教案吧 > 初中教案 > 九年级教案 >

九年级教案数学

时间: 新华 九年级教案

编写教案可以帮助教师规范教学流程,提高课堂教学的效率,避免随意性和盲目性。写好九年级教案数学是有技巧的,接下来给大家分享九年级教案数学,方便大家学习。

九年级教案数学篇1

一、情境导入

如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁 先到达楼顶?如果AB和A′B′相 等而∠α和∠ β大小不同,那么它们的高度AC 和A′C′相等吗?AB、 AC、BC与∠α,A′B′、A′C′、B′C′与∠β之间有什么关系呢? --- ---导出新课

二、新课教学

1、合作探究

见课本

2、三角函数 的定义在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.

∠A 的对边与邻边的比叫 做∠A的正弦(sine),记作s inA,即s in A=

∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即cosA=

∠A的对边与∠A的邻边的比叫做∠A的正切(tangent) ,记作tanA,即

锐角A的正弦、余弦和正切统称∠A的三角函数.

注意 :sinA,cosA, tanA都是一个完整的符号,单独的 “sin”没有意义 ,其中A前面的“∠”一般省略不写。

师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗 ?

师:(点拨)直角三角形中,斜边大于直角边.

生:独立思考,尝试回答 ,交流结果.

明确:0<sina<1,0 p="" <cosa<1.

巩固练 习:课内练习T1、作业题T1、2

3、如图,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.

分析:由勾股定理求出AC的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。

师:观察以上 计算结果,你 发现了什么?

明确:sinA=cosB,cosA=sinB,tanA•ta nB=1

4 、课堂练习:课本课内练习T2、3,作业题T3、4、5、6

三、课 堂小结:谈谈今天 的收获

1、内容总结

(1)在RtΔA BC中,设∠C= 900,∠α为RtΔABC的一个锐角,则

∠α的正弦 , ∠α的余弦 ,

∠α的正切

(2)一般地,在Rt△ ABC中, 当∠C=90°时,sinA=cosB,cosA=sinB,tanA•tanB=1

2、 方法归纳

在涉及直角三角形边角关系时, 常借助三角函数定义来解

九年级教案数学篇2

九年级数学教案-九年级数学教案设

九年级数学教案设计文桥中学

吴园田课题:太阳光与影子

课型:新授课教学目标

知识目标:

1、

经历实践、探索的过程,了解平行投影的含义,能够确定物体在太阳光下影子。

2、通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。

3、了解平行投影与物体三种视图之间的关系。

能力目标:

1、经历实践,探索的过程,培养学生的实践探索能力。

2、通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向的不

同,培养学生的观察能力和想象能力。

情感目标:

1、让学生体会影子在生活中的大量存在,使学生能积极参与数学学习活动,激发学生学习数学的动机和兴趣。

2、让学生认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造。

教学重点平行投影的含义;物体在太阳光下影子的确定;平行投影与物体三种视图之间的关系。

教学难点让学生经历操作与观察、演示与想象、直观与推理等过程,自己归纳总结得出有关结论。

教学方法和手段观察想象法,实践推理法。

教学设计理念本节的设计遵循学生学习数学的心理规律,强调学生从已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步与发展。

本节课向学生提供充分从事数学活动的机会,帮助他们在自主探索和合

作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

教学组织形式分组探究,集中教授。

教学过程

创设问题情境,引入新课引入:太阳光与影子是我们日常生活中的常见现象,大家在其他课程的学习中已经积累了物体在太阳光下形成的影子的有关知识,本节课我们通过众多实例进一步讨论物体在太阳光下所形成的影子的大小、形状、方向等。

新课学习

1.投影的定义师:大家肯定见过影子,你能举出实例吗?在太阳光下人和树有影子;在有月亮的晚上,人和树也有影子;建筑物在太阳和月亮下也有影子.

师:大家对于影子是司空见惯了,那么,有没有想过影子能给人类带来什么好处呢?

