六年级数学电子版教案
教案是教师根据教学所要达成的目标,将师生活动和教学资源事先加以计划,以便实施教学的具体方案。好的六年级数学电子版教案应该怎么写?快来看看,小编给大家分享六年级数学电子版教案的写作技巧和示例,供大家参考!
六年级数学电子版教案篇1
4、教学例题
(1)出示例题:下面这个杯子能不能装下这袋牛奶?
并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)
(2)学生尝试完成例题。
5、比较一下例题有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是第一例题已给出底面积,可直接应用公式计算;第二例题只知道底面直径,要先求底面积,再求体积.)
三、巩固练习
1、做第21页练习三的第1~2题.
这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。
四、布置作业
练习三第3、4题。
六年级数学电子版教案篇2
教学内容:
圆的面积。
教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
学情分析:
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
学法指导:
教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。
教具准备:
多媒体课件,圆片。
学具准备:
把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学设计:
一、复习旧知,导入新课
1.前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)
2.课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)
二、动手操作,探索新知
1.回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2.推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr×rS=πr2师小结公式
S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3.利用公式计算。
(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第95页做一做的第1题。
(4)看书质疑。
三、运用新知,解决问题
1.求下面各圆的面积,只列式不计算。(CAI课件出示)
2.测量一个圆形实物的直径,计算它的周长及面积。
3.课件演示
用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的面积即圆面积是多少?)
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业
1.第97页的第3题和第4题。
2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物、直径(厘米)、半径(厘米)、面积(平方厘米)
板书设计:
圆的面积
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
六年级数学电子版教案篇3
教学目标:
1、 让学生知道什么是圆的周长。
2、 理解并掌握圆周率的意义和近似值。
3、 初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、 培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。
5、 通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、 培养学生的观察、比较、分析、综合及动手操作能力。
教学重点:
理解和掌握圆的周长的计算公式。
教学难点:
对圆周率的认识。
教学准备:
1、 学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、 教师准备图片。
教学过程:
一、激情导入
1、 动物王国正在举行动物运动会可热闹了,想不想去看一看?
2、 一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?
二、探究新知
(一) 复习正方形的周长,猜想圆的周长可能和什么有关系。
1、 由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)
2、 (生答正方形的周长)追问:你是怎么算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)
3、 圆的周长能算吗?如果知道了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一起研究圆的周长。(板书课题:圆的周长)
4、 猜想:你觉得圆的周长可能和什么有关系?
(二) 测量验证
1、 教师提问:你能不能想出一个好办法来测量它的周长呢?
① 生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。
② 用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。
2、①学生动手测量,验证猜想。 学生分组实验,并记下它们的周长、直径,填入书中的表格里。
②观察数据,对比发现。
提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
3、 比较数据,揭示关系
正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。
(三) 介绍圆周率
1、 师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。
2、 圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。
3、 小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,今天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。
圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们现在得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你知道了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)
(四) 推导公式
1、 到现在,你会计算圆的周长吗?怎样算?
2、 如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。
3、 知道半径,能求圆的周长吗?周长是它半径的多少倍?
三、运用公式解决问题
1、 一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)
2、 花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?
3、 钟面直径40厘米,钟面的周长是多少厘米?
4、 钟面分针长10厘米,它旋转一周针尖走过多少厘米?
5、 喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?
四、课堂小结
通过这节课的学习你想和大家说点什么?
这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,希望你们能坚持不懈的走下去。
六年级数学电子版教案篇4
教学目标:
1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。
2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。
3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。
课前准备:
教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物、剪刀、线绳等。
教学设计:
一、创设情境导入
1、谜语导入引出圆柱。上下一样粗,放倒一推骨碌碌。(板书:圆柱)
2、(课件出示书中的情境图)师:上面哪些物体的形状是圆柱?(指名说)
3、拿出你准备的圆柱形物品,举起来,大家互相检查,看看你们准备的都是圆柱吗?(教师也要认真观察及时发现不符的,如果有让学生说说为什么?)生活中,还有哪些物体的形状是圆柱?(指名说)预设:铁皮水桶、烟囱……
二、体验探究
1、认识圆柱
拿起你的圆柱,仔细观察,你发现了:圆柱有多少个面?再用手摸一摸,这些面有什么特点?也可以在桌上轻轻地滚一滚。
(1) 学生观察,并用手摸表面、滚一滚。
(2) 集体交流。好了,放好你的圆柱。你观察到圆柱有哪些特征?(指名说)
预设;
2、我发现了圆柱有三个面。(师:用手指一指都有哪三个面)
3、我发现了圆柱的的上下两个面是完全相同的两个圆。(师:同意吗?那你们怎么知道这两个圆完全相同呢?有没有办法验证一下?(指名说)教师总结:圆柱的上下两个面叫做圆柱的底面,它们是完全相同的两个圆。(并板书:2个底面 相等)
4、我发现了圆柱还有一个面,(师:这个面有什么特点?和上下两个底面有什么不一样?)教师在学生发言的基础上总结:圆柱的这个曲面,叫做侧面。(并板书:曲面)
5、刚才大家观察的非常认真,那我们回忆一下长方体和正方体都有(高),那圆柱有高吗?(有)谁来用手指一指或者用语言描述一下什么是圆柱的高?(指名说)
那你们认为一个圆柱有多少条高?(无数条)而且它们的长度怎么能样?(相等)
(3) 刚才通过大家认真的观察,我们发现了圆柱的特征,下面我们一起来回顾一下: 圆柱有两个(底面),它们是完全相同的(两个圆);圆柱还有一个(曲面) ,叫做它的(侧面)。圆柱有无数条高。
6、圆柱的侧面积。
(1)(出示)师:老师这里也有一个(圆柱)形状的茶叶桶,教师指圆柱的各部分学生说名称?
(2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)
预设:长方形、正方形
(3)那么大家猜想的对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)
师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,就得到了一个(长方形),也就是说这个圆柱的侧面展开后是一个(长方形)
(4)下面请同学们认真观察,仔细的想一想
我们得到的这张长方形纸与茶叶桶的侧面有什么关系?
①同桌互相讨论一下。
②集体交流。(指名说,教师随即板书)
长方形的面积 长 宽
圆柱的侧面积 底面周长 高
(5)因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高
这就是我们一起推导出来的圆柱的侧面积公式,来,一起读两遍,记住它。
如果说我要求圆柱的侧面积需要知道什么条件?(圆柱的底面周长和高)
三、实践应用
1、这个茶叶桶,如果让你求它的侧面积,我们需要哪些数据?指名测量,并计算。
2、29页1、2题
四、课堂小结。
通过这节课的学习,你对圆柱有一些认识了吗?你都有什么收获?(指名说)
五、拓展延伸
在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。
六年级数学电子版教案篇5
教学目标:
1、使学生明确本学期的学习任务。
2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。
教学过程:
一、课堂教学常规的说明:
1、上课的各项要求说明等。
2、练习的各项要求说明等。
3、其他说明。
二、复习旧知:
(一)填空:
1、分数单位是1/8的最大真分数是(),最小假分数是(),最小的带分数是()。
2、1米的3/7是()米,3米的1/7是()米。
3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了()厘米,时针扫过了()平方厘米。
(二)解决问题:
1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?
2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?
3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?
4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?
5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?
6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?
7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?
8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?
9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?
10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)
(三)拓展练习:
1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?
2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?
(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?
3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?
4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?
5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?
6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?