教案吧 > 初中教案 > 九年级教案 >

九年级数学教案

时间: 新华 九年级教案

教案可以帮助教师根据学生的实际情况,面向大多数学生,并调动学生学习的积极性。写九年级数学教案有什么要注意的呢?这里给大家带来九年级数学教案,希望对大家有所帮助。

九年级数学教案篇1

教学目标

知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。

教学重难点

教学重点:理解生活中常见的百分率的含义。

教学难点:正确计算常见的百分率。

教学过程

一、创设情境,探究导入

1、课件出示

看图,回答下面的问题。

(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

2、百分数的意义

我们班有36%的学生参加了美术兴趣小组。

世界总人口中大约有50%的人口年龄低于25岁。

一瓶农夫果园饮料中果汁含量大约是10%。

我们班学生的近视率是45%。

3、小刚做了10道题,错了2道

做对的题数占总题数的几分之几?

做错的题数占总题数的几分之几?

做对的题数占总题数的百分之几?

做错的题数占总题数的百分之几?

求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b

4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?

学生独立思考、同桌交流:尝试计算,得出结论。

5、谈话,导入新课

在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。

下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。

二、学习新知

1、教学例1——在具体情境中认识百分率,探究计算方法

(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?

(2)学生读题,分析题意,思考达标率的含义,尝试计算。

(3)指名板演并交流思维过程,集体订正。

(4)教师小结

指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数除以测试总人数×100%”。

谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。

2、教学例2——掌握百分率计算方法,认识百分率的价值

(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:

种子名称实验种子总数发芽数发芽率

绿豆8078

花生5046

大蒜2019

(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种种子的发芽率。(3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。

(4)比较,认识发芽率在生产实践中的价值。

通过计算我们发现哪种种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。

3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。

(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。

(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。

(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。

(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式:?率=量?除以总数量×100%

(5)举实例,加深对百分率计算公式的认识,掌握百分率计算方法。

4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。

5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%?三、巩固练习

1、填一填

①稻谷的出米率是85%,是指()

的千克数占()的千克数的百

分之八十五。

②甲数是乙数的4/5,乙数是甲数的

()%。

③20÷()=4/8=()︰24=()%

2、选一选:

种一批树,活了100棵,死了1棵,求成活率的正确算式是()。

一根钢管截成2段,第一段长米,第二段占全长的60%,这两段钢管比较()。布置作业

1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。

2、完成练习二十第2、3、4题。

四、课堂小结

今天你有什么收获?生谈收获。

九年级数学教案篇2

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.

重点

中心对称图形的有关概念及其它们的运用.

难点

区别关于中心对称的两个图形和中心对称图形.

一、复习引入

1.(老师口问)口答:关于中心对称的两个图形具有什么性质?

(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

关于中心对称的两个图形是全等图形.

2.(学生活动)作图题.

(1)作出线段AO关于O点的对称图形,如图所示.

(2)作出三角形AOB关于O点的对称图形,如图所示.

延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.

二、探索新知

从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.

上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.

∵AO=OC,BO=OD,∠AOB=∠COD

∴△AOB≌△COD

∴AB=CD

也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.

因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.

老师点评:老师边提问学生边解答的特点.

(学生活动)例2请说出中心对称图形具有什么特点?

老师点评:中心对称图形具有匀称美观、平稳的特点.

例3求证:如图,任何具有对称中心的四边形是平行四边形.

分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.

证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形.

三、课堂小结(学生归纳,老师点评)

本节课应掌握:

1.中心对称图形的有关概念;

2.应用中心对称图形解决有关问题.

四、作业布置

教材第70页习题8,9,10.

九年级数学教案篇3

20____年转眼来临,本学年既有新任务要完成还有复习更要兼顾,因此事非常重要的一个学期,要以培养学生创新精神和实践能力为重点,探索有效教学新模式。以课堂教学为中心,紧紧围绕初中数学教材、数学学科“基本要求”进行教学,针对近年来中考命题的变化和趋势进行研究,收集试卷,精选习题,建立题库,努力把握中考方向,积极探索高效的复习途径,力求达到减负、加压、增效的目的,促进学生生动、活泼、主动地学习,力求中考取得好成绩。通过数学课的教学,使学生切实学好从事现代化建设和进一步学习所必须的基本知识和基本能力,在思维能力、情感态度与价值观等多方面得到进步和发展。

一、学情分析:

