六年级数学教案案例
一份优秀的教案应该考虑到所需教具的准备,例如教学用具、实验器材、多媒体设备等,以确保教学的顺利进行。什么样的六年级数学教案案例才算是优秀的呢?这里整理一些六年级数学教案案例,方便大家学习。
六年级数学教案案例篇1
教学要求:
1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。
2、使学生正确掌握分解质因数和求两个数的公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的公约数,两个或三个数的最小公倍数。
教学过程:
一、揭示课题
1、口算(指名口算课本第64页第11题)
2、引入新课
我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求公约数最小公倍数。
二、复习约数和倍数
1、提问:什么是整除(板书整除)如果A能被B整除,必须具备哪些条件?
当A能被B整除,也就是B整除A时,还可以怎样说?板书:
约数
倍数
2、做“练一练”第1题
学生做在课本上,说明倍数和约数的依存关系。
3、学生练习
(1)从小到大写出9的五个倍数
复习约数倍数相关知识(略)
(2)写出18的所有约数
三、复习质数合数
1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:
板书:1
质数
合数
怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。
2、口答:
(1)说出比10小的质数和合数。
(2)最小的质数和最小的合数各是几?
(3)下面哪些是质数?哪些是合数?
785123579190
3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的什么数?(板书:质因数,分解质因数)
4、做“练一练”第3题
练后指名口答,集体订正。
四、复习公约数和公倍数。
1、学生练习
(1)写出18和24所有的公约数,指出公约数。
(2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。
学生口答,老师板书
提问:什么叫做公约数和公约数?什么叫做公倍数和最小公倍数?
(板书——公约数、公约数——公倍数——最小公倍数)
2、“练一练”第4题
集体练习,指名口答,说一说方法怎样归纳三种关系?
追问:用短除法求公约数和最小公倍数有什么相同和不同?
五、复习
能被2、5、3整除各有什么特征
1、提问:能被2、5、3整除各有什么特征。
(板书:——能被2、5、3整除的数)
2、“练一练”第5题
提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,
板书:偶数
奇数
想一想,自然数可以分为哪几类?
六、课堂小结
根据板书内容,说说相互之间有什么联系。
七、课堂练习
1、练习十一和12题
2、课堂作业
(练习十一第15、16题、17题中(3)(4)
八、课外作业:练习十一第18题。
六年级数学教案案例篇2
教学目标:
1.知识目标
了解多媒体计算机及其应用;
了解多媒体的基本概念——学会使用关键字搜索相关信息内容的网页及网站;
认识ACDSee软件——学会使用ACDSee软件游览图片;
2.能力目标
让学生了解多媒体和多媒体计算机、掌握使用“MediaPlayerClassic”软件播放音乐和视频文件,增强学生的动手操作能力。让学生在自主探究的过程中体验成功,感受到合作学习的快乐。增强学生的组织能力和团队协作能力。
3.情感目标
让学生体会多媒体电脑给我们生活方式带来的巨大改变,激发学生热爱信息技术的情感。
教学重点:了解多媒体的基本概念,了解多媒体计算机及其应用;认识ACDSee软件,认识MediaPlayerClassic软件。
教学难点:认识ACDSee软件;认识MediaPlayerClassic软件。
教学方法:情景导入法、任务驱动法、引导讲解法。
教学课时:1课时。
教学过程:
1.创设教学情景,激发学生学习兴趣
师:同学们,如果把现在的计算机跟20年前的计算机相比,除了性能上的差异外,的区别可能就在于,以前的计算机只是一个埋头苦干的计算工具,而现在的计算机更像一个“多面手”。除了计算外,我们还可以用计算机画画、打字、听音乐、看电影和玩游戏等。这里我们有了一个新的名词“多媒体计算机”。从今天开始,我们一起走进多姿多彩的多媒体世界,去感受多媒体计算机给我们带来的欢乐。(板书:认识多媒体)
2.讲授新课
(1)多媒体和多媒体计算机
师:首先请同学们观看投影。我们来认识一下什么是媒体。
投影广播:文字、图片、声音、动画、视频等。
师:请问同学们看到了什么?
