使学生明确:解方程时不能把方程两边都同除以一个含未知数的式子,若方程两边同除以含未知数的式子,可能使方程漏根。

3、展示课本P.9例4。

让学生自己尝试着解,然后看书上的解答,交换批改,并说一说在解题时应注意什么。

(五)应用新知

课本P.10,练习。

(六)课堂小结

1、用因式分解法解一元二次方程的基本步骤是:先把一个一元二次方程变形,使它的一边为0,另一边分解成两个一次因式的乘积,然后使每一个一次因式等于0,分别解这两个一元一次方程,得到的两个解就是原一元二次方程的解。

2、在解方程时,千万注意两边不能同时除以一个含有未知数的代数式,否则可能丢失方程的一个根。

(七)思考与拓展

用因式分解法解下列一元二次方程。议一议:对于含括号的守霜露次方程,应怎样适当变形,再用因式分解法解。

(1)2(3x-2)=(2-3x)(x+1);(2)(x-1)(x+3)=12。

[解](1)原方程可变形为2(3x-2)+(3x-2)(x+1)=0,

(3x-2)(x+3)=0,3x-2=0,或x+3=0,

所以xl=,x2=-3

(2)去括号、整理得x2+2x-3=12,x2+2x-15=0,

(x+5)(x-3)=0,x+5=0或x-3=0,

所以x1=-5,x2=3

先让学生动手解方程,然后交流自己的解题经验,教师引导学生归纳:对于含括号的一元二次方程,若能把括号看成一个整体变形,把方程化成一边为0,另一边为两个一次式的积,就不用去括号,如上述(1);否则先去括号,把方程整理成一般形式,再看是否能将左边分解成两个一次式的积,如上述(2)。

布置作业

教学后记:

教案九年级数学篇6

-九年级数学《概率》(第1课时)教学设计

教学目标

1、知识与技能目标

了解必然事件、不可能事件、随机事件的特点。

2、过程与方法目标

经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中提炼出本质特征并加以抽象概括的能力,并会判断必然事件、不可能事件、随机事件。3、情感与态度目标

学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学;教学重难点

重点:随机事件的特点。

难点:判断现实生活中哪些事件是随机事件。教法、学法和辅助手段

情境引人,游戏探索,游戏体验,拓展新知。学

参与活动,发现新知;探究合作,体验新知;抢答活动,巩固新知;听故事,拓展新知。教学辅助手段

红、白球若干,不透明盒子两个,骰子若干。教学过程:

一、创设情境,导入新课:

师:同学们,你们买过彩票吗?中过奖吗?

(学生有的说买过,绝大部分的同学说没有买过,没有中过奖)

可编辑

-师:你们想买彩票吗?想中奖吗?生:想。

师:我们来模拟买彩票中大奖,请你们在纸上写出一个你认为幸运的三位数,老师立即开奖。学生写好后,展示开奖结果。

师:有中奖的吗?请举手,我为中奖的同学准备了奖品。(为个别中了奖的同学发奖品,安慰没有中奖的同学)师:买一注彩票一定能中奖还是可能中奖?生:可能中奖。

师:我们这个游戏中一定要中奖,你能算出至少要买多少注彩票吗?(少数同学在算,很多同学不知道怎样算)

师:让我们一起走进九年级数学(上)《概率初步》的学习,《概率初步》会告诉我们怎样计算。我们今天就学习第一节《随机事件》。请打开教材。(多媒体展示课题)二、探索新知

1、(分组活动)问题1:

5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的笔签,上面分别标有出场的序号1、2、3、4、5。小军首先抽签,他在看不到笔签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:(1)小军首先抽到的号共有几种可能?(2)抽到的序号小于6吗?(3)抽到的序号会是0吗?(4)抽到的序号会是1吗?