生:我爷爷在田地里干活时,经常根据他的影子来判断时间的早晚;我奶奶在家也经常根据太阳照在门口的影子的大小,来判断是否是晌午了。

师:很好.现在我们确定时间

时,是通过看表来确定的,但在古代并没有表,勤劳的古代前辈利用智慧制造出了日晷.日晷是我国古代利用日影测定时刻的仪器,它由“晷面”和“晷针”组成,当太阳光照在日晷上时,晷针的影子就会投向晷面,随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻。

其实不止在太阳光下,只要在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。

像上面提到的晷针的影子,以及窗户的影子、遮阳伞的影子都是在太阳光下形成的。

2.做一做

取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。

改变小棒或纸片的位置和方向,它们的影子发生了什么变化?师:大家先想象一下,长短不等的小棒及三角形、矩形纸片,它们在太阳光下的影子是什么形状?生:影子的形状应该不变,只是大小发生变化而已.因此,影子分别是线段、三角形、

矩形。

师:大家的想象是否与现实相符呢?我们一齐来做一个试验。

生:试验的结果与想象不一定相符,三角形的纸片在太阳光下的影子有时是三角形,有时是线段;矩形在太阳光下的影子有时是平行四边形,有时是线段。

师:现在来想象第二个问题。

生:由人的影子在一天中的大小不同,可以判断小棒或纸片的影子也是大小不同。

师:请大家再进行试验,互相交换意见后得出结论。

生:当改变小棒或纸片的位置和方向时,它们的影子也相应地发生变化。

师:大家有没有注意到,刚才在做实验时有一种特殊情况,当小棒或纸片与投影面平行时,所形成的影子的大小和形状的特点呢?生:当小棒或纸片与投影面平行时,所形成的影子的大小和形状与原物体全等。

师:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。

上面讨论过的小棒或纸片的影子就是平行投影。

3.议一议

P122图中的三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的。

(1)在三个不同的时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由。

(2)在同一时刻,大树和小树的影子与它们的高度之间有什么关系?与同伴进行交流。

师:请大家互相讨论后发表自己的看法。

生:顺序应为(3)(2)(1)。

因为在早晨,太阳位于正东方向,此时树的影子较长,影子位于树的正西方向,在上午,随着太阳位置的变化,树影的长度逐渐变短,树影也由正西方向向正北方向移动。

(2)因为大树的影子较长,小树的影子较短,因此应该有大树的高度与其影子的长度之比等于小树高度与其影长之比。

生:我认为应该是大树与小树高度之比等于大树与小树影长之比。

4.做一做某校墙边有甲、乙两根木杆。

(1)某一时刻甲木杆在阳光下的影子如P124图所示,你能画出此时乙木杆的影子吗?(用线段表

示影子)(2)在上图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在你所画的图形中有相似三角形吗?为什么?

师:请大家:互相讨论来解答。

九年级教案数学篇3

教学设计

(一)明确目标

首先师生一起来复习上节课点的轨迹的概念及两层含义和常见的点的轨迹前三种.

复习提问:

1.什么叫做点的轨迹?它的两层意思是什么?请结合讲过的常见点的轨迹解释两层意思.

2.上节课我们讲了常见的点的轨迹有几种?请回答出其内容.

上节课我们学习了常用点的轨迹的三种,我们教科书中有五种常见的轨迹.本节课我们来进一步学习常见点的轨迹的后两种.教师板书“点的轨迹之二”.

(二)整体感知

首先引导学生学习点的轨迹的定义,解释由定义得到的两层意思,提问学生来解释上节课常见的三个轨迹的两层意思.

圆是图形——这个图形是轨迹.

它符合的两层含义:圆上每一个点都符合到圆心O的距离等于半径r的条件,反过来到定点O的距离等于r的每一个点都在圆上.所以圆是到定点的距离等于定长的点的轨迹.

接着教师引导学生解释线段垂直平分线,角的平分线的两层意思,然后正确地回答出这两个点的轨迹.

在复习圆、线段的垂直平分线、角的平分线的基础上可进一步了解其它的两个点的轨迹、由于第

四、第五个点的轨迹学生比较生,这样还要指导学生复习点到直线的距离,特别是在两条平行线内取一点到这两条直线的距离都相等,这一点的取法应在教师的指导下来完成.

(三)重点、难点的学习与目标完成过程

在学生学习常见的五种轨迹的后两种轨迹没有感性、直观的印象之前,教师首先帮助学生复习已有的知识:点的轨迹的定义、定义的两层意思、前三个常见的轨迹等,这种复习不是简单的重复,而是让学生结合所学的三个轨迹来解释定义中的两层意思.这样对后两个点的轨迹的教学起到了奠基的作用.提问:已知直线l,在直线l外取一点P,使P到直线l的距离等于定长d,这一点怎么取,具有这个性质的点有几个?在教师的指导下学生动手来完成.由师生共同找到在已知直线l的两侧各取一点P、P′,到直线l的距离都等于d.教师再提出问题,现在分别过点P、P′作已知直线l的平行线l

1、l2,那么直线l

1、l2上的点到已知直线l的距离是否都等于已知线段d呢?学生的回答是肯定的,这时反过来再问,除直线l

1、l2外平面上还是否有点到已知直线l的距离等于d呢,学生一时并不一定能答上来,经过学生讨论研究,最终学生还是能正确回答的,这就是说到已知直线l的距离等于定长d的点只有在直线l

1、l2上.

