教案吧 > 小学教案 > 六年级教案 >

简单数学教案六年级上册

时间: 新华 六年级教案

教案编写的内容包括导入新课、讲授新课、巩固练习、板书设计、教具准备等几个方面。写好简单数学教案六年级上册有什么技巧?这里给大家整理简单数学教案六年级上册,方便大家学习。

简单数学教案六年级上册篇1

教学内容:练习一6~8

重难点:会灵活运用知识解决实际问题。

突破方法:引导学生独立思考,合作交流。

教学步骤:

一、游戏引入:摆子连线。

二、指导练习。

1、练习一.6.

(1)出示方格纸,让学生在方格纸上把三角形平移。从平移的过程中你了解到哪些信息?

(2)引导学生观察图形平移后,表示顶点位置的数对有什么变化?

(3)试一试,小组交流。

2、练习一.8.

(1)组织学生读题,理解题意。

(2)讨论:怎样编号?

(3)全班汇报交流。

三、提高训练。

练习一.7.(1)组织学生读题,理解题意。(2)小组合作探究a.移一移,说一说。b.比较区别。c.提出数学问题并解答。

四、课堂小结。

五、补充练习。(单元格自行设计)

1、先标出三角形各个顶点的位置,再分别画出三角形向右、向下平移5个单位后的图形,再标明平移后图形各个顶点的位置。

2、(1)赵东家在少年宫以东200m,

再往南100m处;李倩家在公园以

西的400m,再往北200m处。请在

图中标出这两位同学家的位置。

(2)赵东从家出发,依次路线是

(12,2)

(10,3)

(9,5)

(3,4)

(4,2),你知道

他今天先后去过哪些地方吗?

简单数学教案六年级上册篇2

教学内容:教科书第4页例1和第5页例2,完成第5页“做一做”中的题目及练习二的习题。

教学目的:使学生理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。

教学过程

一、导入

教师;前面我们学习了百分数的一些应用,像计算发芽率,出勤率,成活率,还有计算储蓄的利息等。今天我们来学习“成数”,板书课题;成数

成数常常用来说明农业的收成,比如说今年的小麦比去上增产二成,苹果比去上减产一成,这“二成”和“一成”是用来说明收成情况的。

说明并板书;“一成”就是十分之一,改写成百分数就是10%;“二成”就是十分之二,改写成百分数就是20%。

小麦比去年增产二成,也就是小麦比去年增产十分之二,即百分之二十。下面让学生回答:

“苹果比去年减产一成,表示什么意思?”(表示苹果比去年减产十分之一,即百分之十。)

“油菜去年比前年增产三成,表示什么意思?”(表示油菜去年比前年增产十分之三,即百分之三十。)

二、新课

1.教学例1。

出示例1,让学生读题。提问:

“去年比前年多收了二成五,表示什么意思?”(多收了二成五,表示多收了25%。)

“怎样计算?根据什么?”学生口述。

教师板书算式:41.6十41.6×25%或者41.6×(1十25%)

2.教学例2。

教师:你们在商店有没有看到过某某商品打几折出售?比如“运动服打八折出售”,这是什么意思呢?就是按原价的80%出售。提问:

“衬衫打六折出售是什么意思?”(衬衫按原价的60%出售。)?“书包打七五折出售是什么意思?”(书包按原价的75%出售。)

出示例2,让学生读题,然后每个学生自己列式计算。

让学生说算式并说明根据。

教师板书算式:430—430×90%或者430×(1—90%)

三、课堂练习

1.做第5页“做一做”中的题目。

先让学生自己做,做完后让学生说一说:

“是怎样做的?根据是什么?”“还有别的做法吗?”

教师:根据题意可以看出,一个水壶的85%是25.5元,所以这道题可以用方程

解,也可以直接用除法做。

用方程解,设:这个水壶的原价是2元。

85%×x=25.5

x=30

直接用除法做,25.5÷85%=30(元)。

2.做练习二的第1、2、5题。

指定学生每人口答一小题,其它学生核对。

3.做练习二的第4题。

让学生独立做,做完后一起订正。订正时可以提问:“减产三成是什么意思?”

“去年收的萝卜是前年的百分之几?”(1—30%=70%。)

“怎样列式解答?”学生口述。

教师板书算式:15×(1—30%)或者15—15×30%。

4.做完上面的练习题学有余力的学生,可以做练习二的第7题。

让学生独立做,订正时可以让学生说一说是怎样想的。

教师:因为张大伯的120千克青菜是分两部分卖出的,其中是按每千克2.40元卖出的,剩下的是打八折卖出的。所以可以先求120千克的卖了多少钱,再求剩下的卖了多少钱,最后再把两次卖的钱加起来,就是这些青菜一共卖了多少钱。

算式是:2.40×120×十2.40×120×(1一)×80%

四、作业

练习二的第3题和第6-题。

简单数学教案六年级上册篇3

教学内容:

《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

学生分析:

在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

设计理念:

学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,限度地拓宽探究学习的空间,提供自主学习的机会。

教学目标:

1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

2.引导学生揭示知识间的联系,培养学生分析判断、推理能力

教学流程:

一、复习铺垫,猜想引入

师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?

2.猜想

师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)

师:从字面上看“反比例”与“正比例”会是怎样的关系?