学生回答书中的问题,并判断以下三事件是什么事件(师点评):

可编辑

-(1)抽到的序号小于6。(2)抽到的序号是0。(3)抽到的序号是1。2、老师在讲台上演示

问题2掷一个质地均匀的正方体骰子,骰子的六个面上分

别刻有1到6的点数,请考虑以下问题:掷一次骰子,在骰子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?

1、学生猜测以上问题的结果,并判断以下三事件是什么事件:(师点评)(1)出现的点数大于0。(2)出现的点数是7。(3)出现的点数是4。三、

抢答游戏,应用新知例1、判断以下事件是什么事件。①

袋中只有5个红球,能摸到红球。②

打开电视机,正在播动画片

袋中有3个红球,2个白球,能摸到白球。

将一小勺白糖放入

水中,并用筷子不断搅拌,白糖溶解。⑤

测量某天的最低气温,结果为-150℃⑥

早晨的太阳一定从东方升起。

可编辑

-⑦

小红今年15岁,她一定在念初三。⑧

任意掷一枚硬币,正面向上。

一个鸡蛋在没有任何防护的情况下,从六层楼的阳台掉下来,砸在水泥地面上,没有摔破。

例2、袋子中装有5个黑球和16个白球,这些球的形状、大小、质地等完全相同,再看不到球的条件下随机从袋中摸出一个球。(1)这个球是白球还是黑球?

(2)如果两种球都有可能被摸出,那么摸出黑球和白球的可能性一样大吗?(3)你能摸出红球吗?四、拓展新知

思考:小明和小刚在玩掷骰子游戏,二人各执一枚骰子。当两枚骰子的点数之和为奇数,小刚得1分,否则小明得1分,这个游戏对双方公平吗?师引导学生进行分析,共同完成本题。五、反思小结,回味新知1、这节课你学到了什么?

2、你体会到了什么?

3、最让你难忘的是什么六、布置作业

作业:教科书习题25.1第1题。教学设计说明(一)设计思想:

本课设计旨在遵循从具体到抽象,从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏

可编辑

-引如课题,以熟悉的抽签和掷骰子游戏引导学生分清必然事件,不可能事件,随机事件,增强了学生的学习兴趣。(二)教学设计特点

1.贴近生活,让学生在体验中感悟学习.2.创设情境,让学生在兴趣中自主学习.3.开放课堂,让学生在活动中探索学习

可编辑

教案九年级数学篇7

活动目标

1、尝试实验,获得有关容量守恒的经验。

2、乐意动手动脑探究水的变化,了解它的主要特性。

活动准备

1、趣味练习:容量比较)

2、标有刻度的瓶子,水,记录纸,笔。

活动过程

一、观察提问

1.出示趣味练习:容量比较

教师:小朋友看一看这六瓶水是一样多的吗?你是怎么知道的?

小结:现在我们想办法做一下实验,比较一下水的多少吧。

二、实验操作

1、教师:用什么办法验证呢?怎么操作?

要求:实验用的两瓶水不能混在一起,实验时动作慢一点,避免将水洒出影响实验结果。

2、记录实验结果

(1)高矮不同的两只瓶子

方法是通过比较水位的高低,我们可以看出瓶子的水是一样的。

原来瓶子的高矮是不影响水的多少的。

(2)粗细不同的两只瓶子小

选择两个相同的空瓶,把装在大小不同的瓶内的饮料倒入其中,比较出饮料一样多。

方法,任选一个瓶子,将一瓶饮料倒入,用笔画或粘纸条的方法做标记,

把饮料倒出后再将另一瓶饮料倒入该瓶,看饮料位置与原来留下的标记是否一致,

比较出饮料一样多原来瓶子的粗细是不影响水的多少的。

(3)一只含内容物的的瓶子内容物为石子

方法是取出瓶中石子,比较水位的高低。

内容物为海绵小结:方法是将海绵中的水挤回瓶中,比较水位的高低。

原来瓶子里面是否有物体是不影响水的多少的。

3、总结:瓶子的高矮、粗细、内含物是不影响水的多少的,这种现象就叫做容量守恒。

三、活动延伸

想一想,如果把两块一样重的橡皮泥塞进不同形状的瓶子里,橡皮泥会变重吗?