生:文字、图片、声音、动画、视频。
师:刚才同学们看到的就是媒体,媒体是指表达和传播信息的载体,如我们平时所见的文字、图片、声音等就是媒体,它们向人们传递各种信息。随着计算机技术的发展,我们能够把文字、图片、声音、动画、视频等多种媒体信息集合到一个计算机应用程序中,形成一个数字化、集成化的交互系统。一台配备了音响、光驱、声卡等硬件和相应的多媒体软件的计算机我们称之为多媒体计算机,我们可以利用多媒体计算机对多种形式的媒体信息进行加工和处理,广泛运用到教学、宣传、娱乐等各个方面。
投影广播任务:多媒体电脑图片。
(2)体验计算机的多媒体功能
浏览图片:师:有很多同学绘制了漂亮的图画作品,也保存了许多精美的图片,但图片的浏览和查找却不是一件容易的事,现在我们可以借助看图软件方便地欣赏存储在计算机中的图片,目前用得最多的看图软件是ACDSee。下面请同学们跟老师一起使用看图软件“ACDSee”浏览计算机中的图片。
教师演示操作过程:
①启动ACDSee5.0,②选择你需要查看的图片,③单击“上一张”或“下一张”工具按钮可以显示不同的图片;单击“缩小”或“放大”按钮,可以将图片放大或缩小;单击“浏览”按钮则可回到浏览窗口。
(3)提供机会,学生实践探究
学生重复老师的操作,教师随堂检查,并指导学生,了解学习情况。
学生完成,请学生上台操作,鼓励完成自己新发现的功能,演示给同学看,教师讲解,并评价。
②播放声音与视频。
师:刚才我们学习了如何浏览图片,接下来我们再来看看如何使用多媒体电脑播放音乐和视频文件。
教师演示操作过程:1:启动“MediaPlayerClassic”,2:单击“文件”菜单,选择“打开文件”来打开音乐文件。3:在“打开”对话框中选择需要播放的音乐文件,单击“确定”,开始播放音乐。4:调整音量到合适的大小。5:播放视频文件。常见的视频文件格式类型有:mpeg、avi、rm和dat等。
(4)提供机会,学生实践探究,教师发送文件。教师随堂检查,并指导学生。
3.授课完毕,课程总结
本节课主要讲了以下知识点:
(1)了解多媒体计算机及其应用;
(2)了解多媒体的基本概念——学会使用关键字搜索相关信息内容的网页及网站;
(3)认识ACDSee软件——学会使用ACDSee软件游览图片;
(4)认识MediaPlayerClassic软件——学会使用MediaPlayerClassic播放音频视频文件。
4.课堂作业
尝试刚才所学习到的知识,向老师提出新的问题。共同解决!
六年级数学教案案例篇3
教学目标:
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
教学重点:
负数的意义和负数的读法与写法。
教学难点:
理解0既不是正数,也不是负数。
教具准备:
多媒体课件
教学方法:
教师讲授、合作交流
教学过程:
一、复习导入
提出问题:举例说明我们学过了哪些数?
教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?
二、创设情境、学习新知
1.教学例1。
(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”
同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?
为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?
这里有零下6℃、零上6℃,都记作6℃行吗?
你有什么简洁的方法来表示他们的不同呢?
教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第87页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。(进一步认识正数和负数)
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看x疆的吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。
(2)巩固练习:教科书第88页试一试。
3.小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写。负号可以省略不写吗?为什么?
最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)
三、运用新知,课堂作业
1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。
2.课堂活动第2题。同桌先讨论,然后反馈。
四、小结
同学们,今天我们认识了负数。你有什么收获?
