六年级教案电子版数学
教案的编写有助于增强学生的专注度,激发他们的学习热情,从而提升教学效果。如何写出优秀的六年级教案电子版数学?下面给大家分享一些六年级教案电子版数学,希望对大家有所帮助。
六年级教案电子版数学篇1
教学目标:
1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。
2、通过练习,巩固对正比例意义的认识。
3、情感、态度与价值观:初步渗透函数思想。
重点难点:
能根据数量关系式或图象判断两种量是否成正比例。
教学准备:
投影仪。
教学过程:
一、新课讲授
教学第46页内容。
教师出示表格(见书),依据表中的数据描点。(见书)
师:从图中你发现了什么?
生:这些点都在同一条直线上。
看图回答问题
①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?
你还能提出什么问题?有什么体会?
组织学生分小组汇报,学生汇报时可能会说出
①正比例关系的图象是一条经过原点的直线。
②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。
二、练习讲授
1、基本练习。
(1)投影出示教材第49页第1题。
教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。
教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。
师生共同订正。
(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……
①出示下表,填表。
一列火车行驶的时间和路程
②填表并思考发现了什么?
③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)
④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。
⑤用式子表示它们的关系:路程÷时间=速度(一定)。
教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。
2、指导练习。
(1)完成教材第49页第2题。
(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。
(3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。
②组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。
提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。
三、课堂作业
1、根据x和y成正比例关系,填写表中的空格。
2、看图回答问题。
(1)在这一过程中,哪个量没变?
(2)路程和时间有什么关系?
(3)不计算,从图中看出4小时行驶多少千米?
(4)7小时行驶多少千米?
课堂小结:
教师:判断两个相关联的量成正比例的三个要素是什么?
通过这节课的学习,你有什么收获?
课后作业:
完成练习册中本课时的练习。
板书设计:
正比例图像
图像:一条过原点的直线。
六年级教案电子版数学篇2
教学内容:
教材第36页例7、“练一练”,第39页练习六第16~21题,思考题。
教学目标:
1.使学生经历“找乘积是1的两个数”和“找一个数的倒数”的过程,认识和理解倒数的意义,掌握求一个数的倒数的方法。
2.使学生在认识互为倒数的两个数的特点的过程中,发展观察,比较和抽象、概括等思维能力。
教学重点、难点:
理解倒数的意义,学会求一个数的倒数。
教学过程:
一、导入新课
谈话:同学们,“朋友”这个词对我们来说已经非常熟悉了,能说说教室里哪些同学是你的朋友吗?
指名回答。
谈话:在将近六年级学习生活中,很多同学生建立了深厚的友谊,“朋友”是两个人之间的一种关系,在数学中,数与数之间也存在一些关系,比如两个数的乘积是1,就可以说是这两个数之间的一种关系。哪些数之间有这种关系呢?怎样找这样的两个数呢?这是我们今天要研究的问题。
二、学习新知。
1、理解倒数的意义。
(1)出示例7,学生独立完成。
(2)引出概念。
乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。
引导:请大家仔细观察,刚才我们找出的这些算式有什么共同特点?
学生交流后明确:这些算式里两个数的乘积都是1.
指出:像这样乘积是1的两个数互为倒数。
(3)学生举例来说。进行及时的评议。
(4)追问:怎样的两个数互为倒数?为什么要说“互为倒数?”
小结:倒数不是指一个具体的数,而是表示两个数之间的一种关系,当两个数乘积是1时,这两个数互为倒数。
2、归纳方法
(1)提问:我们已经知道了乘积是1的两个数互为倒数,你能分别找出和的倒数吗?
提问:观察上面互为倒数的各组数,它们的分子和分母位置发生了什么变化,把你的发现与同桌交流。
小组讨论:引导观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?
指名回答:找一个分数的倒数只要交换分子、分母的位置。
追问:0有倒数吗?为什么?1呢?
指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。1的倒数是1。
除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
三、巩固练习。
1、做练习六第17题。
学生分别说出每个数的倒数,并选择几个数说说是怎样想的。
2、做练习六第18题
学生独立宛成,再集体交流,选择两题让学生说说思考的过程。
3、做练习六第19题
练习之前明确要求:观察每组的3个数有什么共同点,写出的倒数又有什么共同点,带着问题边写边观察。
全班交流结果,板书每组里各数的倒数。
提问:你发现每组数和它们倒数的特点了吗?把你的发现和大家交流。
提出:从这四组数可以看出:真分数的倒数是假分数,大于1的假分数的倒数是真分数;几分之一的倒数是几,几的倒数是几分之一。
4、做思考题。
启发:联系倒数的意义想一想,要使三个分数乘积是1,[板书:()×()×()=1]必段符合什么条件?
