九年级数学拓展教案
一份优秀的教案应该包含合理的教学流程,其中包括引导课程、教授新知识、复习巩固、课堂总结以及布置作业等环节。优秀的九年级数学拓展教案是什么样的?下面给大家带来九年级数学拓展教案,供大家参考。
九年级数学拓展教案篇1
教学目标:
1.知识与技能:
(1)能证明等腰梯形的性质和判定定理
(2)会利用这些定理计算和证明一些数学问题
2.过程与方法:
通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。
3.情感态度与价值观:
通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。
重点、难点:
重点:等腰梯形的性质和判定
难点:如何应用等腰梯形的性质和判定解决具体问题。
教学过程
(一)知识梳理:
知识点1:等腰梯形的性质1
(1)文字语言:等腰梯形同一底上的两底角相等。
(2)数学语言:
在梯形ABCD中
∵AD‖BC,AB=CD
∴∠B=∠C
∠A=∠D(等腰梯形同一底上的两个底角相等)
(3)本定理的作用:在梯形中常用的添加辅助线——平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。
知识点2:等腰梯形的性质2
(1)文字语言:等腰梯形的两条对角线相等
(2)数学语言:
在梯形ABCD中
∵AD‖BC,AB=DC
∴AC=BD(等腰梯形对角线相等)
(3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。
知识点3:等腰梯形的判定
(1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。
(2)数学语言:在梯形ABCD中∵∠B=∠C
∴梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)
(3)本定理的作用:在梯形中常用添加辅助线——补全三角形把原来的梯形化为两个三角形
(4)说明:
①判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。
②判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。
【典型例题】
例1.我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。
(1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工具不限)
(2)在(1)的条件下,若AC⊥BD,DE⊥BC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。
解:(1)略。
(2)DE=(AD+BC)
过D作DF‖AC交BC延长线于点F
∵AD‖BC,∴四边形ACFD是平行四边形
∴AD=CF,AC=DF
∵AC=BD
∴BD=DF
又∵AC⊥BD,∴BD⊥DF即△BDF为等腰直角三角形
∵DE⊥BF,则DE=BF,
∴DE=(BC+CF)=(BC+AD)
例2.如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m,斜坡BC与下底CD的夹角为60°,路基高AE为,求下底CD的宽。
解:过点B作BF⊥CD于F
∵四边形ABCD是等腰梯形
∴BC=AD
∵BF=AE,BF⊥CD,AE⊥CD
∵Rt△BCF≌Rt△ADE
在Rt△BCF中,∠C=60°
∴∠CBF=30°
∴CF=BC即BC=2CF
∴BC2=CF2+BF2
即∴CF=2
∵AB‖CD,BF⊥CD,AE⊥CD
∴四边形ABFE是矩形
∴EF=AB=6m
∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)
例3.已知如图,梯形ABCD中,AB‖DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F
(1)请写出图中4组相等的线段。(已知的相等线段除外)
(2)选择(1)中你所写的一组相等线段,说说它们相等的理由。
解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG
(2)证明AG=BG,因为在梯形ABCD中,
AB‖DC,AD=BC,所以梯形ABCD为等腰梯形
∴∠GAB=∠GBA
∴AG=BG
课堂小结:
本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。
九年级数学拓展教案篇2
教学目标:
1、培养学生看图识图的能力.
2、在识图过程中,渗透数形结合的数学思想.
3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.
4、激发学生学习数学的兴趣,培养学生的探索精神
教学重点:培养学生看图识图的能力
教学难点:渗透数形结合的数学思想
教学用具:计算机、投影机
教学方法:谈话法、分组讨论
教学过程:
1、阅读习题13.3的第四题
学生阅读后,老师可以提问学生,分别回答:
下图是北京春季某一天的
2、提出看图说图的重要性
随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.
3、为学生提供相对丰富的素材,体会以图识性.
例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是 .如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?
(读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).
从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.
如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.
而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.
例2、 如图,是各月气温的分配图
能从图中找出气温最低的月份,气温的月份.
并判断出该地所处的气温带.
分析:气温在7月,最低在2月.气温曲线的
下限也在 以上,即 ~ 之间,因此可判断出
该地位于亚热带.
(从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律.
例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法.
参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少.
以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业提前下发,也可以在上课时,由老师进行通俗的解释.
右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图.
(1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线
(2)男女生曲线基本相似,波峰与波谷基本出现在同一点上.
(3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势.