生:相反的。

师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

生:(略)

反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

二、提供材料,组织研究

1.探究反比例的意义

师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

(1)表中有哪两个相关联的量?

(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

2.小组讨论、交流。(教师巡回查看,并做适当指导。)

3.汇报研究结果

(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

生2:已行路程十剩下路程=总路程(一定)。

生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……

(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]

反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。

4.做一做(略)

5.学习例6

师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

三、巩固练习,拓展应用

1.基本练习。(略)

2.拓展应用。

师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”

反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

3.综合练习

四、总结

反思:

《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

简单数学教案六年级上册篇4

教学内容:

人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

教学目标:

1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

教学重点:

掌握分数乘整数的计算方法。

教学难点:

理解分数乘整数和一个数乘分数的意义。

教学准备:

课件。

教学过程:

一、情境创设,探求新知

(一)探索分数乘整数的意义

1.教学例1(课件出示情景图)

师:仔细观察,从图中能得到哪些数学信息?这里的“2/

9个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

师:想一想,你还能找出不一样的方法验证你的计算结果吗?

2.小组交流,汇报结果

预设:(1)2/

9+2/

9+2/

9=6/

9=2/

3(个);

(2)2/

9×3=6/

9=2/

3(个);

(3)3×2/

9=6/

9=2/

3(个);

(4)3个2/

9就是6个1/

9就是6/

9,再约分得到2/

3(个)。(根据学生发言依次板书)

3.比较分析

师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设,

生1:每个人吃2/

9个,3个人就是3个2/

9相加。

生2:3个2/

9个相加也可以用乘法表示为2/

9×3。

提出质疑:3个2/

9相加的和可以用乘法计算吗?为什么?

预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

引导说出:这两个式子都可以表示“求3个2/

9相加是多少”。

师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

4.归纳小结

通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

【设计意图:呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。】

(二)分数乘整数的计算方法

1.不同方法呈现和比较

师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,2/

9×3的计算过程用式子该如何表示?预设,

生1:按照加法计算2/

9×3=2/

9+2/

9+2/

9=6/

9=2/

3(个)。

生2:2/

9×3=6/

9=2/

3(个)。

师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个1/

9。

2.归纳算法

师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

3.先约分再计算的教学

师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

预设:一种算法是先计算再约分,另一种是先约分再计算。

师:比较一下,你认为哪一种方法更简单?为什么?

小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

【设计意图:通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。】

二、巩固练习,强化新知

1.例1“做一做”第1题

师:说出你的思考过程。

2.例1“做一做”第2题

师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

三、探索一个数乘分数的意义

教学例2(课件出示情景图)

(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

预设1:求3桶共有多少升?就是求3个12L的和是多少。

预设2:还可以说成求12L的3倍是多少。

预设3:单位量×数量=总量,所以12×3=36(L)。

(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

交流:是根据什么列式的?引导说出思考的过程并板书:“求12L的一半,就是求12L的1/

2是多少。”

(3)出示第2小题学生自练。引导说出:“12×1/

4表示求12L的1/

4是多少。”在这里都是把12L看作单位“1”。

(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

四、课堂练习,深化理解

1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的3/

10,吃了多少千克?

师:你能说说这个算式表示的意义吗?“求3千克的3/

10是多少。”

2.比较两种意义

出示:一袋面包重3/

10千克,3袋重多少千克?

师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

预设1:一个是分数乘整数,另一个是整数乘分数。

预设2:它们表示的意义相同但有所区别。

引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

师:那么,它们有什么是相同的呢?(计算方法和结果)

【设计意图:对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。】

五、联系实际,灵活运用

1.算式3/

16+3/

16+3/

16+3/

16可以列成_________×_________,表示;或者表示_________;

也可以列成_________×_________,表示。

师:选择一个算式进行计算,想一想,计算时要注意什么?

2.比较练习

(1)一堆煤有5吨,用去了2/

11,用去了多少吨?

(2)一堆煤有2/

11吨,5堆这样的煤有多少吨?

你能编写出类似的问题并加以解决吗?

3.拓展练习

1只树袋熊一天大约吃6/

7kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

【设计意图:练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。】

六、课堂小结,拓展延伸

1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

2.谁会用含有字母的式子表示分数乘整数的计算方法?a/

b×c=ac/

b,其中a,b,c均为整数且a≠0。

【设计意图:通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。】

简单数学教案六年级上册篇5

教学目的:

1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

教学重点:掌握圆锥体积的计算公式。

教学难点:正确探索出圆锥体积和圆柱体积之间的关系。

教学准备:圆锥与等底等高的圆柱,圆锥与不等底等高的圆柱。

教学过程:

一、复习

1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

(2)能不能也通过已学过的图形来求呢?圆锥的体积可能和什么图形的体积有关?圆锥的体积该怎样求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的)还可以怎么说?

板书:圆锥的体积=1/3×圆柱的体积=1/3×底面积×高,字母公式:V=1/3Sh

拿不等底等高的圆柱与圆锥进行实验。为什么倒3次不能刚好倒,和刚才不一样呢?

强调:“等底等高”。

问:Sh表示什么?为什么要乘1/3?

练习:一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

一个圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是多少?

2、教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

说明:不要漏乘1/3,计算时能约分的要先约分。

3、巩固练习:完成练习四第4题。

4、教学例3.