本学年我带九年级二班,学生上学期成绩居全县第四,两极分化越来越严重。有部分学生成绩下滑很明显,学习习惯较差。做事慢慢腾腾,有几个学生应该考优生的学生都没有考到优生,如连清,赵熙,马晓宇,李功奎,张信心,夏森,柯昭君,许鑫鑫,徐婷婷等,这些也许是老师督导不到位,也有少数学生自制能力较差,对自己要求不严,甚至自暴自弃。这些都需要针对不同情况采取相应措施,耐心教育。

二、教材分析:

本学期的新内容只剩两章:解直角三角形和投影。

四、教学目标:

1、在教学过程中抓住以下几个环节:(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。(2)上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。(3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。(4)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。(5)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。(6)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。(7)积极与其它老师沟通,加强教研教改,提高教学水平。(8)经常听取学生良好的合理化建议。(9)以“两头”带“中间”战略思想不变。(10)深化两极生的训导。

五、严格按照教学进度,有序的进行教学工作。用心去做,从细节去做,尽自己追大的努力,发挥自己的能力去做好初三毕业班的教学工作。

六、强化复习指导。分二阶段复习:(一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。

2、按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲图形与变换;第七讲角、相交线和平行线;第八讲三角形;第九讲四边形;第十讲三角函数学;第十一讲圆.复习中由教师提出每个讲节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。

3、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。

中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。

4、重视对数学思想的理解及运用。如函数的思想,方程思想,数形结合的思想等。

(二)第二阶段综合运用知识,加强能力培养,构建初中数学知识结构和网络,从整体上把握数学内容,以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。

培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个讲节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到自己的力量,增强前进的信心,产生更强的求知欲。第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计复习课的教学方法,提高复习效益

七、不断钻研业务,提高业务能力及水平。

积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。

八、分层辅导,因材施教对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行义务补课,以提高成绩。

九年级数学教案篇4

教学设计

(一)明确目标

首先师生一起来复习上节课点的轨迹的概念及两层含义和常见的点的轨迹前三种.

复习提问:

1.什么叫做点的轨迹?它的两层意思是什么?请结合讲过的常见点的轨迹解释两层意思.

2.上节课我们讲了常见的点的轨迹有几种?请回答出其内容.

上节课我们学习了常用点的轨迹的三种,我们教科书中有五种常见的轨迹.本节课我们来进一步学习常见点的轨迹的后两种.教师板书“点的轨迹之二”.

(二)整体感知

首先引导学生学习点的轨迹的定义,解释由定义得到的两层意思,提问学生来解释上节课常见的三个轨迹的两层意思.

圆是图形——这个图形是轨迹.

它符合的两层含义:圆上每一个点都符合到圆心O的距离等于半径r的条件,反过来到定点O的距离等于r的每一个点都在圆上.所以圆是到定点的距离等于定长的点的轨迹.

接着教师引导学生解释线段垂直平分线,角的平分线的两层意思,然后正确地回答出这两个点的轨迹.

在复习圆、线段的垂直平分线、角的平分线的基础上可进一步了解其它的两个点的轨迹、由于第

四、第五个点的轨迹学生比较生,这样还要指导学生复习点到直线的距离,特别是在两条平行线内取一点到这两条直线的距离都相等,这一点的取法应在教师的指导下来完成.

(三)重点、难点的学习与目标完成过程

在学生学习常见的五种轨迹的后两种轨迹没有感性、直观的印象之前,教师首先帮助学生复习已有的知识:点的轨迹的定义、定义的两层意思、前三个常见的轨迹等,这种复习不是简单的重复,而是让学生结合所学的三个轨迹来解释定义中的两层意思.这样对后两个点的轨迹的教学起到了奠基的作用.提问:已知直线l,在直线l外取一点P,使P到直线l的距离等于定长d,这一点怎么取,具有这个性质的点有几个?在教师的指导下学生动手来完成.由师生共同找到在已知直线l的两侧各取一点P、P′,到直线l的距离都等于d.教师再提出问题,现在分别过点P、P′作已知直线l的平行线l

1、l2,那么直线l

1、l2上的点到已知直线l的距离是否都等于已知线段d呢?学生的回答是肯定的,这时反过来再问,除直线l

1、l2外平面上还是否有点到已知直线l的距离等于d呢,学生一时并不一定能答上来,经过学生讨论研究,最终学生还是能正确回答的,这就是说到已知直线l的距离等于定长d的点只有在直线l

1、l2上.

这时教师引导学生归纳出第四个轨迹,教师把轨迹4板书在黑板上:轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于d的两条直线.