回去试试看吧!

教案九年级数学篇8

教学目标

1.使学生掌握百分数、小数互化的方法,并能正确的互化。

2.在学习互化的过程中使学生认识到这二者之间的内在联系,为后面学习百分数的计算和应用打下基础。

3.在学习的过程中培养学生的分析思维和抽象概括能力。

教学重难点

使学生理解掌握百分数和小数互化的方法。

教学工具

课件

教学过程

一、活动(一)复习准备

1、课件出示复习题。

张宇跳绳个数是陈聪的1.37倍。

王志祥跳绳个数是陈聪的6/5.

刘星宇跳绳个数是陈聪的137.5%.

思考:这三个人谁跳得最多,怎么比较?

2.引入新课。

在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。除了用百分数表示,还可以用什么数表示?

这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。

二、活动(二)百分数和小数的互化。

(1)回忆小数化分数的过程。

(2)小数要化成百分数,分母应是多少?怎样使它的分母变成100呢?

三、活动(三)百分数化成小数

1、例1:把0.25,1.4,0.123化成百分数。

①小数化百分数分几步进行?

②学生回答,教师板书:0.25=25/100=25%

③1.4怎样化成分母是100的分数?根据什么?

④“做一做”:把下面各小数化成百分数。

0.381.050.0553

⑤观察例1的各小数,化成百分数后发生了怎样的变化?

你所做的练习的各数是不是也发生了同样的变化?这一变化符合什么?

⑥现在你能很快地把下列小数化成百分数吗?(口答)

2.50.7850.16

2、例2:把27%,135%,0.4%化成小数。

学生自己试做,学生总结方法

①说一说百分数化小数的方法。

②观察百分数化成小数发生了什么变化?

③把下面各百分数化成小数

15%80%3.5%

3、小结。

通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?

四、巩固与提高

1、P80“做一做”

2、练习十九的第2题

五、作业

练习十九的第1题

课后习题

练习十九的第1题

教案九年级数学篇9

【知识与技能】

1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.

【教学重点】

1.会画y=ax2(a>0)的图象.

2.理解,掌握图象的性质.

【教学难点】

二次函数图象及性质探究过程和方法的体会教学过程.

一、情境导入,初步认识

问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?

问题2如何用描点法画一个函数图象呢?

【教学说明】①略;②列表、描点、连线.

二、思考探究,获取新知

探究1 画二次函数y=ax2(a>0)的图象.

画二次函数y=ax2的图象.

【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.

②从列表和描点中,体会图象关于y轴对称的特征.

③强调画抛物线的三个误区.

误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.

如图(1)就是y=x2的图象的错误画法.

误区二:并非对称点,存在漏点现象,导致抛物线变形.

如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.

误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.

教案九年级数学篇10

垂直于弦的直径

理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.

通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.

重点

垂径定理及其运用.

难点

探索并证明垂径定理及利用垂径定理解决一些实际问题.

一、复习引入

①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.

②连接圆上任意两点的线段叫做弦,如图线段AC,AB;

③经过圆心的弦叫做直径,如图线段AB;

④圆上任意两点间的部分叫做圆弧,简称弧,以A,C为端点的弧记作“︵AC”,读作“圆弧AC”或“弧AC”.大于半圆的弧(如图所示︵ABC)叫做优弧,小于半圆的弧(如图所示︵AC或︵BC)叫做劣弧.

⑤圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.

⑥圆是轴对称图形,其对称轴是任意一条过圆心的直线.

二、探索新知

(学生活动)请同学按要求完成下题:

如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.

(1)如图是轴对称图形吗?如果是,其对称轴是什么?

(2)你能发现图中有哪些等量关系?说一说你理由.

(老师点评)(1)是轴对称图形,其对称轴是CD.