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

四、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题:

①这道题已知什么?求什么?

②求圆锥的体积必须知道什么?

③求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题:

①圆柱的侧面积等于多少?

②圆柱的表面积的含义是什么?怎样计算?

③圆柱体积的计算公式是什么?

④圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

五、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

简单数学教案六年级上册篇6

教学目标:

1、初步掌握圆的特征,会用各种方法画圆;体验数学与日常生活密切相关,能用圆的知识来解释生活中的现象或用生活中的现象来解释圆的特征;

2、使学生通过想象与验证、观察与分析、动手操作、合作交流等活动,获得基本的数学知识和技能,进一步发展学生思维能力和初步的空间观念。

3、让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,培养学生的问题意识和创新意识。

教学重点:认识圆、掌握圆的特征,会画圆

教学难点:准确认识、掌握圆的特征并理解其在生活中的运用

教具学具:圆规、直尺、课件、圆纸片、学生自带一个轮廓为圆的物体

教学过程:

课前谈话:

认识我吗?了解我吗?能给同学们介绍一下我这个人有什么特点吗?看来认识一个人、一件事物,都应通过“观察——接触——研究——归纳”,才能达到真正认识!

讨论“套圈儿”游戏的规则引出“圆”

(宣布上课!)

一.情景引入、激发探究兴趣

圆在生活中太常见了!许多物体的形状与圆有关。你能举个例子吗?

古人最早是从日月的形状认识圆的,直到现在人们仍然喜欢用日月来形容一些圆的东西,古今中外的建筑设计以及各种平面图案的设计中,由于用到了圆而格外漂亮!请同学们看大屏幕,我们一起来欣赏、感受一下生活中的圆!

课件演示——最后抽象出数学的“圆”。

简单数学教案六年级上册篇7

学习内容:完成课本第2~3页练习一第4至8题。

课堂目标:

1.帮助学生在不同的问题情境中巩固解决“求一个数比另一个数多(少)百分之几”问题的思考方法。

2.进一步明晰“求一个数比另一个数多(少)百分之几”与“求一个数是另一个数的百分之几”这两类问题的联系与区别,加深对解决相关问题的基本方法的思考。

教学准备:

教学光盘及多媒体设备

教学过程:

一、复习引入。

如何解决“求一个数比另一个数多(少)百分之几”的实际问题。你是怎样解决的?还有别的方法吗?

二、完成练习一第4~8题

1.完成第4题。

学生读题后独立解决。

交流,说说你是怎样解答的?解答第(2)题时还有别的方法吗?

比较这两题有什么不同?

2.完成第5题。

先让学生独立解答,然后组织交流和比较。

重点把第(2)、(3)题与第(1)题比较。

3.完成第6题。

指名学生读题,理解什么是“孵化期”。然后学生独立解答。交流检查正确率,帮助有困难的学生理解。

4.完成第7题。

学生读题,说说你是怎样理解的?

明确:“巧克力的价钱比奶糖贵百分之几”,就是“巧克力的价钱比奶糖多百分之几。”

学生解答后交流思考过程。

5.完成第8题。

学生独立解答。可以用计算器计算。完成后交流。

三、读读“你知道吗”

学生自主阅读。

交流:读完后你有什么想法?

思考:为什么不可以说2006年我国的国内生产总值增长幅度比2005年提高了0.3%?

突出单位1不同的两个百分数不能直接相减。

你还能举些有关百分点和负增长的例子吗?

四、拓展练习

1.甲数与乙数的比是4:5,乙数是甲数的()%,甲数比乙数少()%。

2.一个长方形的长和宽各增加10%,面积增加()%。

3.一辆汽车,从甲地去乙地行驶了10小时,从乙地回甲地行驶了8小时。回来时比去时所用时间缩短了百分之几?速度提高了百分之几?

4.某小学六年级有四个班,由王、陈两位老师任教,这四个班的人数分别是:一班60人,二班40人,三班50人,四班50人。期末考试及格率的情况统计是:一班的及格率是95%,二班的及格率是85%(这两个班由王老师任教);三班的及格率是96%,四班的及格率是86%(这两个班由陈老师任教)。那么,这两位老师谁教的学生及格率更高一些呢?

五、全课小结

对自己本节课的学习情况进行评价:通过本节课的学习你有什么收获?课堂上你的练习情况如何?正确率高吗?

六、练习作业

1、作业:补充习题第2页

简单数学教案六年级上册篇8

教学目标:

1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

2、

通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

3、

培养学生的自主探索意识,激发学生强烈的求知欲望。

教学重点:掌握圆锥的特征。

教学难点:正确理解圆锥的组成。

教学准备:学生利用教材附页制作圆锥。

教学过程:

一、复习

同学们,前面我们认识了圆柱,谁能说一说圆柱各部分的名称及其特征?

二、新课

出示圆锥实物图,并从实物图中抽象出立体图形。师:像这样的形状叫圆锥,你还见过哪些圆锥形的物体?

1、圆锥的认识

(1)让学生拿出准备好的着圆锥看一看,摸一摸,它是由哪几部分组成的?指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。圆锥有多少条高?为什么?(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

2、小结

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

3、测量圆锥的高

由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;

(3)竖直地量出平板和底面之间的距离。读数时要读平板下沿与直尺交会处的数值。

4、教学圆锥侧面的展开图

(1)学生猜想圆锥的侧面展开后会是什么图形呢?