这时教师引导学生归纳出第四个轨迹,教师把轨迹4板书在黑板上:轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于d的两条直线.

现在我们来研究相反的问题,已知直线l1‖l2,在l

1、l2之间找一点P,使点P到l

1、l2的距离相等,这样一点怎样找?有前面问题的基础在教师的指导下都能找到点P,再过点P作l1的平行线l,这时提出问题:

1.直线l上的点到直线l

1、l2的距离是否都相等;

2.到平行线l1,l2的距离都相等的点是否都在直线l上?有前一个问题的铺垫和前四个基本轨迹的启发,学生很快地回答出第五个轨迹的两层意思,而且回答是非常肯定的.总结归纳出第五个轨迹:

轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.

接下来为了使学生能准确的把握轨迹

4、轨迹5的特征,教师在黑板上出示一组练习题:

1.到直线l的距离等于2cm的点的轨迹;

2.已知直线AB‖CD,到AB、CD距离相等的点的轨迹.

对于这两个题教师要求学生自己画图探索,然后回答出点的轨迹是什么,学生对于这两个轨迹比较生疏回答有一定的困难,这时教师要从规律上和方法上指导学生怎么回答好一些,抓住几处重点词语的地方:如轨迹4中的“平行”、“到直线l的距离等于定长”、“两条”,或轨迹5中的“平行”、“到两条平行线的距离相等”、“一条”.这样学生回答的语言就不容易出现错误.

接下来做另一组练习题:判断题:

1.到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.

()

2.和点B的距离等于2cm的点的轨迹,是到点B的距离等于2cm的圆.

()

3.到两条平行线的距离等于5cm的点的轨迹,是和这两条平行线的平行且距离等于5cm的一条直线.

()

4.底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.

()

这组练习题的目的,训练学生思维的准确性和语言表达的正确性.这组习题的思考,回答都由学生自己完成,学生之间互相评议,找出语言的问题,加深对点的轨迹的进一步认识和规范化的语言表述.

(四)总结扩展

本节课主要讲了点的轨迹的后两个.从知识的结构上可以知道:

从方法上能准确地回答点的轨迹和能把所要回答的轨迹问题辨认出属于哪一个常用的基本轨迹.

从能力上学生通过旧知识的学习,学生自己能归纳出五个基本轨迹,使学生学习数学知识的能力又有了新的提高.

对于基本轨迹的应用还要逐步加深,特别是在今后学习立体几何、解析几何时要用到这些知识.所以常见五个基本轨迹要求学生必须掌握.

(五)布置作业略板书设计

九年级教案数学篇4

教学目标

(1)会用公式法解一元二次方程;

(2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;

(3)渗透化归思想,领悟配方法,感受数学的内在美。

教学重点

知识层面:公式的推导和用公式法解一元二次方程;

能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法。

教学难点:求根公式的推导。

总体设计思路:

以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维。

教学过程

(一)以旧引新,提出问题

解下列一元二次方程:(学生选两题做)

(1)_2+4_+2=0;(2)3_2-6_+1=0;

(3)4_2-16_+17=0;(4)3_2+4_+7=0.

然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?

接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)

(1)3_2+4_+2=0;(2)3_2-2_+1=0;

(3)4_2-16_-3=0;(4)3_2+_+7=0.

思考:新的四题与原题的解题过程会发生什么变化?

设计意图:1.复习巩固旧知识,为本节课的学习扫除障碍;

2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望。

3、学生根据自己的情况选两题,这样做能保证运算的正确和继续学习数学的信心。

(二)分析问题,探究本质

由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根。

进而提出下面的问题:

既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?

