2024九年级数学教案
通过编写教案,教师可以明确教学目标、教学内容和教学计划,从而更好地组织教学,提高教学质量和效率。这里提供优秀的2024九年级数学教案,方便大家写2024九年级数学教案参考。
2024九年级数学教案篇1
圆
经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念.
重点
经历形成圆的概念的过程,理解圆及其有关概念.
难点
理解圆的概念的形成过程和圆的集合性定义.
活动1 创设情境,引出课题
1.多媒体展示生活中常见的给我们以圆的形象的物体.
2.提出问题:我们看到的物体给我们什么样的形象?
活动2 动手操作,形成概念
在没有圆规的情况下,让学生用铅笔和细线画一个圆.
教师巡视,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗?画的圆的位置和大小分别由什么决定?
教师强调指出:位置由固定的一个端点决定,大小由固定端点到铅笔尖的细线的长度决定.
1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.
2.小组讨论下面的两个问题:
问题1:圆上各点到定点(圆心O)的距离有什么规律?
问题2:到定点的距离等于定长的点又有什么特点?
3.小组代表发言,教师点评总结,形成新概念.
(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆上.
因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:在图形上的每个点,都满足这个条件;满足这个条件的每个点,都在这个图形上.)
活动3 学以致用,巩固概念
1.教材第81页 练习第1题.
2.教材第80页 例1.
多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等.
活动4 自学教材,辨析概念
1.自学教材第80页例1后面的内容,判断下列问题正确与否:
(1)直径是弦,弦是直径;半圆是弧,弧是半圆.
(2)圆上任意两点间的线段叫做弧.
(3)在同圆中,半径相等,直径是半径的2倍.
(4)长度相等的两条弧是等弧.(教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.)
(5)大于半圆的弧是劣弧,小于半圆的弧是优弧.
2.指出图中所有的弦和弧.
活动5 达标检测,反馈新知
教材第81页 练习第2,3题.
活动6 课堂小结,作业布置
课堂小结
1.圆、弦、弧、等圆、等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.
2.证明几点在同一圆上的方法.
3.集合思想.
作业布置
1.以定点O为圆心,作半径等于2厘米的圆.
2.如图,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,点O是AB的中点.
求证:A,B,C,D四个点在以点O为圆心的同一圆上.
答案:1.略;2.证明OA=OB=OC=OD即可.
2024九年级数学教案篇2
1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
2.通过复习轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
3.旋转的基本性质.
重点
旋转及对应点的有关概念及其应用.
难点
旋转的基本性质.
一、复习引入
(学生活动)请同学们完成下面各题.
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.
2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.
(3)什么叫轴对称图形?
二、探索新知
我们前面已经复习有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.
1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)
3.第1,2两题有什么共同特点呢?
共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
下面我们来运用这些概念来解决一些问题.
例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A,B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角.
(2)经过旋转,点A和点B分别移动到点E和点F的位置.
自主探究:
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.
(分组讨论)根据图回答下面问题(一组推荐一人上台说明)
1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?
2.∠AOA′,∠BOB′,∠COC′有什么关系?
3.△ABC与△A′B′C′的形状和大小有什么关系?
老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.
2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作得出:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.
分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.
解:(1)连接CD;
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;
(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;
(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.
三、课堂小结
(学生总结,老师点评)
本节课应掌握:
1.对应点到旋转中心的距离相等;
2.对应点与旋转中心所连线段的夹角等于旋转角;
3.旋转前、后的图形全等及其它们的应用.
四、作业布置
教材第62~63页习题4,5,6.
2024九年级数学教案篇3
九年级下册数学教学设计方案
教师如果想优化课程设置,提高教学效率,这就需要做好教学计划。查字典数学网初中频道为大家整理了九年级下册数学教学设计,希望对大家制定教学计划有所启发!
一、学情分析
经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班最大的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。二、指导思想
立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。三、教学目标
态度与价值观:通过学习交流、合作、讨论的方式,积极探
第1页索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。四、教材分析
第二十六章、二次函数本章主要是通过二次函数图像探究二次函数性质,探讨二次函数与一元二次议程的关系,最终实现二次函数的综合应用。本章教学重点是求二次函数解析式、二次函数图像与性质及二者的实际应用。本章教学难点是运用二次函数性质解决实际问题。
第二十七章、相似本章主要是通过探究相似图形尤其是相似三角形的性质与判定。本章的教学重点是相似多边形的性质和相似三角形的判定。本章的教学难点是相似多这形的性质的理解,相似三角形的判定的理解。
第二十八章、锐角三角函数本章主要是探究直角三角形的三边关系,三角函数的概念及
第2页特殊锐角的三角函数值。本章的教学重点是理解各种三角函数的概念,掌握其对应的表达式,及特殊锐角三角函数值。本章的教学难点是三角函数的概念。第二十九章、投影与视图
本章主要通过生活实例探索投影与视图两个概念,讨论简单立体图形与其三视图之间的转化。本章的重点理解立体图形各种视图的概念,会画简单立体图形的三视图。本章教学难点是画简单立体图形的三视图。五、方法措施
1、从学生实际情况出发,认真钻研教材教法,精心设置教学情境和教学内容,做到层次分明,帮助学生理清思路,建立数学严密的数学逻辑推理能力。
2、搞好单元测试工作,做好阅卷分析,发现问题及时纠正,同时加大课后对学生的辅导力度。
3、向有经验的老教师学习,针对近年中考命题趋势,制定详细而周密的复习计划,备好每一节复习课,力求全面而又突出重点。
4、帮助学生建立良好的数学解题作答习惯,向学生传授必要的作答技巧和适应中考的能力。
六、课时安排
九年级下册新授课程控制在4个星期内,剩余时间用于复习。
第3页
第4页
2024九年级数学教案篇4
一、教学目标
1.知识与技能
(1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;
2.过程与方法
通过猜想、探讨构建一元二次方程模型.
3.情感、态度与价值观
(1)通过自主、探究性学习,使学生养成良好的思维习惯;
(2)通过对方程解的合理性解释,培养学习实事求是的作风.