(2)AM=BM,︵AC=︵BC,︵AD=︵BD,即直径CD平分弦AB,并且平分︵AB及︵ADB.

这样,我们就得到下面的定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧.

下面我们用逻辑思维给它证明一下:

已知:直径CD、弦AB,且CD⊥AB垂足为M.

求证:AM=BM,︵AC=︵BC,︵AD=︵BD.

分析:要证AM=BM,只要证AM,BM构成的两个三角形全等.因此,只要连接OA,OB或AC,BC即可.

证明:如图,连接OA,OB,则OA=OB,

在Rt△OAM和Rt△OBM中,

∴Rt△OAM≌Rt△OBM,

∴AM=BM,

∴点A和点B关于CD对称,

∵⊙O关于直径CD对称,

∴当圆沿着直线CD对折时,点A与点B重合,︵AC与︵BC重合,︵AD与︵BD重合.

∴︵AC=︵BC,︵AD=︵BD.

进一步,我们还可以得到结论:

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

(本题的证明作为课后练习)

例1 有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60 m,水面到拱顶距离CD=18 m,当洪水泛滥时,水面宽MN=32 m时是否需要采取紧急措施?请说明理由.

分析:要求当洪水到来时,水面宽MN=32 m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.

解:不需要采取紧急措施,

设OA=R,在Rt△AOC中,AC=30,CD=18,

R2=302+(R-18)2,

R2=900+R2-36R+324,

解得R=34(m),

连接OM,设DE=x,在Rt△MOE中,ME=16,

342=162+(34-x)2,

162+342-68x+x2=342,x2-68x+256=0,

解得x1=4,x2=64(不合题意,舍去),

∴DE=4,

∴不需采取紧急措施.

三、课堂小结(学生归纳,老师点评)

垂径定理及其推论以及它们的应用.

四、作业布置

1.垂径定理推论的证明.

2.教材第89,90页 习题第8,9,10题.

教案九年级数学篇11

一、素质教育目标

(一)知识教学点

使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点

逐步培养学生观察、比较、分析、概括等逻辑思维能力.

(三)德育训练点

培养学生良好的学习习惯.

二、教学重点、难点

1.重点:“正弦和余弦表”的查法.

2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.

三、教学步骤

(一)明确目标

1.复习提问

1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.

2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.

(二)整体感知

我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.

(三)重点、难点的学习与目标完成过程

1.“正弦和余弦表”简介

学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.

(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.

2)表中角精确到1′,正弦、余弦值有四位有效数字.

3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.

2.举例说明

例4查表求37°24′的正弦值.

学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.

例5查表求37°26′的正弦值.

学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).

解:sin37°24′=0.6074.

角度增2′值增0.0005

sin37°26′=0.6079.

例6查表求sin37°23′的值.

如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.

解:sin37°24′=0.6074

角度减1′值减0.0002

sin37°23′=0.6072.

在查表中,还应引导学生查得:

sin0°=0,sin90°=1.

根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.

可引导学生查得:

cos0°=1,cos90°=0.

根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.

(四)总结与扩展

1.请学生总结

本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.

2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.

四、布置作业

预习教材中例8、例9、例10,养成良好的学习习惯.

五、板书设计

14.1正弦和余弦(四)

一、正余弦值随角度变二、例题例5例6

化规律例4

教案九年级数学篇12

1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.

2.通过复移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.

3.旋转的基本性质.

重点

旋转及对应点的有关概念及其应用.

难点

旋转的基本性质.

一、复习引入

(学生活动)请同学们完成下面各题.

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.

2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.

3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质.

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.

2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)

3.第1,2两题有什么共同特点呢?

共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.

下面我们来运用这些概念来解决一些问题.

例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A,B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角.

(2)经过旋转,点A和点B分别移动到点E和点F的位置.

自主探究:

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?

2.∠AOA′,∠BOB′,∠COC′有什么关系?