让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系。

a_2+b_+c=0(a≠0)注:根据学生学习程度的不同,可

a_2+b_=-c以采用学生独立尝试配方,合

_2+_=-作尝试配方或教师引导下进行

_2+_+=-+配方等各种教学形式。

(_+)2=

然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2-4ac”的重要性。

当b2-4ac≥0时,

(_+)2=注:这样变形可以避免对a正、负的讨论,

_+=便于学生的理解。

_=-即_=

_1=,_2=

当b2-4ac<0时,

方程无实数根。

设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维。

(三)得出结论,解决问题

由上面的探究过程可知,一元二次方程a_2+b_+c=0(a≠0)的根由方程的系数a,b,c确定。当b2-4ac≥0时,

_=;

当b2-4ac<0时,方程无实数根。

这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美。

进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法。

设计意图:理解是记忆的基础。只有理解了公式才能烂熟于心,才能在题目中熟练应用,不会因记不清公式造成运算的错误。

运用公式法解一元二次方程。(前两道教师示范,后两道学生练习)

(1)2_2-_-1=0;(2)4_2-3_+2=0;

(3)_2+15_=-3_;(4)_2-_+=0.

注:(教师在示范时多强调注意点、易错点,会减少学生做题的错误,让学生在做题中获得成功感。)

设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤,及时总结简化运算,节约时间又提高做题的准确性。

用公式法解一元二次方程:(比一比,看谁做得又快又对)

(1)_2+_-6=0;(2)_2-_-=0;

(3)3_2-6_-2=0;(4)4_2-6_=0;

设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获,通过大量练习,熟悉公式法的步骤,训练快速准确的计算能力。

(四)拓展运用,升华提高

[想一想]

清清和楚楚刚学了用公式法解一元二次方程,看到一个关于_的一元二次方程_2+(2m-1)_+(m-1)=0,清清说:“此方程有两个不相等的实数根”,

而楚楚反驳说:“不一定,根的情况跟m的值有关”。那你们认为呢?并说明理由。

设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高。比较配方法在不同题型中的用法,

避免以后出现运算错误。

归纳小结,结合上面想一想,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程。

(五)布置作业

一必做题

二选做题:P46第12题。

设计意图:结合学生的实际情况,可以分层布置。适合的练习既巩固了所学提高了计算的速度又保养了学生学习数学的兴趣和信心。

九年级教案数学篇5

[本课知识要点]

会画出这类函数的图象,通过比较,了解这类函数的性质.

[MM及创新思维]

同学们还记得一次函数与的图象的关系吗?

,你能由此推测二次函数与的图象之间的关系吗?

,那么与的图象之间又有何关系?

.

[实践与探索]

例1.在同一直角坐标系中,画出函数与的图象.

解列表.

x…-3-2-10123…

…188202818…

…20104241020…

描点、连线,画出这两个函数的图象,如图26.2.3所示.

回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?

例2.在同一直角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描点、连线,画出这两个函数的图象,如图26.2.4所示.

可以看出,抛物线是由抛物线向下平移两个单位得到的.

回顾与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的.

探索如果要得到抛物线,应将抛物线作怎样的平移?

例3.一条抛物线的开口方向、对称轴与相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.

解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),

因此所求函数关系式可看作,又抛物线经过点(1,1),

所以,,

解得.

故所求函数关系式为.

回顾与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:

开口方向对称轴顶点坐标

[当堂课内练习]

1.在同一直角坐标系中,画出下列二次函数的图象:

,,.

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?

2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

3.函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.

[本课课外作业]

A组

1.已知函数,,.

(1)分别画出它们的图象;

(2)说出各个图象的开口方向、对称轴、顶点坐标;

(3)试说出函数的图象的开口方向、对称轴、顶点坐标.

2.不画图象,说出函数的开口方向、对称轴和顶点坐标,并说明它是由函数通过怎样的平移得到的.

3.若二次函数的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?

B组

4.在同一直角坐标系中与的图象的大致位置是()

5.已知二次函数,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.

[本课学习体会]

九年级教案数学篇6

垂直于弦的直径

理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.

通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.

重点

垂径定理及其运用.

难点

探索并证明垂径定理及利用垂径定理解决一些实际问题.

一、复习引入

①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.

②连接圆上任意两点的线段叫做弦,如图线段AC,AB;

③经过圆心的弦叫做直径,如图线段AB;

④圆上任意两点间的部分叫做圆弧,简称弧,以A,C为端点的弧记作“︵AC”,读作“圆弧AC”或“弧AC”.大于半圆的弧(如图所示︵ABC)叫做优弧,小于半圆的弧(如图所示︵AC或︵BC)叫做劣弧.

⑤圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.

⑥圆是轴对称图形,其对称轴是任意一条过圆心的直线.

二、探索新知

(学生活动)请同学按要求完成下题:

如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.

(1)如图是轴对称图形吗?如果是,其对称轴是什么?

(2)你能发现图中有哪些等量关系?说一说你理由.

(老师点评)(1)是轴对称图形,其对称轴是CD.