(注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度.
4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题.
5、作业:从其它学科或现实生活中找出曲线图,加以分析,提出你自己的想法.
九年级数学拓展教案篇3
一、教学目标
1.知识与技能
(1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;
2.过程与方法
通过猜想、探讨构建一元二次方程模型.
3.情感、态度与价值观
(1)通过自主、探究性学习,使学生养成良好的思维习惯;
(2)通过对方程解的合理性解释,培养学习实事求是的作风.
二、教学重点难点
1.重点
找出问题中的数量关系;
2.难点
找等量关系并列出相应方程.
三、教材分析
本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型.
四、教学过程与互动设计
(一)温故知新
1.请同学们回忆并回答解一元一次方程应用题的一般步骤:
第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;
第二步:找出能够表示应用题全部含义的相等关系;
第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;
第四步:解这个方程,求出未知数的值;
第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称.)
2.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.
我们先来解一些具体的题目,然后总结一些规律或应注意事项.
(二)创设情景,导入新课
1.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米.
若梯子的顶端下滑1米,那么
(1)猜一猜,底端也将滑动
1米吗?
(2)列出底端滑动距离所满足的方程.
【答案】
①底端将滑动1米多
②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际.
2.【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
(1)学生讨论:怎样计算月利润增长百分率?
【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润
例8某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率.
分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍.
解:设平均降价百分率为x,根据题意,得56(1-x)2=31.5
解这个方程,得x1=1.75,x2=0.25
因为降价的百分率不可能大于1,所以x1=1.75不符合题意,符合题意要求的是x=0.25=25%
答每次降价百分率为25%.
【跟踪练习】
某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%).
【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性.
(三)应用迁移,巩固提高
1.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()
A)200(1+a%)2=148(B)200(1-a%)2=148
(C)200(1-2a%)=148(D)200(1-a2%)=148
2.为绿化家乡,某中学在20_年植树400棵,计划到20_年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?
(四)达标测试
1.某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()
A、100(1+x)2=800B、100+100×2x=800C、100+100×3x=800D、100[1+(1+x)+(1+x)2]=800
2.某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程.,一元二次方程的.解法
3.某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?
4.某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)
5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数
五、课堂小结
九年级数学拓展教案篇4
教学目标
1、认识扇形统计图的特点和作用;
2、能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
3、遇到不理解或不懂的地方,用下划线和?标记出来。便于交流时提出。
4、自己的建议、体会、方法可以在旁边作好批注。
教学重难点
1、认识扇形统计图的特点和作用;
2、能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
教学工具
课件
教学过程
一、快乐自学
你喜欢运动吗?调查本班同学喜欢的运动项目。根据下面的统计图:
六(1)班最喜欢的运动项目统计图
1、说一说:从这幅统计图中你能获取哪些信息?
2、我知道这是一幅()统计图,它的特点是()。
3、我最喜欢的运动项目是(),它占全班人数的百分比是()。要想清楚地知道百分比这样的信息,我们可以选用()统计图。
4、一起来认识扇形统计图吧!自学教材第107页,注意拿笔勾画哦!.
(1)计算出各运动项目占全班人数的百分比。
(2)从扇形统计图中,你又能获取哪些信息?
(3)你还能提出什么问题?
二、合作探究。
讨论交流:扇形统计图是怎样来表示各个数据的?它有什么特点?
1、我发现扇形统计图中的()代表单位“1”,表示(),各个扇形面积表示(),扇形的大小说明了()。
2、扇形统计图的特点是()。
3、生活中,你还从()见到过扇形统计图?
三、学习小结
我们已曾经学过的统计图有条形统计图,它的特点是();还有()统计图,它的特点是不但可以表示各部分数量的多少,而且还可以清楚地看出数量的增减变化情况。我们今天又学习了扇形统计图,它的特点是(),
四、智勇大闯关,我是小擂主
1、第一关:小练兵。
完成练习二十五的第1、2题。
2、第二关
完成练习二十五的第4题。
五、学后反思
1、我的收获:
2、自我评价:我对我的课堂表现(),因为(
)。
六、作业
1、完成教材P107的“做一做”.
2、练习二十五的第3题
课后习题
1、完成教材P107的“做一做”。
2、练习二十五的第3题。
九年级数学拓展教案篇5
一、素质教育目标
(一)知识教学点
使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点
逐步培养学生观察、比较、分析、概括等逻辑思维能力.