3.△ABC与△A′B′C′的形状和大小有什么关系?

老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.

2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.

3.△ABC和△A′B′C′形状相同和大小相等,即全等.

综合以上的实验操作得出:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等.

例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.

分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.

解:(1)连接CD;

(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;

(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;

(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.

三、课堂小结

(学生总结,老师点评)

本节课应掌握:

1.对应点到旋转中心的距离相等;

2.对应点与旋转中心所连线段的夹角等于旋转角;

3.旋转前、后的图形全等及其它们的应用.

四、作业布置

教材第62~63页习题4,5,6.

教案九年级数学篇13

一、指导思想:

初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

二、教学内容:

本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。

四、教学目的:

在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。

在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。

五、教学重点、难点

本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》,《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。《一元二次方程》,《反比例函数》的重点是1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。

六、教学措施:

针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。

2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

教案九年级数学篇14

21.2.1配方法(3课时)

第1课时直接开平方法

理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.

提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.

重点

运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.

难点

通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.

一、复习引入

学生活动:请同学们完成下列各题.

问题1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

二、探索新知

上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

(学生分组讨论)

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的两根为t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接开平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的两根x1=-3+2,x2=-3-2

解:略.

例2市政府计划2年内将人均住房面积由现在的10m2提高到14.4m2,求每年人均住房面积增长率.

分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

解:设每年人均住房面积增长率为x,

则:10(1+x)2=14.4

(1+x)2=1.44

直接开平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.

所以,每年人均住房面积增长率应为20%.

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.

三、巩固练习

教材第6页练习.

四、课堂小结

本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.

五、作业布置

教材第16页复习巩固1.第2课时配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.

重点

讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.

难点

将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

一、复习引入

(学生活动)请同学们解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面前三个方程的解法呢?

问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9

左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.

例1用配方法解下列关于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.

解:略.

三、巩固练习

教材第9页练习1,2.(1)(2).

四、课堂小结

本节课应掌握:

左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.

五、作业布置

教材第17页复习巩固2,3.(1)(2).第3课时配方法的灵活运用

了解配方法的概念,掌握运用配方法解一元二次方程的步骤.

通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.

重点

讲清配方法的解题步骤.

难点

对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.

一、复习引入

(学生活动)解下列方程:

(1)x2-4x+7=0(2)2x2-8x+1=0

老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.

解:略.(2)与(1)有何关联?

二、探索新知

讨论:配方法解一元二次方程的一般步骤:

(1)先将已知方程化为一般形式;

(2)化二次项系数为1;

(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.

例1解下列方程:

(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0

分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.

解:略.

三、巩固练习

教材第9页练习2.(3)(4)(5)(6).

四、课堂小结

本节课应掌握:

1.配方法的概念及用配方法解一元二次方程的步骤.

2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.

五、作业布置

教材第17页复习巩固3.(3)(4).

补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.

(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法

理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.

复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.

重点

求根公式的推导和公式法的应用.

难点

一元二次方程求根公式的推导.

一、复习引入

1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程

(1)x2=4(2)(x-2)2=7

提问1这种解法的(理论)依据是什么?

提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)

2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)

(学生活动)用配方法解方程2x2+3=7x

(老师点评)略

总结用配方法解一元二次方程的步骤(学生总结,老师点评).

(1)先将已知方程化为一般形式;

(2)化二次项系数为1;

(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0(2)ax2+bx+3=0

如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.

问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)

分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

解:移项,得:ax2+bx=-c

二次项系数化为1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接开平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)这个式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有两个实数根.

例1用公式法解下列方程:

(1)2x2-x-1=0(2)x2+1.5=-3x

(3)x2-2x+12=0(4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.

补:(5)(x-2)(3x-5)=0

三、巩固练习

教材第12页练习1.(1)(3)(5)或(2)(4)(6).

四、课堂小结

本节课应掌握:

(1)求根公式的概念及其推导过程;

(2)公式法的概念;

(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.