引导:通过交汉我们知道,三个分数乘积是1,其中两个分数的乘积和第三个分数互为倒数,你能在这七个分数里分别找出这样的3个分数吗?试着找找看。
学生先尝试练习,再集体交流。
四、全课总结
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
五、作业
补充习题。
板书计划:
倒数的认识
乘积是1的两个数互为倒数。
求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
六年级教案电子版数学篇3
教学内容
利率
教材第11页。
教学目标
1.经历小组合作调查,交流储蓄知识,解决和利率有关的实际问题的过程。
2.知道本金、利率、利息的含义,能正确解答有关利息的实际问题。
3.体会储蓄对国家和个人的重要意义,积累关于储蓄的常识和经验。
重点难点
重点:理解利率与分数、百分数的含义。
难点:解决有关“利率”的实际问题。
教具学具
课件。
教学过程
一、创设情境,激趣引导
师:同学们,快要到年底了,许多同学的爸爸妈妈的单位里会在年底的时候给员工发放奖金,你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?爸爸妈妈会不会把一大笔现金放在家里?为什么?
生1:一般情况下,爸爸妈妈应该把钱存入银行。
生2:爸爸妈妈不会把一大笔现金放在家里,这样太不安全了,他们会存入银行。
生3:把钱存入银行不仅安全,还可以获得利息呢。
……
师:人们常常把暂时不用的钱存入银行或信用社储蓄起来。这样不仅可以支援国家建设,也使个人用钱更加安全和有计划,还可以增加一些收入。钱存入银行后增加的部分就是利息,今天我们就重点研究与“利息”相关的问题。
【设计意图:借助主题图吸引学生注意力,引导学生仔细观察获取有价值的数学信息,为下面提出问题,解决问题做好准备】
二、探究体验,经理过程
师:先来大胆地猜一猜,你觉得利息的多少与什么因素有关呢?
生1:不可能说钱存入银行的时间长短不同,而所得的利息一样,所以利息的多少应该与钱存入银行的时间有关。
师:对,利息的多少与存入的时间长短有关,存入的这段时间也就是我们平时所说的存期。
生2:不可能说存入银行的钱不管多少所得的利息都一样,所以利息的多少应该与存入银行的钱的多少有关,存入的钱越多,相同时间内的利息应该越多。
师:说的很有道理,我们把存入银行的钱叫做本金。存期相同的情况下,本金越多,利息就越多。
生3:在学习计算应纳税额时,我们知道应纳税额的&39;多少与税率的高低有关,我想是不是利息的多少也应该与利率有关呢?
生4:我们小组的同学进行过调查,在银行内很显眼的位置公布着不同存期的利率,利息的多少一定与利率有关。
师:说得很好。我们把单位时间(如1年、1月、1日等)内的利息与本金的比率叫做利率。存期不同,利率一般也是不同的。那么,谁愿意把课前调查知道的有关储蓄的其他知识与大家做一下交流呢?
学生可能会说:
o我知道了储蓄的种类有整存整取、零存整取和活期。
o我知道了整存整取的利率又分为三个月的、半年的、一年的、二年的、三年的、五年的,存期不同利率也不一样。
o我知道了活期的利率最低,但是随时用钱随时取,比较方便。
……
师:你们知道利息究竟怎么计算吗?
生:利息的计算公式是利息=本金×利率×时间。
师:根据国家经济的发展变化,银行存款的利率有时会有所调整。下面是20__年7月中国人民银行公布的存款利率。(课件出示:教材第11页利率表)
学生观察利率表。
师:能运用你所掌握的利率的相关知识帮王奶奶解决问题吗?试一试。(课件出示:教材第11页例4)
学生尝试独立解答问题;教师巡视了解情况,指导个别有困难的学生。
师:谁愿意说说你的想法和算法?