五、课堂作业
练习二十二第1、4题。
家庭作业:练习二十二第2、3题。
板书设计:
负数的初步认识
正数:20、22、14、 +8844.43…
0:既不是正数也不是负数
负数:-2、-30、-10、-15、-155…
六年级数学教案案例篇4
教学目标:
1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。
2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。
3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。
重点、难点:
1.教学重点:理解、掌握杠杆平衡的规律。
2.教学难点:让学生综合应用所学的知识和方法解决实际问题。
教学准备:
竹竿,棋子,塑料袋(多媒体课件)
教学过程
一、准备材料,导入活动:
1.检查课前布置的制作工具(简单杠杆)的作业。
学生对照制作要求,自查和同组互相检查。
小黑板或媒体出示制作要求:
(1)准备的竹竿长1m,尽量做到粗细均匀。
(2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。
(3)从中点处每隔8cm做一个刻度记号,尽量等距离。
拿出准备好的棋子和塑料袋。检查大小是否一样。
2.揭示课题:有趣的平衡(板书)
二、动手实践,探索规律
1.活动一:探索特殊条件下竹竿保持平衡的规律:
(1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?
①学生思考,回答问题。“两边所放的棋子要同样多。”
②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。
(2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?
①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”
②演示。如:
左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。
(3)小结:
你有什么体会?
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
2.活动二:探索在一般条件下竹竿保持平衡的规律(A)
(1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?
①也放4个棋子行不行?会产生什么结果?
②应该放几个?
“放3个。”
(2)如果左边的塑料袋在刻度6上放1个棋子。
①右边的塑料袋在刻度3上放几个呢?
学生交流,各自说出自己的见解。
②右边的塑料袋在刻度2上呢?
学生不难得出结果,放3个。
③右边的塑料袋在刻度1上呢?
学生不难得出结果,放6个。
(3)小结:
师:你有什么体会?
左右两边棋子个数与刻度数的积要相等。
3.活动三:探索在一般条件下竹竿保持平衡的规律(B):
(1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?
(2)实验活动:
①学生动手进行实验活动。
②将实验结果记录下来。
③教师提供表格,引导学生展开活动。
右刻度
所放棋子数
乘积
(3)汇报结果。
学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
(4)从表中你发现刻度数和所放棋子数成什么比例?
学生观察表中两个量的变化情况,不难发现这两种量成反比例
三、应用规律,体会揣摩
1.基本练习:
母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的平衡?
提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是_分米。可以得到方程
60_=12×15
解方程得_=3
答:她坐的地方距支点3分米才能保持平衡。
2.综合练习:
桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?
提示:(1)根据臂长和质量成反比例
(2)先确定每个托盘中所放砝码的总质量,在确定臂长。
四、回顾整理,反思提升
1.谈收获。
师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?
2.评价。
师:你对自己这节课的表现满意吗?
可采取学生自评,互评,老师评价的方式进行。
板书设计:
有趣的平衡
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
作业设计
基础:
1.用边长20厘米的方砖铺一块地,需要20__块,如果改用边长为40厘米的方砖铺地,需要多少块?
综合:
2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?
提示:
(1)可以像例题中一样,用列表的方法做。
(2)根据臂长与质量成反比,列方程求解。
六年级数学教案案例篇5
教学目标:
1、在实际情境中,体会化简比的必要性,进一步体会比的意义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
教学重难点:
1、运用商不变的性质或分数的基本性质化简比。
2、解决一些简单的实际问题。
学习目标:
1、理解比的意义,感受比与除法、分数之间的关系,体会化简比的必要性。
2、学会化简比的方法。
教学准备:
ppt课件
教学过程:
一、导入
(一)导情趣(抢答式复习)
1、60÷10=600÷()=()÷1=0.6÷()
说一说:解答这两道题你用的是什么知识?
(除法中商不变的性质和分数的基本性质)
除法中商不变的性质是什么?分数的基本性质又是什么?
2、比与除法、分数有什么关系?