(4)初步了解一元二次方程根的情况.

五、作业布置

教材第17页习题4,5.21.2.3因式分解法

掌握用因式分解法解一元二次方程.

通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.

重点

用因式分解法解一元二次方程.

难点

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入

(学生活动)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)

练习:下面一元二次方程解法中,正确的是()

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,两边同除以x,得x=1

三、巩固练习

教材第14页练习1,2.

四、课堂小结

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页习题6,8,10,11.21.2.4一元二次方程的根与系数的关系

1.掌握一元二次方程的根与系数的关系并会初步应用.

2.培养学生分析、观察、归纳的能力和推理论证的能力.

3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.

4.培养学生去发现规律的积极性及勇于探索的精神.

重点

根与系数的关系及其推导

难点

正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.

一、复习引入

1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.

2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?

3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?

二、探索新知

解下列方程,并填写表格:

方程x1x2x1+x2x1•x2

x2-2x=0

x2+3x-4=0

x2-5x+6=0

观察上面的表格,你能得到什么结论?

(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?

(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?

解下列方程,并填写表格:

方程x1x2x1+x2x1•x2

2x2-7x-4=0

3x2+2x-5=0

5x2-17x+6=0

小结:根与系数关系:

(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1•x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)

(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.

即:对于方程ax2+bx+c=0(a≠0)

∵a≠0,∴x2+bax+ca=0

∴x1+x2=-ba,x1•x2=ca

(可以利用求根公式给出证明)

例1不解方程,写出下列方程的两根和与两根积:

(1)x2-3x-1=0(2)2x2+3x-5=0

(3)13x2-2x=0(4)2x2+6x=3

(5)x2-1=0(6)x2-2x+1=0

例2不解方程,检验下列方程的解是否正确?

(1)x2-22x+1=0(x1=2+1,x2=2-1)

(2)2x2-3x-8=0(x1=7+734,x2=5-734)

例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)

例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.

变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;

变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.

三、课堂小结

1.根与系数的关系.

2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.

四、作业布置

1.不解方程,写出下列方程的两根和与两根积.

(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0

(4)3x2+x+1=0

2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.

3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.

教案九年级数学篇15

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.

重点

中心对称图形的有关概念及其它们的运用.

难点

区别关于中心对称的两个图形和中心对称图形.

一、复习引入

1.(老师口问)口答:关于中心对称的两个图形具有什么性质?

(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

关于中心对称的两个图形是全等图形.

2.(学生活动)作图题.

(1)作出线段AO关于O点的对称图形,如图所示.

(2)作出三角形AOB关于O点的对称图形,如图所示.

延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.

二、探索新知

从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.

上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.

∵AO=OC,BO=OD,∠AOB=∠COD

∴△AOB≌△COD

∴AB=CD

也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.

因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.

老师点评:老师边提问学生边解答的特点.

(学生活动)例2请说出中心对称图形具有什么特点?

老师点评:中心对称图形具有匀称美观、平稳的特点.

例3求证:如图,任何具有对称中心的四边形是平行四边形.

分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.

证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形.

三、课堂小结(学生归纳,老师点评)

本节课应掌握:

1.中心对称图形的有关概念;

2.应用中心对称图形解决有关问题.

四、作业布置

教材第70页习题8,9,10.

教案九年级数学篇16

教学目标

1、知识技能目标:了解图形的放大与缩小的意义;能在方格纸上按一定的比画出放大与缩小的图形;通过图形的放大与缩小体会图形的相似。2、过程方法目标:通过观察、理解、动手操作等数学活动来体验图形放大与缩小的方法;培养学生的空间观念和动手操作能力。3、情感态度目标:激发学生学习数学的兴趣和求知欲,使学生积极参与学习活动,在学习过程中感受成功的喜悦。