(2)实验来得出圆锥的侧面展开后是一个扇形。

5、虚拟的圆锥

(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将直角三角形制片绕着一条直角边旋转,会形成什么形状?

(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。

小结:谁能归纳一下圆锥有什么特征?

三、课堂练习

1、做第24页“做一做”的题目。

让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

2、练习四的第1题。

(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

3.完成练习四的第2题。

四、总结

关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

简单数学教案六年级上册篇9

教学内容:

人教版小学数学教材六年级下册第107页例1及相关练习。

教学目标:

1.体会数与形的联系,进一步积累数形结合数学活动经验,培养学生数形结合的数学思想意识。

2.体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力。

3.在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本的数学思想。

重点难点:

积累数形结合数学活动经验,体验数学思想方法的价值,激发兴趣。

教学准备:

课件,不同颜色的小正方形。

学具准备:

不同颜色的小正方形,吸铁板,作业纸。

教学过程:

一、谈话导入,出示课题

教师:最近老师发现,我有一项非常神奇的本领。什么本领呢?我发现只要从1开始的连续奇数相加,比如,1+3,1+3+5……像这样的算式,我都算得特别快。你们信吗?

教师:不信也没关系,我们现场来比一比。

师生比赛,看谁算得快。

教师:这个方法快吗?你们想不想也像老师一样算得快呢?

教师:老师给你们一点点提示,我是借助图形发现这个方法的,今天这节课我们就来研究──数与形(板书)。

【设计意图】从谈话导入,通过设置悬念,激发学生学习兴趣,从而顺理成章地引出课题。

二、动手实践,以形解数

1.教师:我先根据算式中的加数拿出若干个图形。比如,1+3,我就先拿一个小正方形,再拿三个小正方形(贴在黑板上),我发现这些数量的小正方形刚好可以拼成一个大正方形,那我就把它们拼成一个大的正方形。

教师:接着,我观察图形和算式之间的关系,就发现了可以快速算得结果的方法,你们想不想自己试试看?

教师:先来两个加数的,再来三个加数的。请同学们在小组内先完成第一步,再完成第二步,看看哪个小组最先发现老师的方法。

2.小组动手操作,教师巡视。

3.学生汇报,全班交流分析。

先讨论1+3,再讨论1+3+5。

教师:根据同学们的汇报,大家认为1+3=22,1+3+5=32。除了这两组同学的汇报,你们还有其他发现吗?

学生:算式中加数的个数是几,和就等于几的平方。

教师:你们认同他的方法吗?能不能举个具体的例子来说一说?

学生1:1+3+5+7+9=52。

学生2:1+3+5+7+9+11=62。

教师:那我们从头来看一看。请看屏幕:1+3+5+7+9=(52)。

教师:一个小正方形可以看成12,想要拼成一个更大的正方形,再增加1个是不够的,增加的个数要比前一个加数再多2(也就是3);想拼成更大的正方形,再增加3个是不够的,还要比3个再多2个(也就是5个),此时是1+3+5;再往下去,要加7才能拼成更大的正方形,依此类推,加到了9,就能排成每行、每列的个数是5的大正方形。

教师:那看来只要是1开始的,连续的奇数相加,就能排成每行、每列个数是几的大正方形,和也就是几的平方。

4.练习。

(1)1+3+5+7+9=()2;

1+3+5+7+9+11+13=()2;

____________________________=92。

教师请学生独立完成,然后全班核对答案。

(2)利用规律,算一算。

1+3+5+7+5+3+1=();

1+3+5+7+9+11+13+11+9+7+5+3+1=()。

全班交流,请学生说明计算结果和原因。

5.小结。

教师:我们同学都很细心,现在不但能很快算出从1开始的连续奇数的和,稍加一点变化,你们也照样算得很快。现在知道老师是用什么方法来快速计算这些题的吧?

教师:这么巧妙的方法,我们是借助什么发现的?(图形)。看来,有的计算问题借助图形解决会更容易。就像这个题一样,我们借助图形发现了更巧妙、更简便的方法。

【设计意图】充分让学生动手实践,感受如何将数和形结合,体会数和形之间的紧密联系,同时让学生感受到“形”可以展示“数”的特点,通过“形”使解决“数”的问题变得更加容易。

三、练习巩固

1.下面每个图中各有多少个红色小正方形和多少个蓝色小正方形?

学生回答,课件出示答案。

教师:请你认真思考、观察,上边的图形和对应的数之间有什么规律?四人小组交流。

教师:刚才有一个同学说,蓝色的小正方形顺次增加1个,红色的小正方形顺次增加2个。为什么蓝色的小正方形每次增加1个,而红色的小正方形每次增加2个呢?

教师:我们一起来看一看。第一个图形,若要增加1个蓝色小正方形,其上方、下方就要各增加1个红色小正方形;依此类推,第三个图形在第二个图形的基础上增加了1个蓝色小正方形,则红色小正方形就要增加几个?