(三)德育训练点
培养学生良好的学习习惯.
二、教学重点、难点
1.重点:“正弦和余弦表”的查法.
2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.
三、教学步骤
(一)明确目标
1.复习提问
1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.
2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.
(二)整体感知
我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.
(三)重点、难点的学习与目标完成过程
1.“正弦和余弦表”简介
学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.
(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.
2)表中角精确到1′,正弦、余弦值有四位有效数字.
3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.
2.举例说明
例4查表求37°24′的正弦值.
学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.
例5查表求37°26′的正弦值.
学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).
解:sin37°24′=0.6074.
角度增2′值增0.0005
sin37°26′=0.6079.
例6查表求sin37°23′的值.
如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.
解:sin37°24′=0.6074
角度减1′值减0.0002
sin37°23′=0.6072.
在查表中,还应引导学生查得:
sin0°=0,sin90°=1.
根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.
可引导学生查得:
cos0°=1,cos90°=0.
根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.
(四)总结与扩展
1.请学生总结
本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.
2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.
四、布置作业
预习教材中例8、例9、例10,养成良好的学习习惯.
五、板书设计
14.1正弦和余弦(四)
一、正余弦值随角度变二、例题例5例6
化规律例4
九年级数学拓展教案篇6
1、知识与技能
(1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;
2、过程与方法
通过猜想、探讨构建一元二次方程模型。
3、情感、态度与价值观
(1)通过自主、探究性学习,使学生养成良好的思维习惯;
(2)通过对方程解的合理性解释,培养学习实事求是的作风。
二、教学重点难点
1、重点
找出问题中的数量关系;
2、难点
找等量关系并列出相应方程。
三、教材分析
本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型。
四、教学过程与互动设计
(一)温故知新
1、请同学们回忆并回答解一元一次方程应用题的一般步骤:
第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;
第二步:找出能够表示应用题全部含义的相等关系;
第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;
第四步:解这个方程,求出未知数的值;
第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称。)
2、解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样。
我们先来解一些具体的题目,然后总结一些规律或应注意事项。
(二)创设情景,导入新课
1、一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米。
若梯子的顶端下滑1米,那么
(1)猜一猜,底端也将滑动
1米吗?
(2)列出底端滑动距离所满足的方程。
【答案】①底端将滑动1米多
②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际。
2、【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
(1)学生讨论:怎样计算月利润增长百分率?
【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润
例8某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率。
分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍。
解:设平均降价百分率为x,根据题意,得
56(1-x)2=31.5
解这个方程,得
x1=1.75,x2=0.25
因为降价的百分率不可能大于1,所以x1=1.75不符合题意,符合题意要求的是x=0.25=25%
答每次降价百分率为25%。
【跟踪练习】
某药品经两次降价,零售价降为原来的一半。已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%)。
【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性。
(三)应用迁移,巩固提高
1、某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()
(
a)200(1+a%)2=148(b)200(1-a%)2=148
(c)200(1-2a%)=148(d)200(1-a2%)=148
2、为绿化家乡,某中学在20_年植树400棵,计划到20_年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?
(四)达标测试
1、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()
a、100(1+x)2=800b、100+100×2x=800c、100+100×3x=800d、100[1+(1+x)+(1+x)2]=800
2、某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程。
,一元二次方程的解法
3、某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?
4、某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)
5、某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数
五、课堂小结
九年级数学拓展教案篇7
一、上学期工作回顾及学生情况分析:
上学期期末参加考试人数31人,及格率%,平均分86分,最高分98分,最低分43,优生率61%。
本班学生总体上说比较爱学,对一些基础的知识大部分学生能扎实的掌握。但也有部分学生接受知识的能力相对较弱,学习基础又不扎实,从而导致学习成绩不理想。本学期将针对班级实际情况,切实提高每位学生的学习能力和学习成绩。
二、本册教材的教学任务、要求及重点:
教学任务:
本册教材内容包括:比例,圆柱、圆锥和球,简单的统计,整理和复习等四个部分。
教学要求:
1、掌握圆柱、圆锥的特征,掌握几何体体积的计算公式,学会正确计算它们的体积。
2、学会绘制复式统计表和统计图,并能看懂、分析统计图表中的数据所说明的问题。
3、理解比例的意义和性质,解比例,能正确判别成正比例或反比例的量,学会解答比较容易的比例应用题。
4、通过小学数学知识的系统复习整理,巩固和深化所学的数学知识,提高计算和解题能力,培养独立思考、不怕困难的精神。
教学重点:
圆柱、圆锥,比例的应用,小学阶段主要数学知识的复习。
三、教学措施:
1、在教学中,为学生提供创造参与教学活动的情境,努力构建“和谐有效”课堂,通过操作、观察、讨论、比较等活动,先形象具体,后抽象概括,帮助学生理解和掌握知识点。
2、在教学中还要注意抓住新旧知识的内在联系,教给学生恰当的学习方法,使学生了解知识间的横向联系。
3、在教学中要重视学生的学法指导,培养学生的迁移、类推能力。
4、抓好育尖补差工作,利用课余时间为他们补课。
九年级数学拓展教案篇8
目标
1、了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。
2、通过复习轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。
3、旋转的基本性质。
重点
旋转及对应点的有关概念及其应用。
难点
旋转的基本性质。
一、复习引入
(学生活动)请同学们完成下面各题。
1、将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形。
2、如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′。
3、圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质。
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。
(3)什么叫轴对称图形?