教学重难点

【教学重点】理解图形的放大与缩小。

教学过程

一、创设情境,导入新课。

1、观察体验。

你见过下面这些现象吗?谁来描述一下!出示多媒体课件,56页生活情境图。这些生活中的现象,有的是把物体放大了,有的是把物体缩小了

2、学生举例,自由发言。

师:你们在生活中还见过其他放大缩小的现象吗?指名说一说。师:看来放大缩小现象在我们生活中的各个领域应用还是十分普遍的。这些现象也包含着一定的数学知识。今天这节课我们就来一起研究“图形的放大与缩小”。板书课题。

二、探究新知。

(一)感知图形的放大。

(多媒体出示方格纸上的平面图形,例4.)

1、初步感知画在方格纸上的平面图形。师:我们已经认识过许多的平面图形了。老师这把正方形、长方形和直角三角形分别画在了方格纸上。

大家看一看画在方格纸上的三个图,我们能获得哪些相关的数学信息?

学生小组自由谈。正方形边长3个方格、长方形长6个方格,宽3个方格直角三角形两条直角边分别是3个方格、6个方格。

2、理解要求。

(1)多媒体出示例4的要求——2:1画出这个图形放大后的图形。

(2)按“2:1”放大是什么意思?先让学生说出自己的理解,然后教师说明。(按2:1放大,也就是各边放大到原来的2倍。)

3、通过画正方形了解画法。

(1)那么我们怎么样才能把正方形按2:1放大呢?请同桌之间相互讨论。

(2)汇报:原来的边长是3个方格,放大后图形的边长是6格。

(3)学生在方格纸上画出正方形按2:1放大后的图形,

(4)教师总结学生方法中的重要一点:先确定一个固定的点,以它做为

确定图形位置的重要点再画出其他的部分。

(5)教师用多媒体课件展示画放大后正方形的过程。

4、经历画长方形和直角三角形的过程。

(1)接下来我们继续按照2:1放大长方形和直角三角形,你觉得需要知道些什么条件呢?点名学生回答。

(2)下面就按照你们的方法放大长方形和直角三角形吧,请画在方格纸上。

(3)学生汇报画法

(4)观察放大后的直角三角形,相邻的两条直角边放大了2倍,那么他的斜边也放大了2倍吗?你怎么知道的?汇报测量结果。

5、置疑。

观察一下,放大后的图形与原来的图形相比,有什么相同的地方?有什么不同的地方?

(1)放大后的图形与原来的图形相比,有什么相同的地方?有什么不同的地方?

(2)小组合作学习讨论解决学生提出的置疑。

(3)选取代表介绍自己的方法和找到的答案。教师配合多媒体课件随机演示验证的过程。(4)学生试概括发现,多媒体出示。(一个图形按一定的比放大,它的每条边都按相同的比放大。)

(5)多媒体出示。一个图形按一定的比放大,图形变大了,但形状没变

(二)感知图形的缩小。

师:我们一起研究了图形按一定的比放大的画法以及放大后图形的一些特点。如果把图形按一定的比缩小该怎么画?

1、出示缩小的要求。

如果把放大后的三个图形的各边按1:3缩小,图形又发生了什么变化?画画看.

2、说说对1:3的理解

3、学生作图,并相互检查。

4、选取学生代表的作品展示,并说说是怎么画的。(多媒体完成按一定的比缩小后画出的图形。)

5、观察原图和缩小后的图形。学生试说自己的发现并尝试总结。

按3:1画出下图

6、总结发现。

(1)学生讨论。

图形的各边按相同的比放大或缩小后,所得的图形与原图形有什么关系呢?

学生试总结图形按一定的比放大或缩小的特点。

(2)教师在学生充分的发言之后用多媒体出示图形放大和缩小的特点:所得的图形只是大小发生了变化,形状没变。

三、巩固应用

画一画,

学生根据教师给出一个放大或者缩小的比,然后在方格纸上画出按这个比放大或者缩小后的图形。画完后学生展示自己的作品并介绍画法。

1、按4:1画出下面图形放大后的图形.并说理由。

2、按1:2画出下面图形缩小后的图形.