教师:如果不让你看图,照这样画下去,第6个和第10个图形各有几个红色小正方形和蓝色小正方形呢?你能写出来吗?在草稿本上写一写。

教师请学生介绍,说说是怎么算出来的。

教师:观察发现,图形中左右两侧的红色小正方形个数固定不变(为6个),在中间部分,蓝色小正方形的个数乘以2就是红色小正方形的个数。即使在蓝色小正方形个数较多的情况下,仍然可以算得很快,看来图形问题确实也蕴涵着数的规律。找到了其中的规律,解决问题就清晰、容易多了。

2.课件出示教材第109页练习二十二第2题。

(1)教师:上方有图,下方有对应的数字,请你观察和思考,图和数之间有什么规律?小组交流一下。

全班交流。

学生:第2个图形中小圆的个数为1+2,第3个图形中小圆的个数为1+2+3,第4个图形中小圆的个数为1+2+3+4。

学生:是第几个图形,其中就有几行小圆。

教师:照这个规律往下画,你能画出来吗?图形下方的数字表示的是什么?第5个、第6个、第7个图形下方的数,你能不能很快写出来?

教师请学生独立完成在练习纸上。

教师请学生汇报,说说是怎么得到结果的。

教师:图形中的最后一行是第几行?含有几个小圆?

教师:现在如果老师不让你画图,你能不能想象一下第10个图形,它是什么样子的?一共有多少个小圆呢?现在我们就不画图,算一算,第10个图形下方的那个数是多少?能算出来吗?动笔试一试。

展示学生作品,请学生介绍方法。

(2)教师介绍“三角形数”“正方形数”。

教师:同学们发现没有,55个小圆能排成什么图形?(三角形)而且这个三角形的每一行的小圆的个数分别是从1到10。

教师:回过头来看看。3、6、10、15、21呢?它们是否也具有同样的特点?

教师:在数学上,我们把1、3、6、10、15、21、28这样的数称为“三角形数”。请同学们想一想,28后面的下一个三角形数是多少?(36)

教师:大家再看,一个图形,如果是4个小正方形可以拼成大正方形,如果是9个小正方形可以拼成大正方形,16个小正方形也可以拼成大正方形。像这样的数,我们称之为“正方形数”。

【设计意图】通过两个练习,让学生进一步体会数形结合的特点,感受用形来解决数的有关问题的直观性与简捷性。在练习中充分让学生动脑、动口、动手,在交流中发现特点,解决问题。

四、回顾反思

教师:今天这节课,我们一起学习了“数与形”,说说你有什么收获?

课后反思:

形的问题中包含着数的规律,数的问题也可以用形来帮助解决,教学时,让学生通过解决问题体会到数与形的完美结合,通过数与形的对应关系,相互印证结果,发现“和”都是“平方数”,再通过图形的规律理解“平方数”(即正方形数)的含义,并让学生大胆说出自己发现的其他规律,从不同角度寻找规律,例如从第一个图到第三个图,每次增加多少个小正方形,用加法怎样列式,加数都是连续奇数,这些奇数在图中什么地方,从而对规律形式更直观的认识。

简单数学教案六年级上册篇10

教学内容:学习课本第一页的例1、完成“试一试”和“练一练”,练习一的第1至3题。

教学目标:

1.在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2.在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

教学重、难点:

理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

教学准备:

教学光盘及多媒体设备

教学过程:

一、复习导入

1.谈话:同学们,上学期我们已经初步学习了有关百分数的一些知识,知道百分数是表示一个数是另一个数的百分之几的数,还学习了解决求一个数是另一个数的百分之几的实际问题。你会解决下面的实际问题吗?

(出示下列题目,请学生解答。)

东山村去年原计划造林16公顷,实际造林24公顷。实际造林是原计划的百分之几?

五(1)班有男生25人,女生20人,女生人数是男生的百分之几?男生人数是女生的百分之几?

2.学生独立列式计算后进行交流,重点说说数量关系。

3.揭示课题:今天这节课我们继续学习有关百分数的知识。

二、教学例1

1.出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?

提出要求:根据这两个已知条件,你能求出哪些问题?

引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

2.引导思考:

这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位“1”?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?

小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

启发:根据上面的讨论,你打算怎样列式解答这个问题?

学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?

3.进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?

学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?

联系学生的讨论明确:从125%中去掉与单位“1”相同的部分,就是实际造林比原计划多的百分数。

提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?

三、教学“试一试”

1.出示问题:原计划造林比实际少百分之几?

启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

学生作出猜想后,暂不作评价。

提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?

2.学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

四、指导完成“练一练”

1.要求学生自由读题。

2.提问:你是怎样理解“2005年在读研究生的人数比2004年增加了百分之几”这个问题的?

学生讨论后,要求他们各自列式解答。

3.根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?

学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

五、巩固练习

1.指导完成练习一第1~3题

做练习一第1题。

可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

做练习一第2题。

先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

做练习一第3题。

先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。

2.对比练习

(1)建造一个游泳池,计划投资100万元,实际投资80万元。实际投资比计划节约了百分之几?

(2)建造一个游泳池,计划投资100万元,实际投资比计划节约20万元。节约了百分之几?

(3)建造一个游泳池,实际投资100万元,比计划投资节约20万元。节约了百分之几?

学生读题后先独立思考并列式计算,然后指名分析每题的解题思路。同桌间互相查看解答情况。

3.拓展题。

(1)爸爸买的股票“中国石化”上周五收盘价是20元,本周五收盘价是24元。“中国石化”本周上涨了百分之几?(用两种方法解答)

(2)从南京开往淮安,甲车行了3小时到达,乙车行了4小时到达。甲车速度比乙车快百分之几?