二、教学重点难点
1.重点
找出问题中的数量关系;
2.难点
找等量关系并列出相应方程.
三、教材分析
本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型.
四、教学过程与互动设计
(一)温故知新
1.请同学们回忆并回答解一元一次方程应用题的一般步骤:
第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;
第二步:找出能够表示应用题全部含义的相等关系;
第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;
第四步:解这个方程,求出未知数的值;
第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称.)
2.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.
我们先来解一些具体的题目,然后总结一些规律或应注意事项.
(二)创设情景,导入新课
1.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米.
若梯子的顶端下滑1米,那么
(1)猜一猜,底端也将滑动
1米吗?
(2)列出底端滑动距离所满足的方程.
【答案】
①底端将滑动1米多
②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际.
2.【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
(1)学生讨论:怎样计算月利润增长百分率?
【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润
例8某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率.
分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍.
解:设平均降价百分率为x,根据题意,得56(1-x)2=31.5
解这个方程,得x1=1.75,x2=0.25
因为降价的百分率不可能大于1,所以x1=1.75不符合题意,符合题意要求的是x=0.25=25%
答每次降价百分率为25%.
【跟踪练习】
某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%).
【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性.
(三)应用迁移,巩固提高
1.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()
A)200(1+a%)2=148(B)200(1-a%)2=148
(C)200(1-2a%)=148(D)200(1-a2%)=148
2.为绿化家乡,某中学在20_年植树400棵,计划到20_年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?
(四)达标测试
1.某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()
A、100(1+x)2=800B、100+100×2x=800C、100+100×3x=800D、100[1+(1+x)+(1+x)2]=800
2.某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程.,一元二次方程的.解法
3.某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?
4.某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)
5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数
五、课堂小结
2024九年级数学教案篇5
近年来,命题改革中加强对学生阅读能力的考核,特别是阅读理解题成了中考数学的新题不仅在各级各类的命题改革中加强对学生阅读能力的考核,对数学阅读教学提出了新的要求,而且从人的发展、人才的培养角度思考,也需要加强数学阅读能力的培养。特别是阅读理解题成了中考数学的新题型,具有很强的选拔功能。因此,在初中数学教学中,应当重视阅读教学,充分利用阅读的形式,加强数学阅读能力的培养。
一、加强广大师生对数学阅读重要性的理解
数学教科书是专家在充分考虑学生生理心理特征、教育教学原理、数学学科特点等因素的基础上精心编写而成,具有极高的阅读价值。数学教学活动中,数学阅读是“人——本”对话的数学交流形式。在这种形式中,学生能通过教科书的标准语言来规范自己的数学用语,能有效地促进数学阅读水平的发展,准确叙述解题过程中有关的观点和进行严谨的逻辑推理。因此,数学阅读不仅能促进学生数学语言水平的发展,而且有助于学生更好地掌握数学。另外,每年一度的中考试题中都设置了数学应用题,阅读理解题,而学生每遇到应用题的问答便觉得困难重重,其主要原因是学生缺乏阅读数学的方法。因此,数学教学有必要重视数学阅读。
二、初中数学阅读教学的教学原则
在初中数学教学中进行阅读教学,应当遵循如下的教学原则:
1.主体性原则。从根本上承认和尊重受学生的主体性,使学生能动地参与到数学阅读活动的全过程中来,将自己进行的阅读活动作为意识对象,不断对其进行积极的监控,调节;规划阅读进程,独自获得必要的信息和资料;不断培养自我监控,自我调节的习惯,逐步学会探索地进行数学阅读与数学学习。
2.差异性原则。学生在个体发展区、学习方式、知识基础、思维品质等多种因素上的差异导致学生阅读能力的差异。也决定了教师必须对不同层面学生给以不同的关注,在阅读过程中,学生独立阅读的过程为教师提供了充足的课堂巡视时间,使教师能够将统一学习变成个别指导,重点对个别阅读能力较差进行指导。
3.内化性原则。内化的基本条件是对数学语言的感知水平,不仅包括对数学学科本身的概念、法则、定律、公式等的理解,而且包括学生的元认知水平的控制和调节。因此,在阅读过程中要不断地使学生充分实践监控的各种具体策略和技能,进而逐步内化为自我监控能力,使其能在新的条件下,灵活运用这些策略和技能进行自我监控。
4.反馈性原则。个体的自我反馈,自我评价的意识和能力是至关重要的。教师应及时、准确、适当地对学生的自我监控做出评价,指导他们逐步学会对学习方法,策略运用及结果进行反馈和评价。同时,学生根据教师的指导,对自己的阅读监控过程,所用的策略及结果进行调控和改进,不断提高思维的抽象概括水平,从而不断发展与完善自己的数学认知结构。