现在我们来研究相反的问题,已知直线l1‖l2,在l

1、l2之间找一点P,使点P到l

1、l2的距离相等,这样一点怎样找?有前面问题的基础在教师的指导下都能找到点P,再过点P作l1的平行线l,这时提出问题:

1.直线l上的点到直线l

1、l2的距离是否都相等;

2.到平行线l1,l2的距离都相等的点是否都在直线l上?有前一个问题的铺垫和前四个基本轨迹的启发,学生很快地回答出第五个轨迹的两层意思,而且回答是非常肯定的.总结归纳出第五个轨迹:

轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.

接下来为了使学生能准确的把握轨迹

4、轨迹5的特征,教师在黑板上出示一组练习题:

1.到直线l的距离等于2cm的点的轨迹;

2.已知直线AB‖CD,到AB、CD距离相等的点的轨迹.

对于这两个题教师要求学生自己画图探索,然后回答出点的轨迹是什么,学生对于这两个轨迹比较生疏回答有一定的困难,这时教师要从规律上和方法上指导学生怎么回答好一些,抓住几处重点词语的地方:如轨迹4中的“平行”、“到直线l的距离等于定长”、“两条”,或轨迹5中的“平行”、“到两条平行线的距离相等”、“一条”.这样学生回答的语言就不容易出现错误.

接下来做另一组练习题:判断题:

1.到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.

()

2.和点B的距离等于2cm的点的轨迹,是到点B的距离等于2cm的圆.

()

3.到两条平行线的距离等于5cm的点的轨迹,是和这两条平行线的平行且距离等于5cm的一条直线.

()

4.底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.

()

这组练习题的目的,训练学生思维的准确性和语言表达的正确性.这组习题的思考,回答都由学生自己完成,学生之间互相评议,找出语言的问题,加深对点的轨迹的进一步认识和规范化的语言表述.

(四)总结扩展

本节课主要讲了点的轨迹的后两个.从知识的结构上可以知道:

从方法上能准确地回答点的轨迹和能把所要回答的轨迹问题辨认出属于哪一个常用的基本轨迹.

从能力上学生通过旧知识的学习,学生自己能归纳出五个基本轨迹,使学生学习数学知识的能力又有了新的提高.

对于基本轨迹的应用还要逐步加深,特别是在今后学习立体几何、解析几何时要用到这些知识.所以常见五个基本轨迹要求学生必须掌握.

(五)布置作业略板书设计

九年级数学教案篇5

一、素质教育目标

(一)知识教学点

使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点

逐步培养学生观察、比较、分析、概括等逻辑思维能力.

(三)德育训练点

培养学生良好的学习习惯.

二、教学重点、难点

1.重点:“正弦和余弦表”的查法.

2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.

三、教学步骤

(一)明确目标

1.复习提问

1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.

2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.

(二)整体感知

我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.

(三)重点、难点的学习与目标完成过程

1.“正弦和余弦表”简介

学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.

(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.

2)表中角精确到1′,正弦、余弦值有四位有效数字.

3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.

2.举例说明

例4查表求37°24′的正弦值.

学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.

例5查表求37°26′的正弦值.

学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).

解:sin37°24′=0.6074.

角度增2′值增0.0005

sin37°26′=0.6079.

例6查表求sin37°23′的值.

如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.

解:sin37°24′=0.6074

角度减1′值减0.0002

sin37°23′=0.6072.

在查表中,还应引导学生查得:

sin0°=0,sin90°=1.

根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.

可引导学生查得:

cos0°=1,cos90°=0.

根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.

(四)总结与扩展

1.请学生总结

本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.

2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.

四、布置作业

预习教材中例8、例9、例10,养成良好的学习习惯.

五、板书设计

14.1正弦和余弦(四)

一、正余弦值随角度变二、例题例5例6

化规律例4

九年级数学教案篇6

一、教学目标

1.知识与技能

(1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;

2.过程与方法

通过猜想、探讨构建一元二次方程模型.

3.情感、态度与价值观

(1)通过自主、探究性学习,使学生养成良好的思维习惯;

(2)通过对方程解的合理性解释,培养学习实事求是的作风.

二、教学重点难点

1.重点

找出问题中的数量关系;

2.难点

找等量关系并列出相应方程.

三、教材分析

本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型.

四、教学过程与互动设计

(一)温故知新

1.请同学们回忆并回答解一元一次方程应用题的一般步骤:

第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;

第二步:找出能够表示应用题全部含义的相等关系;

第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;

第四步:解这个方程,求出未知数的值;

第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称.)

2.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.

我们先来解一些具体的题目,然后总结一些规律或应注意事项.

(二)创设情景,导入新课

1.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米.

若梯子的顶端下滑1米,那么

(1)猜一猜,底端也将滑动

1米吗?