生1:首先我们要明确的是,到期后王奶奶可以取回的钱除了本金还有利息,本金我们已经知道是5000元,所以最关键的就是算出利息。根据利息的计算公式“利息=本金×利率×时间”,我们从上面的利率表中对应找到存期两年的利率是3.75%,这样就可以算出利息5000×3.75%×2=375(元);再加本金,到期后可以取回的钱就是5000+375=5375(元)。
生2:我们也可以把本金5000元看作单位“1”,这样每年的利息就是5000元的3.75%,存入2年,所得利息就是5000元的(3.75%×2);这样到期时可以取回的钱就可以列成算式5000×(1+3.75%×2)=5375(元)。
只要学生解答正确,讲解合理就要及时给予肯定和鼓励。
【设计意图:在学生课前调查的基础上,引导学生进行交流汇报,在学生的交流讨论中完成新知识的探究学习,激发学生的学习兴趣】
三、课末总结,梳理提升
师:同学们谈谈学习本课有什么新的收获。请同学们回家与父母商量,把自己过年的压岁钱存入银行,按活期储蓄存到学期末,看看你从银行取款时,本金和利息共多少元?
【设计意图:实践延伸,给学生提出具有挑战性的要求,让学生获得实践体验,感受到所学知识能运用于生活的乐趣】
利率
教学反思
1.本节课我始终“以学生为本”,强调让学生通过自己的活动归纳出利息的计算方法,增加了学生对知识的理解和深化。以往计算利息时,学生经常把时间漏乘,这是学生容易忽视的地方。通过简短的争论,练习时学生很少把时间漏乘,从简短的争论中,引导学生发现方法,要比教师反复强调效果好得多。
2.储蓄与人们的生活联系密切,本节课是在百分数的知识和学生已有生活经验的基础上进行教学的。注重数学知识与生活实践的联系。我们知道学习数学的目的是为了应用,教师在设计练习时,要有意识地引导学生把所学知识运用到生活实践中去,体现数学服务于生活的教育理念。
课堂作业新设计
A类
郑老师买了3000元的国债,定期五年,年利率是3.81%。到期他一共可以取出多少元钱?
(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的具体问题)
B类
为了给亮亮准备2年后上大学的学费,他的父母计划把10000元钱存入银行,你认为哪种储蓄方式更好呢?为什么?
存期年利率
一年4.14%
二年4.77%
(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的实际问题)
参考答案
课堂作业新设计
A类:
3000×3.81%×5+3000=3571.5(元)
B类:
存一年再存一年:10000×4.14%×1=414(元)
(10000+414)×4.14%×1+414≈845.14(元)
直接存入两年:10000×4.77%×2=954(元)
954>845.14直接存入两年比较合适。
教材习题
第11页“做一做”
8000×4.75%×5=1900(元)8000+1900=9900(元)
六年级教案电子版数学篇4
教学目标:
1、知识与技能:结合具体事例,经历画线段图分析数量关系、找等量关系并用方程解答简单分数除法问题的过程。
2、过程与方法:能用方程解答"已知一个数的几分之几是多少,求这个数"的实际问题。
3、情感与态度:认识到许多分数除法问题可以借助方程来解决,能够表达解决问题的过程。
教学重点:
学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。
教学难点:
学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。
教学准备:
小黑板
教学过程:
一、复习
1、口算
15x=534x=63x=910
5x=101112x=8923x=67
2、口答下列各题的数量关系式。
⑴某数的.35是36。
⑵全厂人数的58是210人。
⑶完成了300个,刚好是计划的14。
⑷一个数的3倍是1225。
3、解答:小营村全村有耕地75公顷,其中棉田占35。小营村的棉田有多少公顷?
生练习,提问:这道题为什么用乘法计算?把谁看作单位"1"?
二、探究新知
师:请看黑板,同学们开联欢会布置会场,用的红气球占总数的49,一共用了多少个气球?
师:指名读题,谁能找出这道题的已知条件和所求问题。
师:题中"总数的49"这个条件你是怎样理解的?
师:边画图边理解
师:请同学们看图说说题里的已知条件和问题。
师:观察图示,你发现数量间有怎样的相等关系。
师:你是根据什么列出等量关系的?(同桌讨论)
师:在这个等量关系中,哪个量是已知的?哪个量是未知的?
师:未知的可以设为X,根据等量关系我们可以用列方程的方法来解答,同学们自己能解答吗?(指名板演,其他自练,并提醒学生做完要检验。)
师:做完的同学把书打开72页,对照例题检查自己做对了吗?谁愿意说说你是怎样检验的?
师:同学们是用把原方程的解代入原方程看方程左右两边是否相等的方法检验的,其实还可以根据题意进行检验,我们可以计算28是不是占X的49,如果是就说明你的方程不但列对了,而且解对了。如果不是就说明有错误出现,好及时改正。
师:回顾例题的学习过程,你认为解题关键是什么?