二、探索新知
我们前面已经复习等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。
1、请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了__度,分针转了__度,秒针转了__度。
2、再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)
3、第1,2两题有什么共同特点呢?
共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
下面我们来运用这些概念来解决一些问题。
例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A,B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角。
(2)经过旋转,点A和点B分别移动到点E和点F的位置。
自主探究:
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板。
(分组讨论)根据图回答下面问题(一组推荐一人上台说明)
1、线段OA与OA′,OB与OB′,OC与OC′有什么关系?
2、∠AOA′,∠BOB′,∠COC′有什么关系?
3、△ABC与△A′B′C′的形状和大小有什么关系?
老师点评:
1、OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等。
2、∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角。
3、△ABC和△A′B′C′形状相同和大小相等,即全等。
综合以上的实验操作得出:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等。
例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形。
分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示。
解:(1)连接CD;
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;
(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;
(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形。
三、课堂小结
(学生总结,老师点评)
本节课应掌握:
1、对应点到旋转中心的距离相等;
2、对应点与旋转中心所连线段的夹角等于旋转角;
3、旋转前、后的图形全等及其它们的应用。
四、作业布置
教材第62~63页习题4,5,6。
九年级数学拓展教案篇9
教学目标
知识与技能:
1、知道什么叫做解比例,会根据比例的性质正确地解比例。
2、培养学生认真书写和计算的习惯。
过程与方法:
经历解比例的过程,体验知识之间的内容在联系和广泛应用。
情感与价值观:
感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
教学重难点
教学重点:
解比例
教学难点:
解比例的方法。
教学工具
ppt课件
教学过程
一、复习准备
1、提问
师:同学们,前面我们学习了比例,
出示:1、什么叫做比例?2、比例的基本性质是什么?
(分别指名学生回答)
2、想一想
出示比例:3:2=():10
师:你能利用比例的知识说一说括号里应填几?为什么?
生:可以根据比例的意义3:2=1.5,想():10=1.5(15比10等于1.5);还可以根据比例的基本性质,两个外项的积等于30,想()×2=30(15乘以2等于30)。
师:你能快速地说出这个括号里应填几吗?
出示比例:():0.5=8:2
师:仔细观察这两个比例,其中几项是已知的?(三项)另一个项是未知的,我们把它叫做(未知项),一般用x表示。根据什么就可以求出这个未知项?(比例的基本性质)
像这样,求比例中的未知项,叫做解比例。(课件出示)。
今天这节课我们就来学习解比例。(板书课题,学生齐读)
二、探索新知
1、出示埃菲尔铁塔情境图。
师:解比例在我们生活中的应用是十分广泛的,同学们,请看:
这是法国巴黎最有名的塔叫埃菲尔铁塔,高度约320米。我国北京世界公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。
2、出示例题,教学例2。
指名学生读题。
师:从这道题中你能得到哪些数学信息?(指名学生回答)
问:1:10是谁与谁的比?你又能写出怎样的数量关系式?
学生回答后,课件出示:模型的高度:铁塔的高度=1:10。
师:在这个关系式中,谁还是已知的?
(埃菲尔铁塔的高度是320米。)
师:在这个关系式中,我们知道其中的(三项),另一个项不知道,可以设为x,(课件出示)这样就可以写出一个比例,谁来说说看?
课件出示:X:320=1:10
师:怎样解这个比例呢?