(2)列出底端滑动距离所满足的方程.

【答案】

①底端将滑动1米多

②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际.

2.【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?

(1)学生讨论:怎样计算月利润增长百分率?

【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润

例8某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率.

分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍.

解:设平均降价百分率为x,根据题意,得56(1-x)2=31.5

解这个方程,得x1=1.75,x2=0.25

因为降价的百分率不可能大于1,所以x1=1.75不符合题意,符合题意要求的是x=0.25=25%

答每次降价百分率为25%.

【跟踪练习】

某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%).

【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性.

(三)应用迁移,巩固提高

1.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()

A)200(1+a%)2=148(B)200(1-a%)2=148

(C)200(1-2a%)=148(D)200(1-a2%)=148

2.为绿化家乡,某中学在20_年植树400棵,计划到20_年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?

(四)达标测试

1.某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()

A、100(1+x)2=800B、100+100×2x=800C、100+100×3x=800D、100[1+(1+x)+(1+x)2]=800

2.某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程.,一元二次方程的.解法

3.某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?

4.某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)

5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数

五、课堂小结

九年级数学教案篇7

(一)知识教学点

1.使学生初步了解统计知识是应用广泛的数学内容.

2.了解平均数的意义,会计算一组数据的平均数.

3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数.

(二)能力训练点培养学生的观察能力、计算能力.

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯.

2.渗透数学来源于实践,反地来又作用于实践的观点.

(四)美育渗透点通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美.

重点·难点·疑点及解决办法

1.教学重点:平均数的概念及其计算.

2.教学难点:平均数的简化计算.

3.教学疑点:平均数简化公式的应用,a如何选择.

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a.

教学步骤

(一)明确目标在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:甲78686591074乙95787686771.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

(二)整体感知解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

(三)教学过程这节课我们首先来学平均数.

1.(出示幻灯片)请同学看下面问题:某班第一小组一次数学测验的成绩如下:869110072938990857595这个小组的平均成绩是多少?教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识.

2.平均数的概念及计算公式一般地,如果有n个数x1、x2、x3、x4…xn,那么x=(x1+x2+x3+x4+…+xn)/n①叫做这n个数的平均数,读作“x拨”.这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法.学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性.教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义.

3.平均数计算公式①的应用例1一个地区某年1月上旬各天的最低气温依次是(单位:℃):-6,-5,-7,-6,-4,-5,-7,-8,-7求它们的平均气温.让学生动手计算,以巩固平均数计算公式(一名学生板演)教师应强调:①解题格式.②在统计学里处理的数据包括负数.③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同.例2从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):210208200205202218206214215207195207218192202216185227187215计算它们的平均质量.(用投影仪打出)引导学生两人一组完成计算,然后一起对答案.由于数据较大,计算较繁,可能会出现不同的答案.正好为下面提出简化计算公式作好铺垫.

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法.学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样.讲完例2后,教师指出几点:常数a的取法不是惟一的;读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同.通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受.3.推导公式②一般地,当一组数据的各个数值较大时,可将各数据同时减去一个适当的常数a,得到x1▎=x1-a,x2▎=x2-a,x3▎=x3-a,┅xn▎=xn-a,那么x▎=x-a②为了加深学生对公式②的认识,再让学生指出例2的平均质量各是什么?(学生回答)

课堂练习:教材P148中~P149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛.本章将要学习的是统计学的初步知识.2.求n个数据的平均数的公式①.3.平均数的简化计算公式②.这个公式很重要,要学会运用.方法小结:通过本节课我们学到了示一组数据平均数的方法.当数据比较小时,可用公式①直接计算.当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算.

布置作业教材P153中1、2、3、4.

九年级数学教案篇8

二次函数的教学设计

教学内容:人教版九年义务教育初中第三册第108页

教学目标:

1。1。理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2。2。通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

3。3。通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

教学重点:二次函数的意义;会画二次函数图象。

教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1。写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

答:S=πR2。①

2。写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

答:S=L(30-L)=30L-L2②

分析:①②两个关系式中S与R、L之间是否存在函数关系?

S是否是R、L的一次函数?

由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),

那么,y叫做x的二次函数。

注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。

练习:1。举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2。出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如:;;;的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1。1。尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

2。2。模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

解:一、列表:

九年级数学教案篇9

一、教学目标

1.感知图形的旋转,知道什么是图形的旋转、旋转中心和旋转角,会指出实例中的旋转中心和旋转角.

2.经历用硬纸板画旋转后图形的过程,加深对图形旋转的感知,发展空间观念.

二、教学重点和难点

1.重点:图形的旋转概念.