六、全课小结

通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?今天你在课堂上的表现如何?你的同桌呢?

七、布置作业

1.课内作业:补充习题第1页。

求一个数比另一个数多(少)百分之几的实际问题

例题1(线段图略)

解法一:先算实际造林比原计划多多少公顷解法二:先算实际造林相当于原计划的百分之几

20-16=4(公顷)20÷16=1.25=125%

4÷16=0.25=25%125%-100%=25%

简单数学教案六年级上册篇11

教学目标:

1.知识目标:了解储蓄的意义,理解本金、利率、利息的含义。

2.能力目标:注重学生观察、对比、总结能力的培养,并让学生感受数学在生活中的作用,提高应用意识和实践的能力。

3.情感目标:懂得存款利国利民,并从教育储蓄中感悟国家对少年儿童的殷切希望,树立努力学习的志向。

重点难点:

理解本金、利率、利息的含义,会正确计算利息。理解税后利息的含义,会根据实际情况使用公式。

教学流程:

一、知识扩充

(师出示中国五大银行行标。生根据生活经验,理解银行的业务范围及银行的分类。)

师:(出示一组信息)2001年12月,中国银行给工业发放贷款18636亿元,给商业发放贷款8563亿元,给建筑业发放贷款2099亿元,给农业发放贷款5711亿元。

(让生思考,从信息中想到了什么?)

设计意图:让学生了解储蓄的意义,感受存款不但利国而且利民。

效果预测:学生可以从信息中感悟到国家用集资上来的存款繁荣经济、建设国家、援助农业,加强储蓄的意识。

二、创设情境

师:老师积攒了1000元钱,把它放在什么地方最安全合理呢?

生:放在银行里,不但安全还可以使自己的用钱更有计划。

师:听从大家的意见,现在老师就想去银行存款,谁想和我一起去?

(生走入老师创设的情境,感受存款的乐趣。)

师:当我们来到银行的时候,不但会受到存款员的热情接待,而且会拿到一张存款单。存款单蕴含着怎样的奥秘呢?我们在填写的过程中一起总结好吗?

(生独立完成填存单的任务,遇到问题随时提出,师生共同解决。)

设计意图:给予学生一个想像的空间,让学生身临其境地感悟生活中的数学,把知识、能力、人格有机地融合,让学生的各种因素碰撞后的灵感在实践中得以体现。

效果预测:经过师生互动、生生互补,学生可以掌握存款单的填写方法,并在老师的点拨中,掌握存款的种类、本金等数学概念。

三、合作学习

师:(出示信息)小丽学会存款后,把100元存入银行,整存整取1年,年利率2.25%,到期时可取出人民币102.5元。

(生找出本金、存款种类后,再谈一谈自己有什么新发现。)

教师引导学生总结出“利息”、“利率”的概念,并设疑“利息的多少和什么有关系呢?有怎样的关系呢”?

出示表格

(生合作学习从表格中发现利息的多少与本金、利率、时间有关,并总结出公式:利息=本金×时间×利率。)

师:请同学们根据自己总结出来的公式,帮老师预算一下,老师存入银行的1000元,整存整取5年,年利率3.6%,到期时可获利息多少元?

生:1000×3.6%×5=180元。

师:取款时的情况和我们预想的一样吗?和老师一起跳跃时间,来到2012年。(出示利息清单。)

利息清单

生总结:税后利息=本金×利率×时间×(1-20%)。

设计意图:为学生营造自我发现、自我总结的空间,让学生从实践中概括公式,在合作中分享自己与他人思考的成果,体会成功的快乐。

效果预测:学生在兴趣的驱使下,主动参与小组合作,在合作中积极思考,得出利息及税后利息的公式,并因为经历了概念的形成过程,为知识的应用做了良好的铺垫。

四、深化练习

1.奉献。

五年一班的张华同学在20_年1月1日把积攒的1200元钱存入银行,整存整取二年,年利率2.7%。她准备把到期后的税后利息捐给“希望工程”支援贫困地区的失学儿童,到期时她可捐钱多少元?

2.理财。

你有压岁钱吗?以小组为单位核算一下,如果把这些钱存起来,你们想怎样存?会得多少税后利息?你们准备怎么使用?

3.帮助。

李大爷认识到了存款的益处,所以决定把自己的1万元存入银行5年,面对“国债3.6%”、“定期3.6%”、“活期0.72%”三种选择,他该怎么办呢?你能按获得利润的多少为李大爷提个合理化建议吗?

4.介绍小知识。(教育储蓄)

设计意图:数学来源于生活,服务于生活,为学生设计的三组生活习题,其目的在于让学生感悟数学在生活中的价值,增强应用意识,同时培养了学生乐于助人、勤俭节约的优良品质。

效果预测:学生喜欢智慧的挑战,对学以致用有很强的能动性,所以他们一定会用智慧的眼光解决习题中的生活问题,同时在教育储蓄的感召下,进一步感悟党和人民的期望,树立终身学习的愿望。

简单数学教案六年级上册篇12

教学内容:

第89页例3、例4,90页课堂活动,练习二十二第5、6、7、8题。

教学目标:

1.在熟悉的生活情境中,进一步理解负数的意义,会用正负数表示相反意义的量。

2.感受负数在生活中的广泛应用,会解释生活中的一些负数的实际意义。

教学重点:

会用正、负数表示相反意义的量。

教学难点:

会用正、负数解决生活中的实际问题。

教具准备:

多媒体课件

教学方法:

合作交流、师生互动

教学过程:

一、游戏激趣

教师:我们来玩个游戏轻松一下,游戏名叫《我反,我反,我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。谁先试一试?