5.建构性原则。阅读过程是数学建构的过程,是通过对数学材料进行部分与整体的交替感知去构建数学结构,领悟形式化运动的过程。在阅读过程中学生主动探索,充分利用数学知识特有的逻辑性和数学内容的结构特点,不断在课文的适当地方由上文做出猜想、估计,再通过与已知相对照,加以修正,从而获得新知识。
三、实施数学阅读教学的具体途径
1.预习的阅读指导
在课堂教学中存在这样的现象:部分学生认为,没有预习的必要,反正教师都要讲,上课认真听就是了。这是一种错误的认识。预习的作用主要表现在以下几个方面:能提高学生听课的效率,有利于他们更好地做课堂笔记;培养学生的自学能力;可以巩固学生对知识的记忆。那么,怎样指导学生预习呢?可以按如下步骤进行:首先选择好预习的时间,指导学生迅速地浏览即将学习的教材,然后让他们带着问题详细阅读第二遍,并在阅读过程中做好预习笔记,以便于接下来学生能有目的地听课。
2.数学教材的阅读指导
(1)阅读目录标题。目录标题是课本的纲目,是每一章节的精华。阅读目录标题就等于了解了全文的框架结构。阅读了课本内容就使目录标题具体化了。逐步养成“标题联想”的习惯。
(2)阅读概念
我们所希望达到的指导效果是:让学生在阅读概念时能够正确理解概念中的字、词、句,能正确进行文字语言、图形语言和符号语言的互译,并能注意到联系实际找出反例或实物;学生能弄清数学概念的内涵和外延,也就是既能区分相近的概念,又能知道其适用范围。
(3)阅读代数式
大多数学生在阅读代数式时,只是按照代数式的顺序去读。教师应教会学生用多种方法读同一个代数式,同时,在阅读的过程中要注意式子本身的特点及其普遍性。
(4)阅读例题
对于初中学生例题阅读的指导,应按以下几个步骤进行:首先,要让学生认真审题;分析解题过程的关键所在,尝试解题;其次,要让学生比较例题和教材解法的优劣,对一组相关联的例题要相互比较,着力寻找,领悟解题规律,掌握规范书写格式。并使解题过程的表达即简洁又符合书写格式;最后,还要引导学生总结解题规律,并努力探求新的解题途径。
(5)阅读公式
不要让学生死记硬背公式,关键是要让他们看清教材是怎样把公式一步一步推导出来的,要提醒学生注意认真阅读公式的推导过程。同时要让学生明白公式的特征并能设法记住,另外还要让他们注意公式的应用条件,弄明白有关公式的内在联系,了解公式的运用、通用、合用、变用和巧用。
(6)阅读数学定理。注意分清定理的条件和结论;探讨定理的证明途径和方法,通过与课本对照,分析证法的正误、优劣;注意联系类似定理,进行分析比较、掌握其应用;要思考定理可否逆用,推广及引伸。
(7)阅读提示与说明
教材中相关知识及许多习题的后面都附有说明或小括号式的提示语。例如,代数式概念中的“运算符号”,教材特指加、减、乘、除、乘方运算;要告诉学生对于这些说明或提示语,千万不可忽视,往往解题的某一条件或关键正隐藏在这里,同时对选学内容,教师也应在自习课上给出相关的阅读材料。
(8)阅读章头图和小结
章头图让学生对本章要学的知识有一个初步的认识和了解,明确要学的内容,做到心中有数、目的明确;而认真阅读小结,则能教学生学会自我总结,这是一个归纳、总结、提升的过程。
3.加强课外阅读,丰富学生知识
近年来应用题的考试情况告诉我们,数学阅读不能仅仅局限于教材。教师应向学生推荐适宜的课外阅读材料,给学生提供一些数学应用题让学生阅读,不一定要求他们全会做,但必须弄清题意,对于当今社会实践中出现的新名词有所了解,如“低炭”、“环保”、“利息税”、“利润”、“毛利润”等。
四、数学阅读教学的价值
重视数学阅读,培养阅读能力,有助于个别化学习,使每个学生都能够通过自身的努力达到他所能达到的最高水平,实现素质教育的目标。要想使数学素质教育的目标得到落实,使学生不再感到数学难学,就必须重视数学阅读教学。教师应加强指导学生认真阅读课文,强调学生对数学课文的阅读和理解,以促使学生养成良好的自学能力,即终身学习的能力。这将在整个中学数学教学中形成一种以培养自学能力为目的的教学风气,同时有利于转变数学教师的教学观念,改变传统的教学方式,优化过程,提高技巧,提高课堂教学的效率,拓展教师的视野及知识结构。
2024九年级数学教案篇6
活动目标
1、尝试实验,获得有关容量守恒的经验。
2、乐意动手动脑探究水的变化,了解它的主要特性。
活动准备
1、趣味练习:容量比较)
2、标有刻度的瓶子,水,记录纸,笔。
活动过程
一、观察提问
1.出示趣味练习:容量比较
教师:小朋友看一看这六瓶水是一样多的吗?你是怎么知道的?
小结:现在我们想办法做一下实验,比较一下水的多少吧。
二、实验操作
1、教师:用什么办法验证呢?怎么操作?
要求:实验用的两瓶水不能混在一起,实验时动作慢一点,避免将水洒出影响实验结果。
2、记录实验结果
(1)高矮不同的两只瓶子
方法是通过比较水位的高低,我们可以看出瓶子的水是一样的。
原来瓶子的高矮是不影响水的多少的。
(2)粗细不同的两只瓶子小
选择两个相同的空瓶,把装在大小不同的瓶内的饮料倒入其中,比较出饮料一样多。
方法,任选一个瓶子,将一瓶饮料倒入,用笔画或粘纸条的方法做标记,
把饮料倒出后再将另一瓶饮料倒入该瓶,看饮料位置与原来留下的标记是否一致,
比较出饮料一样多原来瓶子的粗细是不影响水的多少的。
(3)一只含内容物的的瓶子内容物为石子
方法是取出瓶中石子,比较水位的高低。
内容物为海绵小结:方法是将海绵中的水挤回瓶中,比较水位的高低。
原来瓶子里面是否有物体是不影响水的多少的。
3、总结:瓶子的高矮、粗细、内含物是不影响水的多少的,这种现象就叫做容量守恒。
三、活动延伸
想一想,如果把两块一样重的橡皮泥塞进不同形状的瓶子里,橡皮泥会变重吗?
回去试试看吧!
2024九年级数学教案篇7
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.
3.通过学生共同观察和讨论,培养大家的合作交流意识.
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.具有初步的创新精神和实践能力.
教学重点
1.体会方程与函数之间的联系.
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
教学难点
1.探索方程与函数之间的联系的过程.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.
教学方法
讨论探索法.
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.