(用字母表示:a:b=a÷b=a/b)
(二)导目标
除法中有商不变的性质,分数中有分数的基本性质,那么比有什么性质呢?今天我们就一起来研究——比的化简。(板书:比的化简)
下面请同学们一起来看一看本节课的学习目标。(课件出示目标)
学习目标:
1、理解比的意义,感受比与除法、分数之间的关系。
2、体会化简比的必要性,学会化简比的方法。
二、分组自学目标1
(出示情景图)
淘气调制了一杯蜂蜜水,用了40毫升蜂蜜、360毫升的水。笑笑也调制了一杯蜂蜜水,用了2小杯蜂蜜、18小杯水。同学们想一想哪杯水更甜?
1、导学法
估一估、想一想、算一算
2、小组互相讨论,发表看法。
40:3602:18
3、质疑问难
直接比较他们俩谁调制的蜂蜜水更甜还是有困难的,那么你能不能联系比与除法和分数的关系,来想办法解决呢?小组讨论一下,该如何来计算并比较呢?
4、各组自学,交流汇报。
你们运用了什么好方法?都学会了什么?
学生边汇报,老师边板书。
40:360=40/360=1/9=1:9
2:18=2/18=1/9=1:9
5、小结:比较的结果一样甜,由此可见,比的化简对我们解决生活中的实际问题是有很大帮助的,从中我们也体会到了化简比是有必要的。那么到底什么样的比才是最简单的整数比呢?我们来看大屏幕。
6、导入“最简单整数比”的概念。
比的前项与后项只有公因数1,这样的整数比就是最简整数比。也就是说,
最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。
你能列举出几个最简整数比吗?(指名回答)
7、同学们,你们想知道这些最简单的整数比是用什么方法化简得到的吗?下面我们就来学习第二个目标。(出示目标)
三、分组自学目标2
1、出示问题:化简比
24:420.7:0.82/5:1/4
2、导学法
学法指导:
每组任选一题、分析比的类型、个人独立解答、交流解题依据、组内总结方法
3、各小组自学,交流讨论。
4、汇报交流
你们组是用什么方法学习的?是怎样学的?都学会了什么?
(指名板书计算过程)
5、指导总结化简比的方法
(1)化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)
(2)怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)
(3)如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)
6、智力大比拼:总结比的基本性质
你能根据商不变的性质和分数的基本性质概括出比的基本性质吗?
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
利用比的基本性质也可以化简比:
14:21=(14÷7):(21÷7)=2:3
7、老师小结:看来,化简比的方法不,不过都有一个共同目标:化简成最简单的整数比;那么化简比与求比值有什么区别呢?(课件)
四、练习(课件)
1、化简比:
15:210.12:0.42/3:1/21:2/3
2、连一连
3、判断
4、写出各杯中糖与水的质量比。
5、解决问题
五、回顾学习目标,进行本课总结
回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?
小结:生活中有很多问题需要通过化简比来解决,因此我们必须学会根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简比。
板书:
比的化简
a:b=a÷b=a/b
40:36=40/360=1/9=1:9
2:18=2/18=1/9=1:9
六年级数学教案案例篇6
教学目标:
1.通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例
2.培养学生的逻辑思维能力
3.感知生活中的数学知识
重点难点1.通过具体问题认识反比例的量。
2.掌握成反比例的量的变化规律及其特征
教学难点:
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程:
一、课前预习
预习24---26页内容
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的两个表中量变化关系相同吗?
3、三个情境中的两个量哪些是成反比例的量?为什么?
二、展示与交流
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律
情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定
情境(三)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
5、以上两个情境中有什么共同点?
反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
活动四:想一想
二、反馈与检测
1、判断下面每题是否成反比例
(1)出油率一定,香油的质量与芝麻的质量。
(2)三角形的面积一定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积一定,底面积和高。
(6)小林做10道数学题,已做的题和没有做的题。
(7)长方形的长一定,面积和宽。
(8)平行四边形面积一定,底和高。
2、教材“练一练”P33第1题。
3、教材“练一练”P33第2题。
4、找一找生活中成反比例的例子,并与同伴交流。
六年级数学教案案例篇7
教学内容:
分数乘法(一)
教学目标:
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
学生能够熟练的计算整数乘以分数
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入
教师出示教学板书,请学生计算下列分数加减运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变)并注意更正学生的错误和表扬回答问题的同学。
二、讲授新课
同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?