向上看向前走200米电梯上升15层我在银行存入了500元

二、复习旧知

我们已经学习了负数,你能举几个负数的例子吗?

通过前面内容的学习,你还知道哪些知识?

三、学习新知

1.教学例3。

出示例3的情境:小明向东走200米,小军向西走200米。

教师问:你准备怎样来表示这两个不同意思的量?

学生1:向东走200米记作+200米,向西走200米就记作-200米。

学生2:向西走200米记作+200米,向东走200米就记作-200米。

教师对这两种记法都应给予肯定。

学生独立试一试

(1)如果汽车向正北方向行驶50m记作+50m,那么汽车向正南方向行驶100m该怎样记?

(2)如果体重减少2kg记作-2kg,那么+5kg表示什么?

学生完成后,集体订正并小结:由此可见,我们可以用正数、负数来表示相反意义的量。

(3)练习:课堂活动第2题:说出表中正数、负数表示的意义。

项目父母工资电话费父母奖金水、电、气费伙食费

收支情况(元)4500-1301000-280-1750

2.教学例4。

教师:其实,正、负数在生活中有着广泛的应用。如某农用物资商场把下半年的盈亏情况做了一个表:(出示例4)

月份7月8月9月10月11月12月

盈亏情况(元)+6500-27000-750+9500+16700

教师:表中的正数,负数各表示什么意思?(正数表示盈利,负数表示亏损。)

教师:从表中你获得了哪些信息?

学生小组内交流,然后全班汇报。

教师:盈和亏也是两个相反意义的量,我们用正数、负数来表示,简洁而准确。

3.讨论生活中的负数。

教师出示存折和电梯图上的负数,让学生讲讲表示的是什么意思。

教师:存折上的-800表示什么意思?

学生:取出800元记作-800;存入了1200元记作1200元,还可以记作+1200元

电梯里的1和-1表示什么意思?(以地面为界线,地面以上一层我们用1或+1来表示,-1就表示地下一层)

老师现在要到33层应该按几啊?要到地下3层呢?

四、课堂练习

1.下图每段表示1m,小丽刚开始的位置在0处。

(1)小丽从0处向东行5m表示+5m,那么她从0点向西行4m表示为()

(2)如果小丽的位置是+8m,说明她是从0点向()行了()m。

(3)如果小丽的位置是-6,说明她是从0点向()行了()m。

(4)如果小丽先向西行6m,再向东行9m,这时小丽的位置表示为()m。

(5)如果小丽先向东行3m,再向西行7m,这时小丽的位置表示为()m。

2.如果顺时针方向旋转90°记作+90°,那么逆时针方向旋转90°记作()。

3.如果-20分表示比平均分低20分,那么+15表示()

4.如果比规定任务多做5个记作+5个,那么-5表示()

5.2.如果在银行存入10000元记作+10000,那么-5000表示()。

五、自学“你知道吗?”

学生阅读教科书92页内容,说说有什么收获?

六、课堂小结

通过今天的学习,你有什么收获?

七、课堂作业

练习二十二第6、7题。

家庭作业:90页课堂活动第3题,练习二十二第5、8题

板书设计:

认识具有相反意义的量及其简单应用

向东走200米记作+200米,向西走200米就记作-200米

正数、负数来表示相反意义的量。

简单数学教案六年级上册篇13

使用教材:人教版六年制小学数学第十一册

教学目的:1、感受百分率源于生活,理解常用百分率的含义及计算方法。

2、让学生动手实验,培养学生自主探索、合作交流的能力。

3、渗透统计思想,培养学生用数学眼光观察生活的意识,在应用中体验数学的价值。

教学过程:

一、开展活动,产生问题。

1学生实验。

教师准备好一桶盐水、一桶淡水,让学生拿出准备好的杯子,随便在哪一只桶里去装一杯水,再把鸡蛋放入杯中,观察发现了什么?(有的杯中的鸡蛋能浮起来、有的杯中的鸡蛋沉下去了)

1、猜测原因。

2、如果没发现原因,教师可以带学生尝一尝杯子里的水,发现鸡蛋能否浮起来与水的咸淡有关。

二、探究学习,初步感知

1、演示实验

一号杯中:倒入200克清水中放入5克盐。

二号杯中:倒入200克清水中放入10克盐。

三号杯中:倒入200克清水中放入20克盐。

观察:发生了什么变化?(盐溶化在水中了)

2、计算,三杯盐水中盐各占盐水的百分之几?