2024九年级数学教案篇8
一.说教材
1.教材的地位与作用
《一元二次方程的解法》是人教版九年级上册第二十一章第二节的内容。从本章来看,前几节课已经学习了一元二次方程的概念及四种解法,后面即将学习一元二次方程的应用,本节课具有承上启下的作用;从本册书来看,一元二次方程是后面学习二次函数、圆中的有关计算的基础;从整个初中阶段学生数学学习的内容来看,一元二次方程是初中数学“数与代数”的的重要内容之一,在初中数学中占有重要地位,通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它多元方程、高次方程、一元二次不等式、二次函数等知识的基础;从学科领域来看,学习一元二次方程对其它学科也有重要意义,如物理学中电学的一些计算、化学中根据化学方程式的计算等,都要用到一元二次方程的知识。本节课是一元二次方程的解法的练习课,旨在通过对一元二次方程四种解法的类比归纳,让学生会选择适当的方法解一元二次方程,并在学习中体会一些常用的数学思想。
2.教学目标
(1)熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程。
(2)通过对一元二次方程的四种解法进行类比,理解解一远二次方程的基本思想是“降次”,体验分类讨论、转化归纳等数学思想。
(3)通过学生间合作交流、探索,进一步激发学生的学习热情,求知欲望,同时提高小组合作意识和一丝不苟的精神。
3.教学重难点
重点:用适当的方法解一元二次方程。
难点:对解一远二次方程的基本思想是“降次”的理解。
二.说教法学法
常言道:知己知彼,百战不殆。我们教学就相当于和学生作战,只有了解学生的学习情况,才能够针对学生的具体水平而选择最好的方法将知识传授给学生,所以要先分析学情,再确定教法。
1.学情分析
在学习本节课之前,学生已经学习了一元二次方程的概念及四种解法,在七、八年级的时候也学习了一元一次方程、二元一次方程组、分式方程的解法,掌握了一些解方程的基本能力。再者,九年级学生的数学思维已有一定程度的发展,具有一定分析推理能力,同时,在讨论、探索、交流学习等方面有较为丰富的`知识和经验,因此,应更多地应用探讨、合作交流等方法让学生去求得新知识,加深和扩展学生对一些数学思想的理解。
2.教法学法
本节课的主要任务是熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程,所以,我采用的方法可以概括性为四个字:精讲多练。讲,就是讲四种解法的优缺点及“降次”的思想;练,就是通过大量的解一元二次方程的练习题,让学生体会选择适当的方法的重要性及所有的一元二次方程都是通过“降次”转化为一元一次方程而求解,体验化归的数学思想。
所以,本节课主要采用引探式教学方法,在活动中教师着眼于“引”尽力激发学生求知的欲望,引导他们解决问题并掌握解决问题的规律和方法,学生着眼于“探”,通过探索活动发现规律,解决问题,发展探索能力和创造能力。同时,采用电脑多媒体课件辅助教学,利用投影仪出示练习题,节约了课堂时间,保证学生能有充足的时间进行练习、交流,还可以展示学生的练习结果,纠正学生存在的共性问题。
三.说教学过程
1.回顾旧知:学生回顾一元二次方程的概念及四种解法(直接开平方法、配方法、公式法、因式分解法)
2.探究新知:出示四道有代表性的一元二次方程,要求学生自己选择方法解方程。学生完成任务后,以小组为单位交流或者跨小组交流,看看彼此用的是不是同一种方法,若方法不同,比较看谁的方法更简单。教师深入各小组了解学生的解题情况,并选出几个有代表性的学生的解题过程在投影仪上展示。
3.归纳小结:教师以四名学生的解法为例,引导学生体会不同的一元二次方程可以选择不同的方法来解,选择的基本原则就是简单易行。对于形如完全平方等于非负数的形式的一元二次方程,采用直接开平方法来解;对于方程的左边能用提公因式或乘法公式分解因式分解的一元二次方程,则采用因式分解法求解;其余的方程,则选择公式法或配方法。通过比较发现,无论选择哪一种方法解一元二次方程,基本的思想都是“降次”。直接开平方法和公式法是通过开平方达到降次的目的,配方法是通过配方再开平方达到降次的目的,因式分解法是通过把方程分解成两个一次因式的积等于0的.形式而达到降次的目的,可谓是殊途同归。同时可以看出,这几种方法都是将“二次”降为“一次”,然后将一个一元二次方程化成了两个一元一次方程,然后用七年级学过的一元一次方程的解法来解决问题,这体现了一种转化的数学思想。可以给学生强调:我们学习数学知识有一种重要的方法,就是将遇到的新问题转化成我们已经学过的的、已经能解决的旧问题而解决,这就是转化归纳的数学思想。
4.拓展延伸:通过对一元二次方程解法的归纳,学生发现解一元二次方程的基本思想是“降次”,由此可以拓展:解高次方程的基本思想就是“降次”,降高次为一次,那么解多元方程的基本思想就是“消元”,这样学生就会理解以前学习的二元一次方程组和三元一次方程组的解法都采用的是代入消元法和加减消元法了。为学生以后学习多元高次方程的解法打下良好的基础。
5.巩固练习:通过前面的练习和讲解,学生对一元二次方程的解法有了新的认识,这时应该趁热打铁,再出示几道习题让学生练习。
2024九年级数学教案篇9
教学目标:
1、使学生进一步理解二次函数的基本性质;
2、渗透解析几何,数形结合,函数等数学思想。培养学生发现问题解决问题,及逻辑思维的能力。
3、使学生参与教学过程,通过主体的积极思维,体验感悟数学。逐步建立数学的观念,培养学生独立地获取知识的能力。
教学重点:初步理解数形结合的数学思想
教学难点:初步理解数形结合的数学思想
教学用具:微机
教学方法:探究式、小组合作学习
教学过程:
例1、已知:抛物线y=x2-(m2-1)x-2m2-2
⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点
⑵m取什么实数时,两交点间距离最短?是多少?