(2)AM=BM,︵AC=︵BC,︵AD=︵BD,即直径CD平分弦AB,并且平分︵AB及︵ADB.

这样,我们就得到下面的定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧.

下面我们用逻辑思维给它证明一下:

已知:直径CD、弦AB,且CD⊥AB垂足为M.

求证:AM=BM,︵AC=︵BC,︵AD=︵BD.

分析:要证AM=BM,只要证AM,BM构成的两个三角形全等.因此,只要连接OA,OB或AC,BC即可.

证明:如图,连接OA,OB,则OA=OB,

在Rt△OAM和Rt△OBM中,

∴Rt△OAM≌Rt△OBM,

∴AM=BM,

∴点A和点B关于CD对称,

∵⊙O关于直径CD对称,

∴当圆沿着直线CD对折时,点A与点B重合,︵AC与︵BC重合,︵AD与︵BD重合.

∴︵AC=︵BC,︵AD=︵BD.

进一步,我们还可以得到结论:

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

(本题的证明作为课后练习)

例1 有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60 m,水面到拱顶距离CD=18 m,当洪水泛滥时,水面宽MN=32 m时是否需要采取紧急措施?请说明理由.

分析:要求当洪水到来时,水面宽MN=32 m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.

解:不需要采取紧急措施,

设OA=R,在Rt△AOC中,AC=30,CD=18,

R2=302+(R-18)2,

R2=900+R2-36R+324,

解得R=34(m),

连接OM,设DE=x,在Rt△MOE中,ME=16,

342=162+(34-x)2,

162+342-68x+x2=342,x2-68x+256=0,

解得x1=4,x2=64(不合题意,舍去),

∴DE=4,

∴不需采取紧急措施.

三、课堂小结(学生归纳,老师点评)

垂径定理及其推论以及它们的应用.

四、作业布置

1.垂径定理推论的证明.

2.教材第89,90页 习题第8,9,10题.

九年级教案数学篇7

第1课时解决代数问题

1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.

2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.

3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.

重点

利用一元二次方程解决传播问题、百分率问题.

难点

如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.

一、引入新课

1.列方程解应用题的基本步骤有哪些?应注意什么?

2.科学家在细胞研究过程中发现:

(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?

(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?

(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?

二、教学活动

活动1:自学教材第19页探究1,思考教师所提问题.

有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?

(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.

(2)本题中有哪些数量关系?

(3)如何利用已知的数量关系选取未知数并列出方程?

解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:

1+x+x(1+x)=121

解方程得x1=10,x2=-12(不合题意舍去)

因此每轮传染中平均一个人传染了10个人.

变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?

活动2:自学教材第19页~第20页探究2,思考老师所提问题.

两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

(1)如何理解年平均下降额与年平均下降率?它们相等吗?

(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.

(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);

二月(或二年)后产量为a(1±x)2;

n月(或n年)后产量为a(1±x)n;

如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.

(4)对甲种药品而言根据等量关系列方程为:________________.

三、课堂小结与作业布置

课堂小结

1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.

2.传播问题解决的关键是传播源的确定和等量关系的建立.

3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).

4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.

作业布置

教材第21-22页习题21.3第2-7题.第2课时解决几何问题

1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.

2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.

3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.

重点

通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.

难点

在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.

活动1创设情境

1.长方形的周长________,面积________,长方体的体积公式________.

2.如图所示:

(1)一块长方形铁皮的长是10cm,宽是8cm,四角各截去一个边长为2cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.

(2)一块长方形铁皮的长是10cm,宽是8cm,四角各截去一个边长为xcm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.

活动2自学教材第20页~第21页探究3,思考老师所提问题

要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm).

(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.

(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.

(3)若设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.

(4)根据等量关系:________,可列方程为:________.

(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)

(6)思考如果设正中央矩形的长与宽分别为9xcm和7xcm,你又怎样去求上下、左右边衬的宽?

活动3变式练习

如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.

答案:路的宽度为5米.

活动4课堂小结与作业布置

课堂小结

1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.

2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.

作业布置

教材第22页习题21.3第8,10题.

九年级教案数学篇8

教学目标

1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

教学重难点

1教学重点

会利用圆和其他已学的相关知识解决实际问题。

2教学难点

圆与其他图形计算公式的混合使用。

教学工具

PPT卡片

教学过程

1复习巩固上节知识,导入新课

2新知探究

2.1圆环面积

一、问题引入

同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

回答(略)。

今天我们就来做一做与光盘相关的数学问题。

二、圆环面积求解

例2.光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?

步骤:

师:求圆环面积需要先求什么?