师:同学们真聪明!自己不但能学懂知识,还能学以致用,解决实际问题。
师:其实我们今天所学的知识不光能解决有关联欢会的问题,还能解决生活中的许多实际问题,比如说"十、一假期,老师上街买了一套衣服,裤子75元,是上衣价钱的23,"应用今天所学的知识,你能求出一件上衣多少钱吗?(能)
指名板演,其他自练。
三、巩固练习
试一试
四、全课
师:求单位"1"的几分之几用乘法,已知一个数的几分之几是多少,求这个数用除法。
五、作业
六年级教案电子版数学篇5
一、指导思想与理论依据:
《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。
二、教材及学情分析:
教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。
三、教学目标、重点及难点:
1、知识和技能:
使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。
2、过程与方法:
(1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。
(2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。
3、情感与态度:
(1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;
(2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。
(3)在解决问题过程中,增强应用意识。
教学重点:
让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。
教学难点:
对圆周率的认识。
教学准备:
⒈圆形物体实物,。
⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。
四、教法:
1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。
2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。
五、主要教学环节与设计:
通过以下环节教学本课:
一、创设情境,初步感知二、合作交流,探究新知三、实践应用,解决问题四、畅谈收获,课外延伸
六、教学过程:
第一个环节:创设情境,初步感知师:
哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)
生:求行驶多长的路程就是求圆形的周长。
师:今天就来学习怎样计算圆的周长。
此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。
第二个环节:合作交流、探究新知
(一)直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。
1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。
2、分析比较长方形、正方形和圆的周长各有什么不同?
3、指一指、描一描自己手中圆片的周长。
设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。
(二)探究圆周长的计算方法
圆周长计算公式的推导这一内容,我安排了三个环节:
1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
预设的几种情况:
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绳子缠绕实物圆一周并拉直;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
小结:以上的几种方法都是要“化曲为直”。
出示地球图片。
如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。
设计意图:这个过程中让学生明白“缠绕”、“滚动”的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。
(1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。
师:圆的周长与它的什么有关呢?
生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。
(2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。
师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?
请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程
小组汇报:
生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。
师:通过计算你们发现了什么?
生:每个圆的周长,都是它的直径长度的3倍多一些。
追问:那么是不是所有的圆周长与它直径都有这种关系呢?
最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。
师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?
生:圆周率。
师:你对圆周率还有哪些了解?
这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)
设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。
(3)得出结论师:你知道圆周长的计算方法了吗?
生:知道。
板书公式:C=πd,C=2πr
设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。
第三个环节:实践应用,解决问题
这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。
1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。
2、设计了三道有梯度的练习:①d=5米,C=?②r=5厘米C=?③C=6.28米d=?3、明辨是非,下面的说法对吗?
①π=3.14()
②大圆的圆周率小于小圆的圆周率。()
③圆的周长是它的半径的2π倍。()
意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。
第四个环节:畅谈收获,课外延伸作业:
赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?
设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。
你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)
七、板书设计:
圆的周长
化曲为直圆的周长÷直径=圆周率
C÷d=π3.14×20=62.8(英寸)
C=πd答:车轮向前滚动一周,行驶了62.8英寸。
C=2πr
六年级教案电子版数学篇6
教学目标:
1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。
2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。
3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。
课前准备:
教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物、剪刀、线绳等。
教学设计:
一、创设情境导入
1、谜语导入引出圆柱。上下一样粗,放倒一推骨碌碌。(板书:圆柱)
2、(课件出示书中的情境图)师:上面哪些物体的形状是圆柱?(指名说)
3、拿出你准备的圆柱形物品,举起来,大家互相检查,看看你们准备的都是圆柱吗?(教师也要认真观察及时发现不符的,如果有让学生说说为什么?)生活中,还有哪些物体的形状是圆柱?(指名说)预设:铁皮水桶、烟囱……
二、体验探究
1、认识圆柱
拿起你的圆柱,仔细观察,你发现了:圆柱有多少个面?再用手摸一摸,这些面有什么特点?也可以在桌上轻轻地滚一滚。
(1) 学生观察,并用手摸表面、滚一滚。
(2) 集体交流。好了,放好你的圆柱。你观察到圆柱有哪些特征?(指名说)
预设;
2、我发现了圆柱有三个面。(师:用手指一指都有哪三个面)
3、我发现了圆柱的的上下两个面是完全相同的两个圆。(师:同意吗?那你们怎么知道这两个圆完全相同呢?有没有办法验证一下?(指名说)教师总结:圆柱的上下两个面叫做圆柱的底面,它们是完全相同的两个圆。(并板书:2个底面 相等)
4、我发现了圆柱还有一个面,(师:这个面有什么特点?和上下两个底面有什么不一样?)教师在学生发言的基础上总结:圆柱的这个曲面,叫做侧面。(并板书:曲面)
5、刚才大家观察的非常认真,那我们回忆一下长方体和正方体都有(高),那圆柱有高吗?(有)谁来用手指一指或者用语言描述一下什么是圆柱的高?(指名说)
那你们认为一个圆柱有多少条高?(无数条)而且它们的长度怎么能样?(相等)
(3) 刚才通过大家认真的观察,我们发现了圆柱的特征,下面我们一起来回顾一下: 圆柱有两个(底面),它们是完全相同的(两个圆);圆柱还有一个(曲面) ,叫做它的(侧面)。圆柱有无数条高。
6、圆柱的侧面积。
(1)(出示)师:老师这里也有一个(圆柱)形状的茶叶桶,教师指圆柱的各部分学生说名称?