解:
△=(m2-1)2+4(2m2+2)
=m4-2m2+1+8m2+8
=m4+6m2+9
=(m2+3)2
m2≥0
∴m2+3>0
∴△>0
∴抛物线与x轴有两个交点
问题:为什么说当△>0时,抛物线y=ax2+bx+c与x轴有两个交点。(能否从数和形两方面说明)
设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高。②学会合作,消除个人中心。③发现自我,提高参与度。④弘扬个体的主体性,形成健康,丰富的个性。
数:点在曲线上,点的坐标满足曲线的方程。反之,曲线方程的每一个实数解对应的点都在曲线上。抛物线与x轴的交点,既在抛物线上,又在x轴上。所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式。设交点坐标为(x,y)
∴
这样交点问题就转化成求这个二元二次方程组的解。代入y=0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题。根据以前学过的知识,当△>0时,ax2+bx+c=0有两个不相等的实根。∴y=ax2+bx+c
y=0
有两个不等的实数解
∴抛物线与x轴交于两个不同的点。
形:顶点在x轴上方,且开口向下。或者顶点在x轴下方,且开口向上。
设计意图:渗透解析几何的基本思想
使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性。掌握数形结合,分类讨论的思想方法。逐步学会数学的思维。
转化成代数语言为:
小结:第一种方法,根据解析几何的基本思想。将求曲线的交点问题,转化成求方程组的解的问题。
第二种方法,借助于图象思考问题,比较直观。发现规律后,再用数学的符号语言将其形式化。这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法。
思考:试从数、形两方面说明抛物线与x轴的交点个数与判别式的符号的关系。
设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程。使主体积极地参与到学习中去。以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念。
⑵m取什么实数时,两交点间距离最短?是多少?
解:设二次函数与x轴的两交点为(x1,0),(x2,0)
解法㈠由⑴可知m为任何实数时,都有△>0
解①
∴x1+x2=m2-1
x1·x2=-2(m2+1)
∴│x2-x1│=
=
=
=
=m2+3
∴当m=0时,两交点最小距离为3
这里两交点间距离是m的函数
设计意图:培养学生的问题意识。在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法。培养学生独立地获取数学知识的能力。渗透函数思想
问题:观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明。
设x1、x2为ax2+bx+c=0的两根
可以推出:
还可以理解为顶点到x轴距离最短。
设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构。
小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法。
解法㈡:用十字相乘法或求根公式法求根。
思考:一元二次方程与二次函数的关系。
思考:求m取什么实数时,y=x2-(m2-1)x-2m2-2被直线y=2所截得的线段最短?是多少?
练习:
观察函数的图象,回答:
(1)y>0时,x的取值范围如何?
(2)y=0时,x取什么值?
(1)y<0时,x的取值范围如何?
小结:数与形是数学中相互依赖的两个方面。图形比较直观,可以启发思路;而数学的严格证明也是必不可少的。直观性和形式化是数学的两重性。
探究活动
探究问题:
欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c的图象》。如果零售单价每降价0.1元,月销售量就要增加5把。
(1)欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?
(2)欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?
(3)欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?
(4)现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)
解:(1)(14—8)(元)
(2)638元、728元、748元、792元、792元、750元。
(3)设降价元时利润最大,最大利润为元
=
=
=
∴当时,有最大值
元
(4)设降价元时利润最大,利润为元
(其中)。
化简,得。
,
∴当时,有最大值。
∴。
数学教案-二次函数y=ax2+bx+c的图象
2024九年级数学教案篇10
九年级数学《折扣》教学设计
《折扣》教学设计
【教学内容分析】:本课选自我校生活数学校本教材"折扣"其中的一课。折扣是我们的生活中经常使用的一个概念,与人们的生活联系密切。因此,本节课通过创设学生熟悉的商场商品打折的生活情境引入探究的内容,组织学生通过自主探究、归纳总结等学习活动,理解、掌握折扣多少与最终价格之间关系的规律,并借助模拟商场销售等的活动进一步巩固知识。
【学情分析】:A类学生:4名。理解能力较强,数学基础好,课堂上注意力集中,收集、整理、归纳总结数学信息的能力较强,可以根据老师的要求进行简单的比较和分析。本组学生已经掌握将折扣转换成小数的方法,并且会计算折扣后的价格,100以内整数及小数大小的比较已经掌握。另外,生活中本组学生都有过自己购买商品的经历,也购买过打折商品,但不会比较价格。
B类学生:3名。理解能力稍差,新知识需要时间去消化,要经过反复的练习和强化才能够将新知识学会。会将折扣转换成小数,但在计算时时常会出错,需老师提醒。100以内整数及小数大小的不是很熟练,经提示在计算折扣后进行价格的比较,但价格与折扣之间的关系学生掌握不了,学生通常不具备总结、理解规律的能力,所以需在老师的提示下直接使用规律进行比较,新知识还需反复练习、强化。本组学生在生活中自己购买商品的机会较少,没有自己购买过打折商品。
【教学目标】:
知识与能力:A组:计算折扣后的物品价格,运用规律快速比较选择价格相同,折扣不同的商品,并解决实际问题。
B组:计算折扣后的物品价格,利用辅助工具比较选择价格相同,折扣不同的商品,并解决实际问题。
过程与方法:通过运算,进行比较,找到规律,渗透类比的教学思想,收集数学信息,养成比较的意识。
情感态度价值观:感受折扣在生活中的应用价值,增进学好数学的信心和乐趣。
【教学重点】:计算折扣后的物品价格。
【教学难点】:提取数学信息,总结规律,会运用规律,快速选择低价商品。
【重难点确立依据】:在我们生活中常见到物品打折出售,计算折扣后的物品价格是学生所需要具有的生活技能之一,所以计算折扣后的物品价格是本节的重点。而总结规律、运用规律解决实际问题对于学生学习起来比较困难,所以是本节的难点。
【教学准备】:课件
【教学过程】:
一、复习导入
【设计意图:通过练习,帮助学生复习折扣与小数的换算,为学习计算打折的物品价格做铺垫。】
3折=0.35折=0.58折=0.86折=0.6
2.5折=0.253.8折=0.387.2折=0.72
AB组学生进行折扣与小数的转换。
二、折扣的计算
【设计意图:通过设置购物的情境,帮助学生学习计算打折物品的价格,为学生学习比较选择价格相同、折扣不同的物品做铺垫。】
1、计算折扣
棉鞋原价:650元,现4折出售,需要多少元钱?
1折扣换算为小数:4折=0.4
2列算式:650_0.4=260(元)
2、练一练:
《百科全书》原价150元,现7折出售,需要多少元钱?