学生同桌之间讨论,教师提问学生回答问题。
教师板书例题,让学生想一想如何计算?
学生列出算式3=,学生同桌之间相互讨论,如何计算整数乘以分数?
教师提问学生说一说自己是怎样计算的?
(学生1:3;学生2:3)
教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)
三、巩固练习
做课本2页涂一涂,算一算,2个的和是多少?
让学生熟练计算,教师及时纠正学生错误的计算方法。
做课本试一试1、2题。
四、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
分数乘法
分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。)
六年级数学教案案例篇8
教学目标:
1、理解按比列分配的意义,掌握按比列分配的应用题的数量关系和解答方法。
2、培育数学意识。
教学重难点:理解、分析按比列分配应用题的数量关系。
教学过程:
一、复习引入
1、学生说出本班上学期的人数(男生:15人、女生:10人)
男生与女生的比是:()女生占全班的人数的:()
2、口答应用题
六年级和二年级共同承担了面积为100平方米的卫生区清洁任务,平均每个班的清洁区是多少平方米?
(1)学生口答:100÷2
(2)教师提问:
这是一道分配应用题,分谁?怎么分?
六年级和二年级承担同样多的卫生任务,合理吗?能平均分吗?
(3)谈话引入
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。
二、讲授新课
1、把复习题2增加条件“如果按3﹕2分配”,两个班清洁区各是多少平方米?
(1)教师提问:分谁?怎么分?求的是什么?
(2)思考:由“如果按3﹕2分配”这句话你可以联想到什么?
(3)学生尝试列式计算:
(4)比较思路:A求出总份数。B各部分的量占总量的几分之几?C按照求一个数的`几分之几是多少的方法解答。
2、教学例3
(1)提问:
A、这道题与前面的题有什么区别?
B、分配的是什么?按什么来分?
C、怎样计算各班载的棵树占总棵树的几分之几?
(2)学生独立解题,并检验。
3、小结
(1)观察我们今天学习的两道例题有什么共同的特点?
(2)怎样解答?
4、补充课题:按比列分配
我们把具有这种特点,并用这种特定方法解答的分配应用题叫做“按比列分配”的应用题。
5、提问什么是按比列分配?
6、回到复习题
提问:平均分是按几比几分配?
指出平均分应用题是按比列分配应用题的一种特殊情况。
三、巩固练习
P62.做一做1、2、3.
四、全课小结
这节课我们学习了按比列分配的应用题,解答这类应用题一般用分数的方法,用分数方法的关键是把比转化为分数。
六年级数学教案案例篇9
教学目标:
1、知识与技能:结合具体事例,经历画线段图分析数量关系、找等量关系并用方程解答简单分数除法问题的过程。
2、过程与方法:能用方程解答"已知一个数的几分之几是多少,求这个数"的实际问题。
3、情感与态度:认识到许多分数除法问题可以借助方程来解决,能够表达解决问题的过程。
教学重点:
学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。
教学难点:
学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。
教学准备:
小黑板
教学过程:
一、复习
1、口算
15x=534x=63x=910
5x=101112x=8923x=67
2、口答下列各题的数量关系式。
⑴某数的.35是36。
⑵全厂人数的58是210人。
⑶完成了300个,刚好是计划的14。
⑷一个数的3倍是1225。
3、解答:小营村全村有耕地75公顷,其中棉田占35。小营村的棉田有多少公顷?
生练习,提问:这道题为什么用乘法计算?把谁看作单位"1"?
二、探究新知
师:请看黑板,同学们开联欢会布置会场,用的红气球占总数的49,一共用了多少个气球?
师:指名读题,谁能找出这道题的已知条件和所求问题。
师:题中"总数的49"这个条件你是怎样理解的?