引导学生讨论后回答:应用比例的基本性质,把比例写成方程。
师:同学们会解方程吗?试着把这个方程解出来。
学生投影展示解比例过程,师适时讲解强调。
师:我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是否相等.)或用比例的基本性质(看看两个外项的积和两个内项的积是否相等来检验。
师:解比例在生活中的应用十分广泛,我们来总结一下解决这类问题的一般步骤:(先根据问题设X——再根据数量关系列出比例式——然后根据比例的基本性质把比例转化为方程——解方程)最后别忘了检验噢!(课件出示)。
师:现在同学们会用解比例的方法来解决问题了吗?
3、教学例3
师:这个比例你会解吗?出示例3
师:它与例2有什么不同?(这个比例是分数形式)应该怎样解呢?同桌先说一说,然后指名学生说一说你是怎样解这个比例的。(可以根据比例的基本性质---交叉相乘的积相等把比例转化成方程,然后解方程求出未知数X)
师:想一想括号里应填什么?
师:回顾一下我们是怎样解比例的?
学生说完课件出示,强调最后别忘了检验。
三、巩固练习
1、课件出示4道解比例,学生独立完成,投影展示。
2、解决问题:教材“做一做”第2题。(学生分析后指名学生板演,其他练习本上独立完成,然后集体订正)
3.你知道吗?
侦探柯南之神秘脚印
四、布置作业
课下,和小组成员想办法测量出我们学校旗杆的高度!
五、课堂总结
通过这节课的学习,你有那些新的收获?
学生畅所欲言。(什么叫解比例?怎样解比例?)
板书
解比例
求比例中的未知项,叫做解比例。
九年级数学拓展教案篇10
配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1用配方法解下列关于x的方程:
(1)x2-8x+1=0(2)x2-2x-12=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.
三、巩固练习
教材第9页练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置
九年级数学拓展教案篇11
在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。
一、注重类比教学
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学。在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的。有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。
首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓麻雀虽小,五脏俱全。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。例如:
《正比例函数》教学流程
(一)环节一:概念的建立
通过对问题的处理用函数y=200x来反映汽车的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。
(二)环节二:函数图象
这个环节是教学的重点,由学生先动手按列表——描点——连线的过程画函数y=2x和y=-2x的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。
(三)环节三:探究函数性质
让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的变化规律。这几个方面来归纳,最终得出正比例函数的性质。
(四)环节四:概念的归纳
将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。
二、注重数形结合的教学
数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则:
(1)让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。
(2)切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的.简单画法,追求方法的最优化,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。
(3)注意让学生体会研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。
函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。
关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的.应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。
九年级数学拓展教案篇12
教学目标
(一)教学知识点
1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.
2.能根据相似比进行计算.
(二)能力训练要求
1.能根据定义判断两个三角形是否相似,训练学生的判断能力.
2.能根据相似比求长度和角度,培养学生的运用能力.
(三)情感与价值观要求
通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.
教学重点
相似三角形的定义及运用.
教学难点
根据定义求线段长或角的度数.
教学方法
类比讨论法
教具准备
投影片三张
第一张(记作§4.5 A)
第二张(记作§4.5 B)
第三张(记作§4.5 C)
教学过程
Ⅰ.创设问题情境,引入新课
[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.
[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.
相似多边形对应边的比叫做相似比.
[师]很好.请问相似多边形指的是哪些多边形呢?
[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.
[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.
九年级数学拓展教案篇13
教学目标
(1)会用公式法解一元二次方程;
(2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;
(3)渗透化归思想,领悟配方法,感受数学的内在美.
教学重点
知识层面:公式的推导和用公式法解一元二次方程;
能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.
教学难点:求根公式的推导.
总体设计思路:
以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维.
教学过程
(一)以旧引新,提出问题
解下列一元二次方程:(学生选两题做)
(1)_2+4_+2=0;(2)3_2-6_+1=0;
(3)4_2-16_+17=0;(4)3_2+4_+7=0.
然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?
接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)
(1)3_2+4_+2=0;(2)3_2-2_+1=0;
(3)4_2-16_-3=0;(4)3_2+_+7=0.
思考:新的四题与原题的解题过程会发生什么变化?
设计意图:1.复习巩固旧知识,为本节课的学习扫除障碍;
2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望.
3、学生根据自己的情况选两题,这样做能保证运算的正确和继续学习数学的信心。
(二)分析问题,探究本质
由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根.