老师引导学生做练习。
预设生成:学生列算式时,容易直接列成150_7=1050(元)
解决措施:提示学生计算折扣的步骤:第一步折扣换算为小数。
3、巩固练习:
登山鞋原价480元,现7.5折出售,需要多少元?
三:折扣的比较
【设计意图:通过观察比较,和提示性的提问,让学生自己发现折扣数和价格之间的关系,并总结出折扣数越小的,价格越低,越便宜。】
课件展示:老师要买一件羽绒服,相同的羽绒服,原价500元,三个不同的商场有不同的折扣,请同学帮助选择。
羽绒服原价500元
商场一:商场二:商场三:
8折7折9折
请学生说出列式并快速计算得数。
商场一:500_0.8=400(元)
商场二:500_0.7=350(元)
商场三:500_0.9=450(元)
比较得出最便宜的商场,商场二。
1.折扣是整数的比较:
商场二打7折是最便宜的,哪个商场是最贵的呢?
商场三
那么商场三是打几折呢?
9折
比较一下折扣和最后的价格,你会发现什么呢?
结论:相同价格的物品,折扣数越小,价格越低,越便宜。
总结:那么发现了这个规律后,我们再来比较这件羽绒服在三个不同的商场里,哪个商场价格更低呢?(挡住列式计算的部分,让学生直接说出)
预设生成:
A组:不能发现折扣与最终价格之间的关系。
B组:计算后,学生比较不出谁更便宜。
解决措施:
A组:进一步进行提示,把问题提的更具体。
B组:教师帮助学生将数字放在一起进行比较。
2.折扣是小数的比较:
【设计意图:两个比较接近的折扣的比较,同时包括小数的比较,运用之前找到的规律找出便宜的商品。】
出示题目:老师在给自己的孩子选书包,也遇到了同样的问题,再请同学们帮助老师选择一下。
书包原价100元
商场一:商场二:
8折8.8折
谈话:刚刚通过比较我们知道了在原价相同的情况下,折扣数越小,价格就越低,越便宜的这个规律,那么这次有没有同学能直接告诉老师哪个商场的书包更便宜些呢?
学生回答(A组的学生会很快理解并正确比较,B组的学生可能接受起来会很困难,下面会进行验证,强化这个规律。)
验证:
商场一:100_0.8=80(元)
商场二:100_0.88=88(元)
比较总结:通过比较得出商场一的书包便宜,同时也验证了我们刚才的发现:折扣数越小,价格越低。(请A组学生进行总结)
预设生成:
A组:找到的规律不能马上加以应用,不能直接说出哪个商场更便宜。
B组:不理解规律的内容。
解决措施:
A组:老师指出黑板上总结出的规律对学生进行提示。
B组:再次进行计算,比较两个商场的价格,然后再次总结这个规律帮助学生记忆。
3.课堂练习:
【设计意图:在课件上进行选择商品,复习本课所涉及的各种不同的折扣的比较,而且渗透选择商品的多种渠道。】
(1)不用计算,说出每组商品中,谁的价格更便宜。
课件展示:1羽毛球原价450元,申格体育7折,前前体育9折。
2保温杯原价120元,大润发6折,沃尔玛6.6折。
3《武器大全》原价25.50元,新华书店:9折,中央书店:8折,当当网:7.2折。
(2)游戏:模拟商店
【设计意图:通过模拟选购商品,再次强化学生对本节课知识的掌握。】
课件出示两个商场,同时出示原价相同的几种商品,但折扣不同,发给学生"任务单",让学生实际来进行选择,选择后说一说选择谁的商品?是怎样选的?
四、拓展延伸
出示一件毛衣,两个商场的原价不同,折扣数也不同,让学生判断哪家商场棉服的价格便宜。
五、课堂小结:
这节课我们学习折扣的计算以及总结归纳的规律,同学们学习的积极性很高。现在选择商品的渠道有很多,比如我们去商场购买,去超市购买,或者是去网上购买,这样就要求同学们要掌握在相同的商品中选择最便宜的商品的技能,这样我们才不会多花冤枉钱。这节课上到这里,下课。
板书设计:
一、折扣的计算
二、折扣的比较
4折=0.4500_0.8=400(元)
650_0.4=260(元)500_0.7=350(元)
500_0.9=4500(元)
相同价格的物品,折扣数小的,价格就低。
家庭指引:
A组:本组学生平时有购买商品的经验,本节课已经掌握运用折扣进行比较,那么在实际生活中尽量去应用,购买商品时要精打细算,不花冤枉钱。
B组:本组学生对规律性的认识还不熟练,生活中可以让学生通过计算去比较价格,家长可以通过反复的练习帮助他们强化认识。
2024九年级数学教案篇11
一、素质教育目标
(一)知识教学点
使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点
逐步培养学生观察、比较、分析、概括等逻辑思维能力.
(三)德育训练点
培养学生良好的学习习惯.
二、教学重点、难点
1.重点:“正弦和余弦表”的查法.
2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.
三、教学步骤
(一)明确目标
1.复习提问
1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.
2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.
(二)整体感知
我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.
(三)重点、难点的学习与目标完成过程
1.“正弦和余弦表”简介
学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.
(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.
2)表中角精确到1′,正弦、余弦值有四位有效数字.
3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.
2.举例说明
例4查表求37°24′的正弦值.
学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.
例5查表求37°26′的正弦值.
学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).
解:sin37°24′=0.6074.
角度增2′值增0.0005
sin37°26′=0.6079.
例6查表求sin37°23′的值.
如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.
解:sin37°24′=0.6074
角度减1′值减0.0002
sin37°23′=0.6072.
在查表中,还应引导学生查得:
sin0°=0,sin90°=1.
根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.
可引导学生查得:
cos0°=1,cos90°=0.
根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.
(四)总结与扩展
1.请学生总结
本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.
2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.
四、布置作业
预习教材中例8、例9、例10,养成良好的学习习惯.