(2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)
预设:长方形、正方形
(3)那么大家猜想的对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)
师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,就得到了一个(长方形),也就是说这个圆柱的侧面展开后是一个(长方形)
(4)下面请同学们认真观察,仔细的想一想
我们得到的这张长方形纸与茶叶桶的侧面有什么关系?
①同桌互相讨论一下。
②集体交流。(指名说,教师随即板书)
长方形的面积 长 宽
圆柱的侧面积 底面周长 高
(5)因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高
这就是我们一起推导出来的圆柱的侧面积公式,来,一起读两遍,记住它。
如果说我要求圆柱的侧面积需要知道什么条件?(圆柱的底面周长和高)
三、实践应用
1、这个茶叶桶,如果让你求它的侧面积,我们需要哪些数据?指名测量,并计算。
2、29页1、2题
四、课堂小结。
通过这节课的学习,你对圆柱有一些认识了吗?你都有什么收获?(指名说)
五、拓展延伸
在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。
六年级教案电子版数学篇7
教学目标:
1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
2.使学生能在方格纸上用数对确定位置。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
一、导入
1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新授
1、教学例1
(1)如果老师用第二列第三行来表示__同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:__同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的&39;方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。
3、练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
4、教学例2
(1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
(2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(3)同桌讨论说出其他场馆所在的位置,并指名回答。
(4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)
三、练习
1、练习一第4题
(1)学生独立找出图中的字母所在的位置,指名回答。
(2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。
2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置
3、练习一第6题
(1)独立写出图上各顶点的位置。
(2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?
(3)照点A的方法平移点B和点C,得出平移后完整的三角形。
(4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)
四、总结我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、作业
练习一第1、2、5、7、8题。
六年级教案电子版数学篇8
教学内容:
人教版54页例2
教学目标:
1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;
2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;
3、通过实例使学生感受到数学于生活,生活离不开数学。
教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。
教学难点:
能正确、熟练地解答按比例分配的实际问题。
教学过程:
一、课前组织复习旧知
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(出示题目)
学生自由发言,预设推断如下:
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的,女生是全班的。
3、以男生为单位“1”,女生是男生的,全班是男生的。
4、以女生为单位“1”,男生是女生的,全班是女生的。
5、女生比男生少(或20%)。
6、男生比女生多(或25%)。
追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)
二、探索方法,建立模型
1.理解题意
(1)什么是稀释液?怎样配置的?
(2)什么是按比例分配?
2.自主探究,合作学习
自学数学书P49例题2,思考:
(1)你从例题2中得哪些信息?
(2)1:4表示什么?你从中得到哪些信息?
(3)你能用画图的方法给同位讲解吗?
(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?
3.小组展讲
小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。
三、巩固练习
1.一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?
2.填空
3.一个长方形的周长是28c,长与宽的比是5:2,长与宽各是多少c?
4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?
六年级教案电子版数学篇9
教学内容:教材第101页面积计算和练一练,练习十九第6~15题,练习十九后的思考题。
教学要求:使学生加深理解和掌握已经学过的面积计算公式,进一步了解这些计算公式的推导过程及相互之间的联系,能正确地进行面积的汁算。
教学过程:
一、揭示课题
1.口算。
出示练习十九第6题,让学生口算。
2.引入课题。
这节课,我们复习学习过的面积计算。(板书课题)通过复习,要弄清面积计算公式的推导过程和相互之间的联系,能应用公式进行面积计算。
二、整理公式
1.提问:什么叫面积?我们学过哪些图形的面积计算?