5÷(200+5)10÷(200+10)20÷(200+20)

=5÷20=10÷210=20÷220

2.4%54.8%9.1%

3、揭示:盐占盐水的百分比就是含盐率。

4、口述:①号、②号、③号杯中盐水的含盐率。

三、深入探究,寻找规律。

1、比一比三杯盐水的含盐水率的高低。

(方法1:看计算出的数据。方法2:尝盐水的味道。等)

2、含盐率的高低与什么有关。

①猜测。(与盐的多少有关。与水的多少有关。)

②讨论。

③验证。

А、与盐的多少有关。

在①号杯中在放入5克盐,计算出含盐率约为4.8%,与原来①号杯中含盐率约为2.4%比较:盐多起来了,含盐率高了。

Б、与水的多少有关系:

在②号杯中再放入20克水,计算出含盐率约为4.3%,与原来②杯含盐率约为4.8%比较:水多起来了,含盐率减低了。

④、结论:水不变,盐越多,含盐率越高。

盐不变,水越多,含盐率越低。

3、一杯水的含盐率是20%,要提高它的含盐率,该怎么办?(方法1、可以加盐。2、可以蒸发水分。等)

四、知识迁移、完善揭题。

1、种子发芽率的研究。

①课前同学们都做了种子发芽实验,请大家汇报试验情况。

(如:我试验用的种子是黄豆,共20粒,发芽了17粒。)

②为了提高种子的利用率,需要计算发芽率。什么是发芽率?怎么求?

③计算后,学生交流自己的种子的发芽率。

④问题:种子的发芽率可达多少?

2、除了含盐率、发芽率,在生活中还有很多百分率,请学生说一说你知道的百分率,并说一说你是怎样理解的?

3、这节课,我们学习了什么内容,谁来取个课题?(百分率应用)

五、比赛、调查、应用延伸

1、现场每人计算10道口算题,比一比谁的正确率高,然后再说一说有什么要提醒大家的?

2、现场请学生调查近视情况,计算出近视率,然后再谈一谈有什么想法或建议?

3、课后调查,填表我班共有人,来自个家庭

简单数学教案六年级上册篇14

教学内容:教科书第1—2页及“做一做”中的题目,练习一的第1、2题。

教学目的:使学生了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。

教具准备:将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。

教学过程:

一、导入

教师提问:

“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

“为什么要把钱存入银行呢?”多让几个学生发表意见。

教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

“你们知道利息是怎样计算的吗?”

教师:今天我们就来学习一些有关利息的知识。

板书课题:“利息”

二、新课

出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。

先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期—年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”

存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”

这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少元?提问:

“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。

“二年应得利息多少元?”学生口述,教师接着板书:×2

小丽的存款到期时可以得到的利息是35.64元。

“想一想,存款的利息应该怎样计算呢?”先让学生说一说,教师再板书:利息=本金×利率×时间

“小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。

三、巩固练习

做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。

订正练习一的第2题时,可以先让学生说一说:活期储蓄每月的利率是0。1425%,表示什么意思?再引导学生分步说出:280元每月可得利息多少元?6个月的利息是多少元?本金和利息一共多少元?

四、作业

练习一的第1题。

简单数学教案六年级上册篇15

教学目标:

1、让学生在已有的分数乘整数的基础上,通过小组合作,自主探究建构,使学生理解一个数乘分数的意义,掌握分数乘分数的计算方法,能够应用分数乘分数的计算法则,比较熟练地进行计算。

2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。

3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。

教学重点:让学生理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:总结分数乘分数的计算方法。

教学过程:

一、复习引入,提出学习目标。

1、复习。

计算下列各题并说出计算方法。

1/10×5/8×53/7×

上面各题都是分数乘以整数,说一说分数乘整数的意义。

2、揭题:分数乘分数

3、提出学习目标。

让学生先说一说,再出示学习目标

(1)一个数乘分数的意义与分数乘整数的意义是否相同。

(2)分数乘分数的计算方法

二、展示学习成果。

1、小组内个人展示

学生独立自学、完成课本10页例3、“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)

2、全班展示

(1)一个数乘分数的意义展示

1/5×3/4就是求1/5的3/4是多少;1/3×1/4就是求1/3的1/4是多少

(2)算法展示

生1:不能约分,直接分子乘分子,分母乘分母。

1/5×3/4=1×3/5×4=3/20

生2:先计算出结果,再进行约分。

8/9×3/10=8×3/9×10=24/90=4/15

生3:在计算过程中能约分的先约分,再计算。

8/9×3/103与9先约分,8与10先约分,再计算。

2)比较二、三两种计算方法,选择算法。

通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

(3)错例展示:

错例1:约分后,把分子与分子相加,分母与分母相加;错例2:学生没把计算结果约成最简分数。

3、学生质疑问难,激发知识冲突。

(1)针对同学的展示,学生自由质疑问难。

(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?

4、引导归纳一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母,能约分的先约分,再计算。

三、拓展知识外延

1、完成课本12至13页练习二第3、6题。

2、生活中的数学

(1)一个长方形长3/5分米,宽1/2分米,它的周长、面积各是多少?

(2)用三个同样大小的正方形可以拼成一个新的图形。如果正方形的边长是3/5分米,那么拼成的新图形的周长是多少?

四、总结反思,激励评价。

五、布置作业:

1、列式计算

(1)的是多少?

(2)千克的是多少?

(3)小时的是多少?

2、智力冲浪:甲乙两个仓库,甲仓存粮30吨,如果从甲仓中1/5取出放入乙仓,则两仓存粮数相等.两仓一共存粮多少千克?(A类同学做)

13452