生:内圆和外圆的面积

师:同学们可以自己做一做,分组交流一下自己的解法。

师:给出计算过程与结果:

三、知识应用

做一做第2题:

一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

2.2圆与正方形

一、问题引入

师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

二、知识点

例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

步骤:

师:题目中都告诉了我们什么?

生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m

师:分别要求的是什么?

生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

师:应该怎么计算呢?

归纳总结

如果两个圆的半径都是r,结果又是怎样的呢?

当r=1时,与前面的结果完全一致。

四、知识应用

70页做一做:

下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?

师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

解:铜镜的半径是300px

5.3随堂练习

若还有足够时间,课堂练习练习十五第5/6/7题。

(可以邀请同学板书解题过程)

6小结

1.今天我们共同研究了什么?

今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

2.在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

7板书

例2解答步骤

九年级教案数学篇9

教学目标

1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

教学重难点

教学重点:理解比的基本性质,掌握化简比的方法。

教学难点:化简比与求比值的不同。

教学过程

一、创设情境,生成问题

师:同学们,昨天我们刚刚学习了有关比的意义,谁能说说

1、什么叫比?

2、比与除法和分数有什么关系?

(生自由发言)我们以前还学过了分数的基本性质和除法中的商不变性质,还记得吗?谁来说一说?

课前准备:

同桌互相说一说:

1.除法中商不变的性质是什么?你能举例说明吗?

2.举例说明分数的基本性质。

二、探索交流,解决问题

1、猜测比的基本性质

除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比有没有基本性质?如果有,这条基本性质的内容是什么?(学生猜测,并相互补充)

2、验证猜测:学生以四人小组为单位,讨论研究。

汇报(预设):

①6÷8=(6×2)÷(8×2)=12÷16

6:8=(6×2)∶(8×2)=12:16

6:8=(6÷2)∶(8÷2)=3:4

6÷8=(6÷2)÷(8÷2)=3÷4

②0.4:0.5=0.4÷0.5=0.8

0.4×5=20.5×5=2.5

2:2.5=2÷2.5=0.8

③(3/4)÷(5/4)=(3/4)×(4/5)=3/5=0.6

3/4×(2/3)=1/24/5×(2/3)=5/6

1/2:(5/6)=1/2×(5/6)=0.6

……

小组派代表说明验证过程,其他同学补充说明。

结论:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。(板书课题)

问:为什么0除外?(生自由回答)

这句话中你觉得哪些字比较重要?

相同的数可以是什么数?

不可以是什么数?

说一说:比的基本性质与商不变性质和分数的基本性质有什么联系和区别?

3、比的性质的应用

①最简整数比

师:我们在学习分数的基本性质时,利用它化简分数,约分,通分,其实我们学习比的基本性质也可以用来化简比,把比化成最简整数比,知道什么是最简整数比吗?(生自由发言)

结论:最简整数比就是比的前项和后项都是整数,而且比的前项和后项的公因数是1,这就是最简整数比。

讨论:

怎样理解“最简单的整数比”这个概念?

小组里议一议。

师小结:必须是一个比;前项、后项必须是整数,不能是分数或小数;前项与后项互质。

②教学例1:化成最简整数比

课件出示例题,

写出这两面联合国旗的长和宽的比,并化成最简单的整数比。

课件出示例题的两面旗的图,

这两个比有什么关系呢?仔细观察,这两个比的前项,后项是怎么变化的,存在着怎样一个变化规律呢?

生独立解决,小组交流汇报方法。

15∶10

15:10=(15÷5):(10÷5)=3:2

想:5是15和10的什么数?为什么要除以5?

180:120=(15÷___):(10÷___)=3:2

想:除以什么呢?

这两个比的什么变了,什么没有变?

把下面的比化成最简单的整数比。

0.75:21/6:2/9

三、巩固应用,内化提高

1、看谁的眼睛看得准?(根据比的基本性质判断下面各题)

2、把下面各比化成最简单的整数比。

应用这个性质可以把一个比化成最简单的整数比?

(1).需要怎样做才能化成最简单的整数比?

(2).这样做到底有什么根据?

3、归纳化简比的方法:

(1)整数比

——比的前后项都除以它们的最大公约数→最简比。

(2)小数比

——比的前后项都扩大相同的倍数→整数比→最简比。

(3)分数比

——比的前后项都乘它们分母的最小公倍数→整数比→最简比。

四、课堂小结

通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

五、课后延伸:

有一个两位数,十位上的数和个位上的数的比是2:3。十位上的数加上2,就和个位上的数相等。这个两位数是多少?