面积的计量单位有哪些,你能说一说平方厘米、平方分米和平方米的大小吗?
2.整理公式。
出示第101页的图形。说明:这里的一组图形,表示了相应的面积计算公式的推导过程。请同学们看着第101页上这样的图想一想
每种图形面积计算公式怎样得到的,再把面积公式填在课本上,然后告诉大家这些公式和它们的来源。如果有不熟悉的,可以相互讨论。让学生填写公式并思考推导过程。
3.归纳公式。
指名学生说明相应的计算公式和推导过程,老师板书公式。追问:三角形、梯形面积计算时都要注意什么?(除以2)提问
从图上看,由长方形的面积计算推出了哪些图形的面积计算公式?由其中的平行四边形面积计算又推出哪些图形的面积计算公式?
想一想,这些图形的面积计算公式都以哪个图形的面积计算为基础来推导的?指出,我们在推导面积计算公式时,都是以长方形的面积计算为基础。
后面学习的一些新的图形的面积计算公式都是通过割、补,拼的方法,把它转化为已经能计算面积的图形来推导出来的。
三、组织练习
1.做练习十九第7题。
让学生做在练习本上。
指名口答算式与结果,老师板书,并让学生说一说是怎样想的。指出:根据三角形面积的推导过程,三角形的面积是等底等高的平行四边形面积的一半。
2.做练一练第1题。
小黑板出示,让学生做在课本上。指名口答结果,老师板书在小黑板上,结合让学生说说三角形、梯形和圆的面积是怎样算的。
3.做练一练第2题。
指名一人板演,其余学生做在练习本上。集体订正,结合提问学生要怎样换算成公顷。
4.做练习十九第9题。
指名一人板演,其余学生做在练习本上。集体订正,让学生说说是怎样想的。追问:这两个图形的周长相等吗?面积呢?你发现哪个面积大一些?有什么想法?(长方形和圆如果周长相等,那么圆的面积大)
5.做练习十九第13题。
让学生测量、计算。指名说一说每个图形是怎样想的,怎样做的.
6.让学生口答第14题,说说用什么方法可以求面积。
7.做练习十九第15题。
让学生操作、计算,然后口答长、宽和面积,老师依次板书。
四、讲解思考题
请同学们观察刚才不同长方形的长、宽和面积,讨论一下:当长方形周长一定时,长和宽的差的变化与面积的大小有什么关系?讨论后指名学生交流每组的讨论结果。追问:这些不同的长方形里,哪一个图形面积最大?指出:长方形周长一定,长和宽的差越小,面积越大;当它成为正方形时,面积最大。
五、布置作业
课堂作业,练习十九第8、11、12题。
家庭作业:练习十九第lO题。
六年级教案电子版数学篇10
一、教案背景
1,面向学生:小学
2,课时:1课时
3,学生课前准备:
1)、预习教材77、78页及练习十八的内容。
2)、收集生活中应用到百分数地方的知识。
二、教学课题
教养方面
1)、让学生感受百分数在生产,工作和生活中的广泛应用。培养学生收集信息的能力。
2)、提高学生自主探究学习的欲望,培养学生观察事物,分析问题的能力,体验百分数的优点。
教育方面
让学生感受数学知识与日常生活的密切联系,激发学习兴趣,培养学生的比较,分析,综合能力的应用意识。
发展方面
培养学生分析问题,解决问题的能力,做到学科与生活联系起来。
三、教材分析
教学内容
人教版义务教育课程标准实验教科书《数学》六年级上册77、78页及练习十八的内容。
学情分析
百分数在日常生活中应用非常广泛,教学中要从学生已有的知识和生活经验出发,帮助学生理解数学。教学中要注意加强知识间的联系,培养学生迁移,类推的能力,通过类比类推理解思路。
根据学生学段的特点,教学中应开放课堂,推广学生自主探究的空间,让学生掌握自主学习的策略。
教学目标
1)、使学生认识百分数,知道百分数在生产,生活中的广泛应用。
2)、理解百分数的意义,能正确地读,写百分数。
3)、培养学生的比较,分析,综合能力和应用意识。
教学重点
熟知百分数的意义
教学难点
正确理解百分数的意义,正确区别百分数与分数的不同意义。
教学方法
教法:创设情境,质疑引导(引用从百度搜索的相关知识)
学法:合作探究,自主交流
教学准备
1)、教学之前用百度在网上搜索“百分数在生活中的应用”的相关材料,找到了很多教案作为参考,了解到教学的重点和难点,确定课堂教学形式和方法。
2)、根据课堂教学需要,利用百度搜索在小学教学网有关的“百分数的意义和写法”多媒体课件PPT,给生直观的感受,引发学生学习积极性和探索欲望。
教学过程
活动一:师生交流,充分感知
师: 同学们课前了解并收集了生活中的百分数,现在我们交流一下,好吗?