师:边画图边理解
师:请同学们看图说说题里的已知条件和问题。
师:观察图示,你发现数量间有怎样的相等关系。
师:你是根据什么列出等量关系的?(同桌讨论)
师:在这个等量关系中,哪个量是已知的?哪个量是未知的?
师:未知的可以设为X,根据等量关系我们可以用列方程的方法来解答,同学们自己能解答吗?(指名板演,其他自练,并提醒学生做完要检验。)
师:做完的同学把书打开72页,对照例题检查自己做对了吗?谁愿意说说你是怎样检验的?
师:同学们是用把原方程的解代入原方程看方程左右两边是否相等的方法检验的,其实还可以根据题意进行检验,我们可以计算28是不是占X的49,如果是就说明你的方程不但列对了,而且解对了。如果不是就说明有错误出现,好及时改正。
师:回顾例题的学习过程,你认为解题关键是什么?
师:同学们真聪明!自己不但能学懂知识,还能学以致用,解决实际问题。
师:其实我们今天所学的知识不光能解决有关联欢会的问题,还能解决生活中的许多实际问题,比如说"十、一假期,老师上街买了一套衣服,裤子75元,是上衣价钱的23,"应用今天所学的知识,你能求出一件上衣多少钱吗?(能)
指名板演,其他自练。
三、巩固练习
试一试
四、全课
师:求单位"1"的几分之几用乘法,已知一个数的几分之几是多少,求这个数用除法。
五、作业
六年级数学教案案例篇10
教学目标:
1、理解正比例的意义,能够根据正比例的意义判断两个量是否成正比例。
2、了解表示成正比例的量的图像特征,能根据图像解决有关正比例的简单问题。
3、通过观察、实验、计算等方法,逐步理解正比例的意义。
4、在小组合作学习中,发展学生的观察分析、判断推理和抽象概括的能力,初步渗透函数思想。
5、培养学生动手操作、实验、观察等良好的学习态度和习惯。
6、感受数学的魅力,体会数学知识间的联系,感受数学知识在生活中的广泛应用。
教学重点:理解正比例的意义。
教学难点:掌握正比例的量的变化规律及其特征。
教学过程:
一、复习导入
商店里有两种包装的手套,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元,哪种手套更便宜?
学生独立完成后,老师提问:你们是怎么比较的?(求出手套的单价再进行比较)根据哪个数量关系式进行计算的?(单价=总价÷数量)如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。老师板书课题。
二、新授
1、教学例1,学习正比例的意义。
⑴出示例1表格,让学生观察表中的数据,思考表中有哪两种量?总价是怎样随着数量的变化而变化的?(表中有数量和总价两种量,数量增加,总价增加;数量减少,总价减少。数量扩大到原来的几倍,总价也扩大到原来的几倍;数量缩小到原来的几分之几,总价也随着缩小到原来的几分之几。)
⑵认识相关联的量。
像这样,一种量变化,另一种量也随着变化,这两种量叫做“相关联的量”。
2、计算表中的数据,理解正比例的意义。
⑴计算相应的总价与数量的比值,看看有什么规律。
0.5/1=1.0/2=1.5/3=2.0/4=2.5/5=3.0/6=3.5/7=4.0/8,比值相等。
⑵说一说,每一组数据的比值表示什么?(圆珠笔的单价)
⑶让学生用公式把圆珠笔的总价、数量、单价之间的关系表示出来。
总价/数量=单价(一定)
⑷明确成正比例的量及正比例关系的意义。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的.两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系。
如果用字母y和x表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:y/x=k(一定)(老师板书)
3、列举并讨论成正比例的量。
⑴生活中还有哪些成正比例的量?让学生说一说。(速度一定,路程和时间成正比例;长方形的宽一定,面积和长成正比例)
⑵小结:成正比例的量必须具备哪些条件?哪个条件是关键?(两种量是相关联的量;一种量变化,另一种量也随着变化;它们的比值不变,这是关键。)
4、认识正比例图像。
⑴课件出示例1表格及正比例图像,让学生观察统计表和图像,你发现了什么?(每一个数量和相对应的总价组成的一组数在图像上都体现为一个点,这些点连起来是一条直线;正比例图像是一条直线。)
⑵把数对(10,5.0)和(12,6.0)所在的点描出来,再和上面的图像连起来并延长,你还能发现什么?让学生操作后发表自己的见解。(这两个点与上面的图像仍能连成一条直线。无论怎样延长,得到的都是直线。)
⑶从正比例图像中,你知道了什么?(可以由一个量直接找到对应的另一个量;可以直观地看到成正比例的量的变化情况)
⑷利用正比例图像解决问题。
买7只圆珠笔总价是多少元?20元能买多少只圆珠笔?(3.5元;40只)
小明买的圆珠笔的数量是小丽的2倍,他花的钱是小丽的几倍?(在单价一定的情况下,数量和总价成正比例关系,小明买的圆珠笔的数量是小丽的2倍,他花的钱也应是小丽的2倍。)
三、巩固应用
1、P46做一做,引导学生独立完成并汇报交流。
2、P492、师生共同完成。
3、P494、学生独立完成后,汇报并集体订正。
四、小结:通过本节课的学习,你有什么收获?