五、板书设计
14.1正弦和余弦(四)
一、正余弦值随角度变二、例题例5例6
化规律例4
2024九年级数学教案篇12
-九年级数学《概率》(第1课时)教学设计
教学目标
1、知识与技能目标
了解必然事件、不可能事件、随机事件的特点。
2、过程与方法目标
经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中提炼出本质特征并加以抽象概括的能力,并会判断必然事件、不可能事件、随机事件。3、情感与态度目标
学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学;教学重难点
重点:随机事件的特点。
难点:判断现实生活中哪些事件是随机事件。教法、学法和辅助手段
教
法
分
析
情境引人,游戏探索,游戏体验,拓展新知。学
法
分
析
参与活动,发现新知;探究合作,体验新知;抢答活动,巩固新知;听故事,拓展新知。教学辅助手段
红、白球若干,不透明盒子两个,骰子若干。教学过程:
一、创设情境,导入新课:
师:同学们,你们买过彩票吗?中过奖吗?
(学生有的说买过,绝大部分的同学说没有买过,没有中过奖)
可编辑
-师:你们想买彩票吗?想中奖吗?生:想。
师:我们来模拟买彩票中大奖,请你们在纸上写出一个你认为幸运的三位数,老师立即开奖。学生写好后,展示开奖结果。
师:有中奖的吗?请举手,我为中奖的同学准备了奖品。(为个别中了奖的同学发奖品,安慰没有中奖的同学)师:买一注彩票一定能中奖还是可能中奖?生:可能中奖。
师:我们这个游戏中一定要中奖,你能算出至少要买多少注彩票吗?(少数同学在算,很多同学不知道怎样算)
师:让我们一起走进九年级数学(上)《概率初步》的学习,《概率初步》会告诉我们怎样计算。我们今天就学习第一节《随机事件》。请打开教材。(多媒体展示课题)二、探索新知
1、(分组活动)问题1:
5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的笔签,上面分别标有出场的序号1、2、3、4、5。小军首先抽签,他在看不到笔签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:(1)小军首先抽到的号共有几种可能?(2)抽到的序号小于6吗?(3)抽到的序号会是0吗?(4)抽到的序号会是1吗?
学生回答书中的问题,并判断以下三事件是什么事件(师点评):
可编辑
-(1)抽到的序号小于6。(2)抽到的序号是0。(3)抽到的序号是1。2、老师在讲台上演示
问题2掷一个质地均匀的正方体骰子,骰子的六个面上分
别刻有1到6的点数,请考虑以下问题:掷一次骰子,在骰子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?
1、学生猜测以上问题的结果,并判断以下三事件是什么事件:(师点评)(1)出现的点数大于0。(2)出现的点数是7。(3)出现的点数是4。三、
抢答游戏,应用新知例1、判断以下事件是什么事件。①
袋中只有5个红球,能摸到红球。②
打开电视机,正在播动画片
③
袋中有3个红球,2个白球,能摸到白球。
④
将一小勺白糖放入
水中,并用筷子不断搅拌,白糖溶解。⑤
测量某天的最低气温,结果为-150℃⑥
早晨的太阳一定从东方升起。
可编辑
-⑦
小红今年15岁,她一定在念初三。⑧
任意掷一枚硬币,正面向上。
⑨
一个鸡蛋在没有任何防护的情况下,从六层楼的阳台掉下来,砸在水泥地面上,没有摔破。
例2、袋子中装有5个黑球和16个白球,这些球的形状、大小、质地等完全相同,再看不到球的条件下随机从袋中摸出一个球。(1)这个球是白球还是黑球?
(2)如果两种球都有可能被摸出,那么摸出黑球和白球的可能性一样大吗?(3)你能摸出红球吗?四、拓展新知
思考:小明和小刚在玩掷骰子游戏,二人各执一枚骰子。当两枚骰子的点数之和为奇数,小刚得1分,否则小明得1分,这个游戏对双方公平吗?师引导学生进行分析,共同完成本题。五、反思小结,回味新知1、这节课你学到了什么?
2、你体会到了什么?
3、最让你难忘的是什么六、布置作业
作业:教科书习题25.1第1题。教学设计说明(一)设计思想:
本课设计旨在遵循从具体到抽象,从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏
可编辑
-引如课题,以熟悉的抽签和掷骰子游戏引导学生分清必然事件,不可能事件,随机事件,增强了学生的学习兴趣。(二)教学设计特点
1.贴近生活,让学生在体验中感悟学习.2.创设情境,让学生在兴趣中自主学习.3.开放课堂,让学生在活动中探索学习
可编辑
2024九年级数学教案篇13
20__-20__学年即将到来,大家在两个月的暑期调整后,又精神抖擞地投入到紧张、繁忙而有序地教育教学工作中,怎样做好这些艰巨而富有重大意义的工作,在今后的教学工作中能有效地、有序地进行下去,围绕校关于20__年下半年工作计划要求制定初三在本学期的教学计划。
一、抓常规课堂管理入手,严格规范课前准备,立足提高课堂效率,重视课后反思,定位规律探究。做到:
1.备好课:争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,甚至例题的选用,作业的布置等等,做到五备,让每一节课上出实效,让每位学生愉悦的获得新知。
2.上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。
3.注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
4.批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
5.按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。
6.及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。
二、基本功,提高自身“内力”
积极参加学校组织的各项与教育教学有关的活动。9月份的上课评课,10月份的六认真检查,11月期中考试,12月的区检查。每周至少做一套初三综合试卷。看一篇专业文章,多听课,博采众长,不断提高自身“内力”。
三、分层辅导,因材施教
对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行课后辅导,以提高成绩。
四、严格按照教学进度,有序的进行教学工作。
用心去做,从细节去做,尽自己追大的努力,发挥自己最大的能力去做好初三毕业班的教学工作。
2024九年级数学教案篇14
教学目标
知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。
教学重难点
教学重点:理解生活中常见的百分率的含义。
教学难点:正确计算常见的百分率。
教学过程
一、创设情境,探究导入
1、课件出示
看图,回答下面的问题。
(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?
(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?