2.难点:图形的旋转概念.

三、教学过程

师:在日常生活中我们经常能看到各种美丽的.图案,这些美丽的图案是怎么设计出来的?让我们仔细来看一看.

(师出示下面的图案)

(图在七年级下册P27)

师:(指图案)大家仔细看一看,这个图案是怎么设计的?

生:……(让几名同学发表看法)

师:(指准图案)这是一个鸽子,把这个鸽子向右平移,得到这个鸽子,再向右平移得到这个鸽子,再向右平移得到这个鸽子,这样就得到了这一排鸽子;同样,我们把这个鸽子向下平移,得到这个鸽子,再向右平移得到这个鸽子,这样平移下去,又得到了这一排鸽子;同样方法可以得到第三排鸽子.可见这个图案是用一个鸽子经过平移得到的(边讲边板书:平移).

师:我们再来看一个图案.

(师出示下面的图案)

(图在八年级上册P48)

师:(指图案)大家看一看,这个图案又是怎么设计的?

生:……(让几名同学发表看法)

师:这个图案可以看成是把(指准)这个图平移到这里,再平移到这里,再平移到这里,最后形成了这个图案.这是同学们都看到的,但这个图案的形成还可以换一种方式来看,怎么换一种方式来看?(稍停)

师:(指准)作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形.这样作下去,就形成了这个图案.可见这个图案是(指准)这个图经过反复作轴对称图形而形成的(边讲边板书:轴对称).

师:下面我们再来看一个图案.

四、总结

九年级数学教案篇10

九年级数学教案-九年级数学教案设

九年级数学教案设计文桥中学

吴园田课题:太阳光与影子

课型:新授课教学目标

知识目标:

1、

经历实践、探索的过程,了解平行投影的含义,能够确定物体在太阳光下影子。

2、通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。

3、了解平行投影与物体三种视图之间的关系。

能力目标:

1、经历实践,探索的过程,培养学生的实践探索能力。

2、通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向的不

同,培养学生的观察能力和想象能力。

情感目标:

1、让学生体会影子在生活中的大量存在,使学生能积极参与数学学习活动,激发学生学习数学的动机和兴趣。

2、让学生认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造。

教学重点平行投影的含义;物体在太阳光下影子的确定;平行投影与物体三种视图之间的关系。

教学难点让学生经历操作与观察、演示与想象、直观与推理等过程,自己归纳总结得出有关结论。

教学方法和手段观察想象法,实践推理法。

教学设计理念本节的设计遵循学生学习数学的心理规律,强调学生从已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步与发展。

本节课向学生提供充分从事数学活动的机会,帮助他们在自主探索和合

作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

教学组织形式分组探究,集中教授。

教学过程

创设问题情境,引入新课引入:太阳光与影子是我们日常生活中的常见现象,大家在其他课程的学习中已经积累了物体在太阳光下形成的影子的有关知识,本节课我们通过众多实例进一步讨论物体在太阳光下所形成的影子的大小、形状、方向等。

新课学习

1.投影的定义师:大家肯定见过影子,你能举出实例吗?在太阳光下人和树有影子;在有月亮的晚上,人和树也有影子;建筑物在太阳和月亮下也有影子.

师:大家对于影子是司空见惯了,那么,有没有想过影子能给人类带来什么好处呢?

生:我爷爷在田地里干活时,经常根据他的影子来判断时间的早晚;我奶奶在家也经常根据太阳照在门口的影子的大小,来判断是否是晌午了。

师:很好.现在我们确定时间

时,是通过看表来确定的,但在古代并没有表,勤劳的古代前辈利用智慧制造出了日晷.日晷是我国古代利用日影测定时刻的仪器,它由“晷面”和“晷针”组成,当太阳光照在日晷上时,晷针的影子就会投向晷面,随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻。

其实不止在太阳光下,只要在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。

像上面提到的晷针的影子,以及窗户的影子、遮阳伞的影子都是在太阳光下形成的。

2.做一做

取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。

改变小棒或纸片的位置和方向,它们的影子发生了什么变化?师:大家先想象一下,长短不等的小棒及三角形、矩形纸片,它们在太阳光下的影子是什么形状?生:影子的形状应该不变,只是大小发生变化而已.因此,影子分别是线段、三角形、