生:我在衣服的标签上找到了棉68.5%,绦纶23.5%,晴纶8%。
生:我在酒瓶的商标上找到了酒精度11.5%。
生:我在牛奶盒上找到含乳量≥60%, 脂肪≥3.5%。
生:我在亲亲果冻找到“中奖率为100%”
师:同学们真了不起,找到了这么多百分数,虽然没学过,但都会读出来,我真佩服你们! 这么多的百分数,说明了什么?
生:百分数的用途很广。
生:百分数很重要,生活中离不开它。
(评析:从学生熟悉的生活实际出发,使学生充分感知百分数,并创设了平等交流的氛围, 既激发了学生的学习兴趣,又让学生充分感受数学和生活的密切联系,同时体会到数学的价值。)
活动二:合作探究,充分感悟
师:老师也收集到了好多百分数,看,一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国的森林覆盖率不到14%,却是出口一次性筷子的大国。
(课前把百分数圈出来,用课件展示)
(在这里用简单的两个百分数,自然地进行了环保教育。)
师:人们这么喜欢用百分数,你们想知道百分数的哪些知识呢?
生:百分数是什么样的数?它到底有什么用处?
生:百分数和分数有什么联系和区别?哪些地方可以用百分数?
师:同学们说得很好,下面我们就一起来研究这些问题。(板书:百分数的意义和 写法。)
师:小组交流课前收集的百分数的意义。
(学生拿出手中的材料,进行认真的思考、交流,准备汇报)
生:我收集的是:衣服的标签上找到了棉68.5%,绦纶23.5%,晴纶8%。我的理解是把衣服的成份看作100份,其中棉占68.5份,所以68.5%表示棉占衣服成份的68.5%;涤纶占23.5份,23.5%表示涤纶占衣服成份的23.5%;晴纶占8份,23.5%表示晴纶占衣服成份的8%。
生:我收集的是:太平洋的面积占海洋总面积的49%,我的理解是把海洋总面积看作100份,其中太平洋的面积占49份,49%是太平洋面积与海洋总面积比较的结果。
生:我收集的是:中奖率为100%,我的理解是如果你购买100次,100次都中奖,100%是表示购买次数与中奖次数的比率。
师:从同学们的理解中,你发现了什么?
生:百分数表示的是两个数量之间的倍比关系,也就是表示一个数是另一个数的百分之几。(师板书)
师:刚才我们通过想一想、比一比、议一议理解体会了百分数的意义,那百分数与我们学过了分数到底有什么联系和区别呢?(小组合作研究讨论,并作好记录)
生:我们组认为它们的意义不同,百分数只能表示两个数量之间的关系,而分数有时可表示这种关系,有时只表示具体数量。写法也不同。
生:我们组补充,百分数的分母都是100,容易比较大小,一看就清楚。
生:分母是100的分数不一定是白分数。
(评析:教师从学生熟悉的生活实例引入,创设了“现实数学”的情境,进一步引导学生根据自己的生活经验来理解感悟百分数的意义及优点,同时让学生感觉到数学知识来源于生活,又能服务于生活。小组合作的学习方式,使学生在互助合作中得到交流、沟通,碰撞出创造思维的火花,又培养了学生的合作意识和交往能力,不断体验到成功的喜悦,从而增强学好数学的信心。)
活动三:主动应用,拓展升华
师:通过努力,同学们对百分数的意义理解得相当透彻了,那么你会写百分数吗?会写请到黑板上写一个百分数。
(学生有一拥而上,写出各种各样的百分数。)
师:同学们写了这么多的百分数,你能任选一个说说它的意义吗?生:我选50%,这节课我举手4次,老师让我回答2次,我回答的 机会占举手次数的50%。
生:我选96%,第三单元测查我们班及格人数44人,几个率约占全班人数45人的96%。
生:我选120%,它的分子比100大,有意思,比如工人一天要生产20个零件,结果完成24个,完成的占生产任务的120%。师:通过这节课的学习,同学们能不能应用百分数的意义,用一句话表达对自己或同学、老师的满意率?