进而提出下面的问题:
既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?
让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.
a_2+b_+c=0(a≠0)注:根据学生学习程度的不同,可
a_2+b_=-c以采用学生独立尝试配方,合
_2+_=-作尝试配方或教师引导下进行
_2+_+=-+配方等各种教学形式.
(_+)2=
然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2-4ac”的重要性.
当b2-4ac≥0时,
(_+)2=注:这样变形可以避免对a正、负的讨论,
_+=便于学生的理解.
_=-即_=
_1=,_2=
当b2-4ac<0时,
方程无实数根.
设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.
(三)得出结论,解决问题
由上面的探究过程可知,一元二次方程a_2+b_+c=0(a≠0)的根由方程的系数a,b,c确定.当b2-4ac≥0时,
_=;
当b2-4ac<0时,方程无实数根.
这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美.
进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.
设计意图:理解是记忆的基础。只有理解了公式才能烂熟于心,才能在题目中熟练应用,不会因记不清公式造成运算的错误。
运用公式法解一元二次方程.(前两道教师示范,后两道学生练习)
(1)2_2-_-1=0;(2)4_2-3_+2=0;
(3)_2+15_=-3_;(4)_2-_+=0.
注:(教师在示范时多强调注意点、易错点,会减少学生做题的错误,让学生在做题中获得成功感。)
设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤,及时总结简化运算,节约时间又提高做题的准确性。
用公式法解一元二次方程:(比一比,看谁做得又快又对)
(1)_2+_-6=0;(2)_2-_-=0;
(3)3_2-6_-2=0;(4)4_2-6_=0;
设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获,通过大量练习,熟悉公式法的步骤,训练快速准确的计算能力。
(四)拓展运用,升华提高
[想一想]
清清和楚楚刚学了用公式法解一元二次方程,看到一个关于_的一元二次方程_2+(2m-1)_+(m-1)=0,清清说:“此方程有两个不相等的实数根”,
而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由.
设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高.比较配方法在不同题型中的用法,
避免以后出现运算错误。
归纳小结,结合上面想一想,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.
(五)布置作业
一必做题
二选做题:P46第12题。
设计意图:结合学生的实际情况,可以分层布置。适合的练习既巩固了所学提高了计算的速度又保养了学生学习数学的兴趣和信心。
九年级数学拓展教案篇14
本学期是初中学习的关键时期,进入初三,学生成绩差距较大。教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。努力把今学期的任务圆满完成。本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。
一.完成九年级下册的内容
1.掌握二次函数的概念,五种基本函数关系式,会建立数学模型来解决实际问题。
2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的性质定理。
3.加强学生对数学知识的认识方法,培养他们正确的学习方法。
4.通过关於图形和证明的教学,进一步培学生的逻辑思维能力.与空间观念。
二.本学期在提高教学质量上采取的措施。
1.改进教学方法,采用启发式教学。
2.注意教科书的系统性,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。
3.注意发展学生探索知识的能力,提高学生分析问题的能力。
4.开放性问题、探究性问题教学,培养学生创新意识、探究能力。
5.鼓励合作学习,加强个别辅导,提高差生成绩。
三.教学具体安排。
1.第一周.平行四边形,矩形,菱形,正方形.
2.第二周.等腰梯形,中位线,反证法,以及复习题
3.第三周.数据分析与决策.
4.4周.复习数与式
5.5周.复习方程与不等式
6.6周.复习函数
7.7周.复习图形的认识
8.8周.复习图形与变换
9.9周.复习图形与坐标
10.10周.复习概率与统计
11.11周.复习课题学习
12.12周.模拟考试与讲评
13.13周.市检
14.14周.重要知识点的再梳理
15.15周.一些常见题的训练
16.16周.做往年的中考题
17.17周.考试方法和考试心理的辅导.
九年级数学拓展教案篇15
【知识与技能】
1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.
2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.
【过程与方法】
经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.
【情感态度】
通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.
【教学重点】
①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.
【教学难点】
二次函数图象的性质及其探究过程和方法的体会.
【知识与技能】
1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.
2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.
【过程与方法】
经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.
【情感态度】
通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.
【教学重点】
①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.
【教学难点】
二次函数图象的性质及其探究过程和方法的体会.
【知识与技能】
1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.
2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.
【过程与方法】
经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.
【情感态度】
通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.
【教学重点】
①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.
【教学难点】
二次函数图象的性质及其探究过程和方法的体会.