矩形。

师:大家的想象是否与现实相符呢?我们一齐来做一个试验。

生:试验的结果与想象不一定相符,三角形的纸片在太阳光下的影子有时是三角形,有时是线段;矩形在太阳光下的影子有时是平行四边形,有时是线段。

师:现在来想象第二个问题。

生:由人的影子在一天中的大小不同,可以判断小棒或纸片的影子也是大小不同。

师:请大家再进行试验,互相交换意见后得出结论。

生:当改变小棒或纸片的位置和方向时,它们的影子也相应地发生变化。

师:大家有没有注意到,刚才在做实验时有一种特殊情况,当小棒或纸片与投影面平行时,所形成的影子的大小和形状的特点呢?生:当小棒或纸片与投影面平行时,所形成的影子的大小和形状与原物体全等。

师:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。

上面讨论过的小棒或纸片的影子就是平行投影。

3.议一议

P122图中的三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的。

(1)在三个不同的时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由。

(2)在同一时刻,大树和小树的影子与它们的高度之间有什么关系?与同伴进行交流。

师:请大家互相讨论后发表自己的看法。

生:顺序应为(3)(2)(1)。

因为在早晨,太阳位于正东方向,此时树的影子较长,影子位于树的正西方向,在上午,随着太阳位置的变化,树影的长度逐渐变短,树影也由正西方向向正北方向移动。

(2)因为大树的影子较长,小树的影子较短,因此应该有大树的高度与其影子的长度之比等于小树高度与其影长之比。

生:我认为应该是大树与小树高度之比等于大树与小树影长之比。

4.做一做某校墙边有甲、乙两根木杆。

(1)某一时刻甲木杆在阳光下的影子如P124图所示,你能画出此时乙木杆的影子吗?(用线段表

示影子)(2)在上图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在你所画的图形中有相似三角形吗?为什么?

师:请大家:互相讨论来解答。

九年级数学教案篇11

教材分析:

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:

1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:

1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

板书设计:

一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。

问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。

学生学习活动评价设计:

本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。

教学反思:

1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。

3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

九年级数学教案篇12

教学目标

1、知识技能目标:了解图形的放大与缩小的意义;能在方格纸上按一定的比画出放大与缩小的图形;通过图形的放大与缩小体会图形的相似。2、过程方法目标:通过观察、理解、动手操作等数学活动来体验图形放大与缩小的方法;培养学生的空间观念和动手操作能力。3、情感态度目标:激发学生学习数学的兴趣和求知欲,使学生积极参与学习活动,在学习过程中感受成功的喜悦。

教学重难点

【教学重点】理解图形的放大与缩小。

教学过程

一、创设情境,导入新课。

1、观察体验。

你见过下面这些现象吗?谁来描述一下!出示多媒体课件,56页生活情境图。这些生活中的现象,有的是把物体放大了,有的是把物体缩小了

2、学生举例,自由发言。

师:你们在生活中还见过其他放大缩小的现象吗?指名说一说。师:看来放大缩小现象在我们生活中的各个领域应用还是十分普遍的。这些现象也包含着一定的数学知识。今天这节课我们就来一起研究“图形的放大与缩小”。板书课题。

二、探究新知。

(一)感知图形的放大。

(多媒体出示方格纸上的平面图形,例4.)

1、初步感知画在方格纸上的平面图形。师:我们已经认识过许多的平面图形了。老师这把正方形、长方形和直角三角形分别画在了方格纸上。

大家看一看画在方格纸上的三个图,我们能获得哪些相关的数学信息?

学生小组自由谈。正方形边长3个方格、长方形长6个方格,宽3个方格直角三角形两条直角边分别是3个方格、6个方格。

2、理解要求。

(1)多媒体出示例4的要求——2:1画出这个图形放大后的图形。

(2)按“2:1”放大是什么意思?先让学生说出自己的理解,然后教师说明。(按2:1放大,也就是各边放大到原来的2倍。)

3、通过画正方形了解画法。

(1)那么我们怎么样才能把正方形按2:1放大呢?请同桌之间相互讨论。

(2)汇报:原来的边长是3个方格,放大后图形的边长是6格。

(3)学生在方格纸上画出正方形按2:1放大后的图形,

(4)教师总结学生方法中的重要一点:先确定一个固定的点,以它做为

确定图形位置的重要点再画出其他的部分。

(5)教师用多媒体课件展示画放大后正方形的过程。

4、经历画长方形和直角三角形的过程。

(1)接下来我们继续按照2:1放大长方形和直角三角形,你觉得需要知道些什么条件呢?点名学生回答。

(2)下面就按照你们的方法放大长方形和直角三角形吧,请画在方格纸上。

(3)学生汇报画法

(4)观察放大后的直角三角形,相邻的两条直角边放大了2倍,那么他的斜边也放大了2倍吗?你怎么知道的?汇报测量结果。

5、置疑。

观察一下,放大后的图形与原来的图形相比,有什么相同的地方?有什么不同的地方?