六年级数学教案案例篇11
教学内容:
教科书P23-26的内容,P24做一做,完成练习四的第1、2题。
教学目标:
1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3、养学生的自主探索意识,激发学生强烈的求知欲望。
教学重点:
掌握圆锥的特征。
教学难点:
正确理解圆锥的组成。
教具准备:
每人一个圆锥,师准备一个大的圆锥模型。
教学过程:
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、新课
1、圆锥的认识(直观感受观察讨论汇报)
(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。
(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)
(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)
2、小结
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.
3、测量圆锥的高(组织学生分组进行测量)
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
三、课堂练习
1、做第24页做一做的题目。
让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。
2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。
(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。
3.完成练习四的第2题。
补充习题
1出示一组图形,辨认指出哪些是圆锥。
2出示一组图形,指出哪个是圆锥的高。
3出示一组组合图形,指出是由哪些图形组成的。
四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?
教学反思:
观察、感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。
六年级数学教案案例篇12
教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积
教学目标:
1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积计算公式的推导过程
教学过程
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)
二、自主探究、
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积.
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)
4、确定方法,探究实验,推导公式。
(1)、思考你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)
(7)、小结:要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第17页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh (设计意图这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)
三、巩固发展
1、课件出示例5,学生独立完成。
指名说说这样列式的依据是什么。
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
2、巩固反馈
填表(单位:厘米)
底面积 高体积
6 3
0.5 8
8 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知识)
3、完成第9页的“试一试”和练一练”中的两道题。
(“练一练”只列式,不计算)
集体订正,说一说圆柱体的体积还可以怎样算?
(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的2/3,计算水杯中水的体积?
(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决问题,切实体验到数学就存在于自己的身边。)
5、拓展练习
(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)
(2)、一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?
(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)
四、全课小结:谈谈这节课你有哪些收获。
板书设计:
圆柱的体积
长方体的体积=底面积高
圆柱的体积 =底面积高
v = s h
或v=πr²h
设计理念:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到最大化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:
1、合作探究学习为主要的学习方式。
2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。
3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。
教具准备:圆柱的体积公式演示课件 体积不同的圆柱体 直尺 细绳 计算器。
六年级数学教案案例篇13
教学目标:
知识与技能:
1、通过解决实际问题,了解确定位置的方法,能根据方向和距离确定物体的位置。
2、会看简单的路线图,能根据路线图说出行走的方向和路线。
过程与方法:
1、通过解决实际问题,体会确定位置在生活中的应用。
2、探索和发现确定位置的有效方法。
情感态度、价值观:
1、体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
2、培养学生合作交流的能力以及学习数学的兴趣和自信心。
教学重点:
通过学习了解确定位置的方法,能根据方向和距离确定物体的位置。会看简单的路线图,能根据路线图说出行走的方向和路线。
教学难点:
在学习过程中,发展学生的合情推理能力,使学生能进行有条理的思考,能比较清楚地表达自己的思考过程和结果。
一、情景导入
1、交流例题1中有关台风的消息。
⑴同学们听说过台风吗?你对台风有什么印象?
⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。
师:听到这侧消息,你有什么感想?
启发学生交流,引导学生关注台风的位置和动态。
2、导入新课
现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。
[板书课题:位置与方向(一)]
【设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。
二、探究新知
㈠教学题例1
1、投影出示例题1。
学生观察情境图,交流从图中信息?
(启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)
2、交流确定台风中心具体位置的方法。
⑴让学生尝试说说台风中心的具体位置。
⑵教师结合学生的汇报情况进行引导。
提问:东偏南30°是什么意思?
(东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)
⑶小结确定位置的方法。
提问:如果只有一个条件,能够确定台风中心的具体位置吗?
引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。
3、组织计算。
师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市呢?
学生独立计算,组织交流。
600÷20=30(小时)
(二)教学例题2
1、投影出示例题2。
提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。
2、尝试画图。
⑴学生独立思考怎样标出B市、C市的具体位置。
⑵小组交流作图的方法。
⑶尝试画图。
教师巡视交流,参与部分小组讨论,辅导有困难的学生。
3、组织全班交流。
投影展示学生完成的作品。
组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。
B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。
C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。
4、算一算。
台风到达A市后,移动速度变为40千米/时,几小时后到达B市?
200÷40=5(小时)
5、总结画图的基本步骤。
交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?
总结:
(1)确定平面图中东、西、南、北的方向。
(2)确定观测点。
(3)根据所给的度数定出所画物体所在的方向。
(4)根据比例尺,定出所画物体与观测点之间的图上距离。
【设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。
三、巩固练习
1、教材第20页“做一做”。
这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。⑴让学生独立进行测量、计算、填空。
⑵组织交流。
让学生说说是怎样测量方向的,怎样计算距离的。
2、教材第21页“做一做”。
⑴学生独立进行画图。
⑵投影展示,组织评议。
⑶交流画图的方法。
四、课堂小结
今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。
六年级数学教案案例篇14
教学过程
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(学生互相讨论后汇报,教师设疑)
二、自主探究、
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱c放入水中,验证圆柱c的体积。
方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh
三、巩固发展
1、课件出示例4,学生独立完成。
指名说说这样列式的依据是什么。
2、巩固反馈
3、完成第9页的“试一试”和练一练”中的两道题。
(“练一练”只列式,不计算)
集体订正,说一说圆柱体的体积还可以怎样算?
4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的2/3,计算水杯中水的体积?
5、拓展练习
(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)
(2)、一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?
四、全课小结:
谈谈这节课你有哪些收获。
教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积
教学目标:
1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积计算公式的推导过程
六年级数学教案案例篇15
教学内容:
第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。
教学目标:
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
教学重点:
负数的意义和负数的读法与写法。
教学难点:
理解0既不是正数,也不是负数。
教具准备:
多媒体课件
教学方法:
教师讲授、合作交流
教学过程:
一、复习导入
提出问题:举例说明我们学过了哪些数?
教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?
二、创设情境、学习新知
1.教学例1。
(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”
同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?
为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?
这里有零下6℃、零上6℃,都记作6℃行吗?
你有什么简洁的方法来表示他们的不同呢?
教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第87页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。(进一步认识正数和负数)
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看x疆的吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。
(2)巩固练习:教科书第88页试一试。
3.小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写。负号可以省略不写吗?为什么?
最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)
三、运用新知,课堂作业
1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。
2.课堂活动第2题。同桌先讨论,然后反馈。
四、小结
同学们,今天我们认识了负数。你有什么收获?
五、课堂作业
练习二十二第1、4题。
家庭作业:练习二十二第2、3题。
板书设计:
负数的初步认识
正数:20、22、14、 +8844.43…
0:既不是正数也不是负数
负数:-2、-30、-10、-15、-155…