3、按1:2画出下面图形缩小后的图形.

4、下面哪个图是图形A按2:1扩大后得到的图形?

5、按3:1画出下面图形放大后的图形.

【主要是评价学生按一定的比例对放大和缩小图形的画法的掌握】

四、课堂小结

通过这节课你学到了什么?

结束语:同学们,今天这节课我们学习到了图形的放大与缩小,在日常生活中,有许多这样的现象,只要大家做生活的有心人,运用今天所学的知识,你们就能创造许多新鲜有趣的事物,用以丰富和美化我们的生活。

五、课堂作业:

课本1、2题

教案九年级数学篇17

教学目标

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:

重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:

1.教材分析:

1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析

理解一元二次方程的定义:

是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

教学目的

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点: 重点:

1.一元二次方程的有关概念

2.会把一元二次方程化成一般形式

难点:一元二次方程的含义.

教学过程设计

一、引入新课

引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

分析:

1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3.让学生自己列出方程(x(x十5)=150)

深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

二、新课

1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

3.强化一元二次方程的概念

下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:

(2)x2=4

(3)(x十3)(3x·4)=(x十2)2;

(4)(x—1)(x—2)=x2十8

从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

4.一元二次方程概念的延伸

提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

ax2+bx+c=0(a≠0)

1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

强化概念(课本P6)

1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x2十3x十2=O(2)x2—3x十4=0;(3)3x2-5=0

(4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

课堂小节

(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

课外作业:略

教案九年级数学篇18

根据学校工作安排,本学期我担任初三级数学教学工作任务,为更好普及九年义务教育,同时向高中输送合格人才,现将本学期教学计划如下:

一、指导思想

在教学中努力推进九年义务教育?落实新课改?体现新理念?培养创新精神。通过数学课的教学?使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能努力培养学生的运算能力、逻辑思维能力?以及分析问题和解决问题的能力

二、学情分析:

新学期,根据初三年级分班的实际,首先是先摸清底子,稳住学生,然后根据学生学情分布情况,重新划分学习小组,对新分班过来的学生,做好各方面的工作,使他们迅速适应新环境,然后,尽快帮他们找到新的学习榜样和新学伴,帮他们树立竞争意识和发展意识以及创新意识,鼓励大家在新学期,获得更大的进步,取得更大的发展。

三、教学内容

本学期所教数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。第二十五章《概率初步》。代数三章,几何两章。而且本学期要授完下册第二十七章内容。

四、教学目标:

本学期的主要教学任务目标:

(1)根据学情,调整好教学进度,优化学习方法,激活知识积累。

(2)形成知识网络,解决实际问题。

(3)强化规范训练,提高应考能力。

(4)关注学生特长需求,做好学生心理疏导。

具体的说,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

知识技能目标:掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。

过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。

态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

教案九年级数学篇19

教学目标

(一)教学知识点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

(二)能力训练要求

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.

3.通过学生共同观察和讨论,培养大家的合作交流意识.

(三)情感与价值观要求

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

2.具有初步的创新精神和实践能力.

教学重点

1.体会方程与函数之间的联系.

2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

教学难点

1.探索方程与函数之间的联系的过程.

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.

教学方法

讨论探索法.

教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.

教案九年级数学篇20

二次函数的教学设计

教学内容:人教版九年义务教育初中第三册第108页

教学目标:

1。1。理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2。2。通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

3。3。通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

教学重点:二次函数的意义;会画二次函数图象。

教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1。写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

答:S=πR2。①

2。写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

答:S=L(30-L)=30L-L2②

分析:①②两个关系式中S与R、L之间是否存在函数关系?

S是否是R、L的一次函数?

由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),

那么,y叫做x的二次函数。

注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。

练习:1。举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2。出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如:;;;的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1。1。尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

2。2。模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

解:一、列表:

23604