(1)放大后的图形与原来的图形相比,有什么相同的地方?有什么不同的地方?

(2)小组合作学习讨论解决学生提出的置疑。

(3)选取代表介绍自己的方法和找到的答案。教师配合多媒体课件随机演示验证的过程。(4)学生试概括发现,多媒体出示。(一个图形按一定的比放大,它的每条边都按相同的比放大。)

(5)多媒体出示。一个图形按一定的比放大,图形变大了,但形状没变

(二)感知图形的缩小。

师:我们一起研究了图形按一定的比放大的画法以及放大后图形的一些特点。如果把图形按一定的比缩小该怎么画?

1、出示缩小的要求。

如果把放大后的三个图形的各边按1:3缩小,图形又发生了什么变化?画画看.

2、说说对1:3的理解

3、学生作图,并相互检查。

4、选取学生代表的作品展示,并说说是怎么画的。(多媒体完成按一定的比缩小后画出的图形。)

5、观察原图和缩小后的图形。学生试说自己的发现并尝试总结。

按3:1画出下图

6、总结发现。

(1)学生讨论。

图形的各边按相同的比放大或缩小后,所得的图形与原图形有什么关系呢?

学生试总结图形按一定的比放大或缩小的特点。

(2)教师在学生充分的发言之后用多媒体出示图形放大和缩小的特点:所得的图形只是大小发生了变化,形状没变。

三、巩固应用

画一画,

学生根据教师给出一个放大或者缩小的比,然后在方格纸上画出按这个比放大或者缩小后的图形。画完后学生展示自己的作品并介绍画法。

1、按4:1画出下面图形放大后的图形.并说理由。

2、按1:2画出下面图形缩小后的图形.

3、按1:2画出下面图形缩小后的图形.

4、下面哪个图是图形A按2:1扩大后得到的图形?

5、按3:1画出下面图形放大后的图形.

【主要是评价学生按一定的比例对放大和缩小图形的画法的掌握】

四、课堂小结

通过这节课你学到了什么?

结束语:同学们,今天这节课我们学习到了图形的放大与缩小,在日常生活中,有许多这样的现象,只要大家做生活的有心人,运用今天所学的知识,你们就能创造许多新鲜有趣的事物,用以丰富和美化我们的生活。

五、课堂作业:

课本1、2题

九年级数学教案篇13

一、上学期工作回顾及学生情况分析:

上学期期末参加考试人数31人,及格率%,平均分86分,最高分98分,最低分43,优生率61%。

本班学生总体上说比较爱学,对一些基础的知识大部分学生能扎实的掌握。但也有部分学生接受知识的能力相对较弱,学习基础又不扎实,从而导致学习成绩不理想。本学期将针对班级实际情况,切实提高每位学生的学习能力和学习成绩。

二、本册教材的教学任务、要求及重点:

教学任务:

本册教材内容包括:比例,圆柱、圆锥和球,简单的统计,整理和复习等四个部分。

教学要求:

1、掌握圆柱、圆锥的特征,掌握几何体体积的计算公式,学会正确计算它们的体积。

2、学会绘制复式统计表和统计图,并能看懂、分析统计图表中的数据所说明的问题。

3、理解比例的意义和性质,解比例,能正确判别成正比例或反比例的量,学会解答比较容易的比例应用题。

4、通过小学数学知识的系统复习整理,巩固和深化所学的数学知识,提高计算和解题能力,培养独立思考、不怕困难的精神。

教学重点:

圆柱、圆锥,比例的应用,小学阶段主要数学知识的复习。

三、教学措施:

1、在教学中,为学生提供创造参与教学活动的情境,努力构建“和谐有效”课堂,通过操作、观察、讨论、比较等活动,先形象具体,后抽象概括,帮助学生理解和掌握知识点。

2、在教学中还要注意抓住新旧知识的内在联系,教给学生恰当的学习方法,使学生了解知识间的横向联系。

3、在教学中要重视学生的学法指导,培养学生的迁移、类推能力。

4、抓好育尖补差工作,利用课余时间为他们补课。

九年级数学教案篇14

(一)教材的地位和作用

《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。

(二)教学目标

1、。知识与能力:

1)进一步巩固相似三角形的知识.

2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.

2.过程与方法:

经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。

3.情感、态度与价值观:

1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。

2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。

(三)教学重点、难点和关键

重点:利用相似三角形的知识解决实际问题。

难点:运用相似三角形的判定定理构造相似三角形解决实际问题。

关键:将实际问题转化为数学模型,利用所学的知识来进行解答。

【教法与学法】

(一)教法分析

为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:

1.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。

2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。

3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。

(二)学法分析

按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。

【教学过程】

一、知识梳理

1、判断两三角形相似有哪些方法?