板书设计:

比的基本性质

比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

九年级教案数学篇10

配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.

重点

讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.

难点

将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

一、复习引入

(学生活动)请同学们解下列方程:

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±或mx+n=±(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面前三个方程的解法呢?

问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9

左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.

例1 用配方法解下列关于x的方程:

(1)x2-8x+1=0 (2)x2-2x-21=0

三、巩固练习

教材第9页 练习1,2.(1)(2).

四、课堂小结

本节课应掌握:

左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.

五、作业 教材第17页 复习巩固2,3.(1)(2).

九年级教案数学篇11

教学目标

知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。

教学重难点

教学重点:理解生活中常见的百分率的含义。

教学难点:正确计算常见的百分率。

教学过程

一、创设情境,探究导入

1、课件出示

看图,回答下面的问题。

(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

2、百分数的意义

我们班有36%的学生参加了美术兴趣小组。

世界总人口中大约有50%的人口年龄低于25岁。

一瓶农夫果园饮料中果汁含量大约是10%。

我们班学生的近视率是45%。

3、小刚做了10道题,错了2道

做对的题数占总题数的几分之几?

做错的题数占总题数的几分之几?

做对的题数占总题数的百分之几?

做错的题数占总题数的百分之几?

求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b

4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?

学生独立思考、同桌交流:尝试计算,得出结论。

5、谈话,导入新课

在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。

下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。

二、学习新知

1、教学例1——在具体情境中认识百分率,探究计算方法

(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?

(2)学生读题,分析题意,思考达标率的含义,尝试计算。

(3)指名板演并交流思维过程,集体订正。

(4)教师小结

指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数除以测试总人数×100%”。

谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。

2、教学例2——掌握百分率计算方法,认识百分率的价值

(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:

种子名称实验种子总数发芽数发芽率

绿豆8078

花生5046

大蒜2019

(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种种子的发芽率。(3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。

(4)比较,认识发芽率在生产实践中的价值。

通过计算我们发现哪种种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。

3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。

(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。

(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。

(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。

(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式:?率=量?除以总数量×100%

(5)举实例,加深对百分率计算公式的认识,掌握百分率计算方法。

4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。

5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%?三、巩固练习

1、填一填

①稻谷的出米率是85%,是指()

的千克数占()的千克数的百

分之八十五。

②甲数是乙数的4/5,乙数是甲数的

()%。

③20÷()=4/8=()︰24=()%

2、选一选:

种一批树,活了100棵,死了1棵,求成活率的正确算式是()。

一根钢管截成2段,第一段长米,第二段占全长的60%,这两段钢管比较()。布置作业

1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。

2、完成练习二十第2、3、4题。

四、课堂小结

今天你有什么收获?生谈收获。

九年级教案数学篇12

第1章反比例函数

1.1反比例函数

教学目标

【知识与技能】

理解反比例函数的概念,根据实际问题能列出反比例函数关系式.

【过程与方法】

经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.

【情感态度】

培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.

【教学重点】

理解反比例函数的概念,能根据已知条件写出函数解析式.

【教学难点】

能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.

教学过程

一、情景导入,初步认知

1.复习小学已学过的反比例关系,例如:

(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)

2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?

【教学说明】对相关知识的复习,为本节课的学习打下基础.

二、思考探究,获取新知

探究1:反比例函数的概念

(1)一群选手在进行全程为3000米的_比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.

(2)利用(1)的关系式完成下表:

(3)随着时间t的变化,平均速度v发生了怎样的变化?

(4)平均速度v是所用时间t的函数吗?为什么?

(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?

【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.

【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.

【教学说明】教师组织学生讨论,提问学生,师生互动.

三、运用新知,深化理解

1.见教材P3例题.

2.下列函数关系中,哪些是反比例函数?

(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;

(2)压强p一定时,压力F与受力面积S的关系;

(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.

(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.

分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=(k是常数,k≠0).所以此题必须先写出函数解析式,后解答.

解:

(1)a=12/h,是反比例函数;

(2)F=pS,是正比例函数;

(3)F=W/s,是反比例函数;

(4)y=m/x,是反比例函数.

3.当m为何值时,函数y=是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的解析式为y=.

4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3

(1)求p与V的函数关系式,并指出自变量的取值范围.

(2)求V=9m3时,二氧化碳的密度.

解:略

5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.

解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.

【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.

四、师生互动、课堂小结

先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

课后作业

布置作业:教材“习题1.1”中第1、3、5题.