2、百分数的意义
我们班有36%的学生参加了美术兴趣小组。
世界总人口中大约有50%的人口年龄低于25岁。
一瓶农夫果园饮料中果汁含量大约是10%。
我们班学生的近视率是45%。
3、小刚做了10道题,错了2道
做对的题数占总题数的几分之几?
做错的题数占总题数的几分之几?
做对的题数占总题数的百分之几?
做错的题数占总题数的百分之几?
求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b
4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?
学生独立思考、同桌交流:尝试计算,得出结论。
5、谈话,导入新课
在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。
下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。
二、学习新知
1、教学例1——在具体情境中认识百分率,探究计算方法
(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?
(2)学生读题,分析题意,思考达标率的含义,尝试计算。
(3)指名板演并交流思维过程,集体订正。
(4)教师小结
指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数除以测试总人数×100%”。
谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。
2、教学例2——掌握百分率计算方法,认识百分率的价值
(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:
种子名称实验种子总数发芽数发芽率
绿豆8078
花生5046
大蒜2019
(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种种子的发芽率。(3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。
(4)比较,认识发芽率在生产实践中的价值。
通过计算我们发现哪种种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。
3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。
(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。
(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。
(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。
(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式:?率=量?除以总数量×100%
(5)举实例,加深对百分率计算公式的认识,掌握百分率计算方法。
4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。
5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%?三、巩固练习
1、填一填
①稻谷的出米率是85%,是指()
的千克数占()的千克数的百
分之八十五。
②甲数是乙数的4/5,乙数是甲数的
()%。
③20÷()=4/8=()︰24=()%
2、选一选:
种一批树,活了100棵,死了1棵,求成活率的正确算式是()。
一根钢管截成2段,第一段长米,第二段占全长的60%,这两段钢管比较()。布置作业
1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。
2、完成练习二十第2、3、4题。
四、课堂小结
今天你有什么收获?生谈收获。
2024九年级数学教案篇15
目标
1、了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。
2、通过复习轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。
3、旋转的基本性质。
重点
旋转及对应点的有关概念及其应用。
难点
旋转的基本性质。
一、复习引入
(学生活动)请同学们完成下面各题。
1、将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形。
2、如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′。
3、圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质。
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。
(3)什么叫轴对称图形?
二、探索新知
我们前面已经复习等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。
1、请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了__度,分针转了__度,秒针转了__度。
2、再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)
3、第1,2两题有什么共同特点呢?
共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
下面我们来运用这些概念来解决一些问题。
例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A,B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角。
(2)经过旋转,点A和点B分别移动到点E和点F的位置。
自主探究:
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板。
(分组讨论)根据图回答下面问题(一组推荐一人上台说明)
1、线段OA与OA′,OB与OB′,OC与OC′有什么关系?
2、∠AOA′,∠BOB′,∠COC′有什么关系?
3、△ABC与△A′B′C′的形状和大小有什么关系?
老师点评:
1、OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等。
2、∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角。
3、△ABC和△A′B′C′形状相同和大小相等,即全等。
综合以上的实验操作得出:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等。
例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形。
分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示。
解:(1)连接CD;
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;
(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;
(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形。
三、课堂小结
(学生总结,老师点评)
本节课应掌握:
1、对应点到旋转中心的距离相等;
2、对应点与旋转中心所连线段的夹角等于旋转角;
3、旋转前、后的图形全等及其它们的应用。
四、作业布置
教材第62~63页习题4,5,6。
2024九年级数学教案篇16
1、做好教材钻研工作。认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。
3、开展丰富多彩的课外活动,课外调查,数学建模,野外测量,七巧板游戏,课件演示。使学生乐在其中,乐此不疲。
4、挖掘数学特长生,发展这部分学生的特长,使其冒尖。
5、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。
2024九年级数学教案篇17
二次根式的乘除法
教学目标
1、使学生掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算。
2、使学生掌握积的算术平方根的性质、会根据这一性质熟练地化简二次根式.
3、培养学生合情推理能力。
教学过程
一、复习提问
1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式?
2、二次根式有哪些性质?计算下列各题:
()2
二、提出问题,导入新知
1、试一试
计算: (1) _=( )=( )
=( )=( )
(2) _=( )=( )
=( )=( )
提问:观察以上计算结果,你能发现什么?
2、思考
_与是否相等?
提问:(1)你将用什么方法计算?
(2)通过计算,你发现了什么?是否与前面试一试的结果一样?
3、概括
让学生观察以上计算结果、归纳得出结论:_=(a≥0,b≥0)
注意,a,b必须都是非负数,上式才能成立。
三、举例应用
例1、计算。
__
说明:二次根式运算的结果,应该尽量化简、如(2)结果不要写成,而应化简成4。
等式_=(a≥0,b≥0),也可以写成=_(a≥0,b≥0)
利用它可以进行二次根式的化简,例如:=_==a2
例2、化简
说明:(1)如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简;(2)在化简时,一般先将被开方数进行因式分解或因数分解,然后就将能开得尽方的因式(偶次方因式)或因数用它们的算术平方根代替,移到根号外,也就是开出方来。
四、课堂练习
1、计算下列各式,将所得结果化简:
_ _
2、P12页练习1(1)、(2)、2
五、想一想
1、__与是否相等?a、b、c有什么限制?请举一个例子加以说明。
2、等于__ 吗?
3、化简:
六、小结
这节课我们学习了以下知识:
1、二次根式的乘法运算法则,即_= (a≥0,b≥0)
2、积的算术平方根,等于积中各因式的算术平方根的积,即=_ (a≥0,b≥0)……)
要特别注意,以上(1)、(2)中,a、b必须都是非负数,如果a、b中出现了负数,等式就不成立、想一想,=_成立吗?为什么?
3、应用(1)、(2)进行计算和化简,在计算和化简中,复习了性质=a(a≥ 0),加深了对非负数a的算术平方根的性质的认识
七、作业
习题22.2第2、(1),(2)题,第3、(1)、(2)题、第4题
2024九年级数学教案篇18
配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1用配方法解下列关于x的方程:
(1)x2-8x+1=0(2)x2-2x-12=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.
三、巩固练习
教材第9页练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置