1)定义:2)定理(平行法):

3)判定定理一(边边边):

4)判定定理二(边角边):

5)判定定理三(角角):

2、相似三角形有什么性质?

对应角相等,对应边的比相等

(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)

二、情境导入

胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。

古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?

(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)

三、例题讲解

例1(教材P49例3——测量金字塔高度问题)

《相似三角形的应用》教学设计分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.

解:略(见教材P49)

问:你还可以用什么方法来测量金字塔的高度?(如用身高等)

解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)

例2(教材P50练习­——测量河宽问题)

《相似三角形的应用》教学设计《相似三角形的应用》教学设计分析:设河宽AB长为xm,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即《相似三角形的应用》教学设计.再解x的方程可求出河宽.

解:略(见教材P50)

问:你还可以用什么方法来测量河的宽度?

解法二:如图构造相似三角形(解法略).

四、巩固练习

1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?

2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?

五、回顾小结

一)相似三角形的应用主要有如下两个方面

1测高(不能直接使用皮尺或刻度尺量的)

2测距(不能直接测量的两点间的距离)

二)测高的方法

测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决

三)测距的方法

测量不能到达两点间的距离,常构造相似三角形求解

(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)

六、拓展提高

怎样利用相似三角形的有关知识测量旗杆的高度?

七、作业

课本习题27.210题、11题。

【教学设计说明】

相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量物体高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量物体高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,限度地调动学生学习的积极性和主动性。

九年级数学教案篇15

教学目标:

1.知识与技能:

(1)能证明等腰梯形的性质和判定定理

(2)会利用这些定理计算和证明一些数学问题

2.过程与方法:

通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。

3.情感态度与价值观:

通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。

重点、难点:

重点:等腰梯形的性质和判定

难点:如何应用等腰梯形的性质和判定解决具体问题。

教学过程

(一)知识梳理:

知识点1:等腰梯形的性质1

(1)文字语言:等腰梯形同一底上的两底角相等。

(2)数学语言:

在梯形ABCD中

∵AD‖BC,AB=CD

∴∠B=∠C

∠A=∠D(等腰梯形同一底上的两个底角相等)

(3)本定理的作用:在梯形中常用的添加辅助线——平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。

知识点2:等腰梯形的性质2

(1)文字语言:等腰梯形的两条对角线相等

(2)数学语言:

在梯形ABCD中

∵AD‖BC,AB=DC

∴AC=BD(等腰梯形对角线相等)

(3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。

知识点3:等腰梯形的判定

(1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。

(2)数学语言:在梯形ABCD中∵∠B=∠C

∴梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)

(3)本定理的作用:在梯形中常用添加辅助线——补全三角形把原来的梯形化为两个三角形

(4)说明:

①判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。

②判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。

【典型例题】

例1.我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。

(1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工具不限)

(2)在(1)的条件下,若AC⊥BD,DE⊥BC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。

解:(1)略。

(2)DE=(AD+BC)

过D作DF‖AC交BC延长线于点F

∵AD‖BC,∴四边形ACFD是平行四边形

∴AD=CF,AC=DF

∵AC=BD

∴BD=DF

又∵AC⊥BD,∴BD⊥DF即△BDF为等腰直角三角形

∵DE⊥BF,则DE=BF,

∴DE=(BC+CF)=(BC+AD)

例2.如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m,斜坡BC与下底CD的夹角为60°,路基高AE为,求下底CD的宽。

解:过点B作BF⊥CD于F

∵四边形ABCD是等腰梯形

∴BC=AD

∵BF=AE,BF⊥CD,AE⊥CD

∵Rt△BCF≌Rt△ADE

在Rt△BCF中,∠C=60°

∴∠CBF=30°

∴CF=BC即BC=2CF

∴BC2=CF2+BF2

即∴CF=2

∵AB‖CD,BF⊥CD,AE⊥CD

∴四边形ABFE是矩形

∴EF=AB=6m

∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)

例3.已知如图,梯形ABCD中,AB‖DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F

(1)请写出图中4组相等的线段。(已知的相等线段除外)

(2)选择(1)中你所写的一组相等线段,说说它们相等的理由。

解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG

(2)证明AG=BG,因为在梯形ABCD中,

AB‖DC,AD=BC,所以梯形ABCD为等腰梯形

∴∠GAB=∠GBA

∴AG=BG

课堂小结:

本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。

26494