教学反思

学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.

九年级教案数学篇13

一、指导思想:

初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

二、教学内容:

本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。

四、教学目的:

在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。

在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。

五、教学重点、难点

本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》,《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。《一元二次方程》,《反比例函数》的重点是1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。

六、教学措施:

针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。

2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

九年级教案数学篇14

教学内容

1.(a≥0)是一个非负数;

2.()2=a(a≥0).

教学目标

理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.

通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.

教学重难点关键

1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.

2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).

教学过程

一、复习引入

(学生活动)口答

1.什么叫二次根式?

2.当a≥0时,叫什么?当a<0时,有意义吗?

老师点评(略).

二、探究新知

议一议:(学生分组讨论,提问解答)

(a≥0)是一个什么数呢?

老师点评:根据学生讨论和上面的练习,我们可以得出

(a≥0)是一个非负数.

做一做:根据算术平方根的意义填空:

()2=_______;()2=_______;()2=______;()2=_______;

()2=______;()2=_______;()2=_______.

老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.

同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以

()2=a(a≥0)

例1计算

1.()22.(3)23.()24.()2

分析:我们可以直接利用()2=a(a≥0)的结论解题.

解:()2=,(3)2=32•()2=32•5=45,

()2=,()2=.

三、巩固练习

计算下列各式的值:

()2()2()2()2(4)2

四、应用拓展

例2计算

1.()2(x≥0)2.()23.()2

4.()2

分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2≥0.

所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.

解:(1)因为x≥0,所以x+1>0

()2=x+1

(2)∵a2≥0,∴()2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1

(4)∵4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴()2=4x2-12x+9

例3在实数范围内分解下列因式:

(1)x2-3(2)x4-4(3)2x2-3

分析:(略)

五、归纳小结

本节课应掌握:

1.(a≥0)是一个非负数;

2.()2=a(a≥0);反之:a=()2(a≥0).

六、布置作业

1.教材P8复习巩固2.(1)、(2)P97.

2.选用课时作业设计.

3.课后作业:《同步训练》

九年级教案数学篇15

教学目标

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学重难点

教学重点:探索并掌握比例的基本性质。

教学难点:根据乘法等式写出正确的比例。

教学工具

ppt课件

教学过程

一、复习导入

1、我们已经认识了比例,谁能说一下什么叫比例?

2、应用比例的意义判断下面的比能否组成比例。

2.4:1.6和60:40

3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)板书:比例的基本性质

二、探究新知

1、教学比例各部分的名称.同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时,板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:2.4:1.6=60:40外项内项学生认一认,说一说比例中的外项和内项。

2、教学比例的基本性质。

出示例1、(1)教师:比例有什么性质呢?现在我们就来研究。(板书:比例的基本性质)学生分别计算出这个比例中两个内项的积和两个外项的积。教师板书:两个外项的积是2.4×40=96两个内项的积是1.6×60=96(2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢?学生分组计算前面判断过的比例。(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。(5)如果把比例写成分数形式,比例的基本性质又是怎样的呢?指名学生改写2.4:1.6=60:40(=)这个比例的外项是哪两个数呢?内项呢?当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?(边问边画出交叉线)(6)能用字母表示这个性质吗?a:b=c:d(b,d≠0)或a/b=c/d;ad=bc

以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。

三、拓展应用

1.课本43页做一做,应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1)6:3和8:5(2)0.2:2.5和4:50

2.根据比例的基本性质在括号里填上合适的数。

8:2=24:()():15=4:5

3.猜数:老师有一个比例,内项可能是哪两个数,你是怎么样思考的?比例中的外项和内项都有共同的特点吗?

24:()=():2

4.运用比例的基本性质判断下面两个比能不能组成比例。

1/3:1/6和1/2:1/41.2:3/4和4/5:5

四、拓展

已知3×40=8×15,根据比例的基本性质改写成比例,你能写出几对比例。提示:先把3和40当作外项,再把它们当作内项。

五、总结

1、通过这节课,我们学到了什么知识?

2、通过这节课我们知道了组成比例的四个数叫做比例的项,其中两端的两个项叫做比例的外项,中间的两个项叫做比例的内项。在比例里两个外项的积等于两个内项的积,这叫做比例的基本性质。利用比例的基本性质我们可以判断两个比能不能组成比例,当然还可以解比例,这是下节课要学习的内容。

六、作业布置

课本43页练习八第5、7题。

板书

比例的基本性质

例1、2.4:1.6=60:40

两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

2.4:1.6=60:40

29223