生:我对自己的满意率为90%。
生:我对自己的满意率为95%。对__的满意率100%。
生:我对自己的满意率为95%。对同桌的满意率50%,对老师的满意率95%,因为同桌上课时老是吵我,而老师没有发现。
生:我对老师意率为100%。
教学反思
数学课堂通常是被认为比较枯燥、缺乏生动和激情,因此,努力创建既宽松、富有人情味又便于学生善于思考、乐于探究的教学环境显得尤为重要。让学生上台写分数,选自己喜欢的百分数说意义,教师的激励性语言、 学生的学习交流活动,无不让学生感受到数学的有趣、有用,体验到数学思考的快乐和挑战困难后的精神满足。
六年级教案电子版数学篇11
教学目标:
1、让学生掌握圆锥体积的计算方法,并能运用公式计算圆锥的体积,解决简单的实际问题。
2、通过动手操作实验,使学生经历圆锥体积公式的推导过程。
3、在观察与分析、操作与实验的学习活动中培养学生主动探究问题和空间想象能力。
教学重点、难点:掌握圆锥体积公式。
教具使用: ,等底等高长方形、三角形彩纸,等底等高圆锥、圆柱教具,水。
教学过程:
一、创设情境,问题导入
1、师出示长方形、三角形纸各一张。
提问:等底等高的长方形与三角形面积有什么关系?
2、提问:旋转长方形,三角形各得到什么图形?
长方形沿着长旋转一周得到圆柱、直角三角形沿一条直角边旋转一周形成圆锥。
3、观察。旋转后得到的圆柱和圆锥你有什么发现?(等底等高)
4、猜想。旋转后得到的圆锥的体积与圆柱的体积又有怎样的关系?
二、探究新知
1、实验
师出示:等底等高的圆柱、圆锥学具、水。
师:现在我们就要做一个实验,看看圆柱和圆锥的体积有什么关系?
生动手实验:
预设方案:①先灌满圆锥,3次倒入圆柱
②先灌满圆柱,3次倒入圆锥
2、生演示汇报
师板书:圆锥的体积 等于 圆柱体积的
质疑:
追问:是否同意上面的结论。引导学生说出:和它等底等高补充板书。
3、小结操作过程,课件演示。
4、推导公式。让生说圆锥的体积用字母如何来表示?
v锥=sh=πr2h
三、实际应用
(1)、一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
生独立完成,师巡视,生板书。
强调:1912是与圆锥等底等高圆柱的体积,再乘
1912=73(立方厘米)
(2)、在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.5米。每立方米小麦约重750千克,这堆小麦约有多少千克?
生独立完成,师巡视,生板书
(4÷2)23.141.5=6.28(立方米)
6.28750=4710(千克)
3、填空
⑴一个圆锥的底面积是12平方厘米,高是6厘米,它的体积是( )立方厘米。
⑵一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是( )立方分米。
⑶一个圆锥比与它等底等高的圆柱体积少12立方厘米,圆柱体积是( )立方厘米。
4、判断:
⑴圆柱一定比圆锥体的体积大。( )
⑵圆锥的体积等于和它等底等高的圆柱体积的。( )
⑶正方体、长方体、圆锥体的体积都等于底面积高。( )
⑷等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。( )
四、拓展提高
有一根底面直径是6厘米,长是15厘米的圆柱体钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?
法一:(v柱-v锥) (6÷2)23.1415-(6÷2)23.1415=282.6(立方厘米)
法二:( v柱) (6÷2)23.1415=282.6(立方厘米)
五、课堂小结:这节课你有哪些收获?
板书设计
圆锥的体积
圆锥的体积 等于和它等底等高的圆柱体积的
v锥=sh=πr2h
1912=73(立方厘米)
(4÷2)23.141.5=6.28(立方米)
6.28750=4710(千克)
六年级教案电子版数学篇12
教学目标:
1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。
教学重点:理解分数与除法的关系。
教学难点:理解分数表示整数除法的商。
课前准备:课件。
教学过程:
一、激活旧知,引发思考
1.把8块饼平均分给4个小朋友,每人分得多少块?如果有4块饼呢?
学生口答列式,教师板书。
提问:这样的问题为什么用除法算?
指出:把一些物体平均分,求每份是多少,用除法计算。
2.引入新课
二、主动思考,认识新知
1.教学例2
(1)把刚才呈现的题目改为:把1块饼平均分给4个小朋友,每人分得多少块?
怎样列式?
把1块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?
每人分得的不满1块,结果可以用分数表示。
那么,可以用怎样的分数表示1÷4的商呢?请大家拿出1张圆形纸片,把它们看作1块饼,按照题目分一分,看结果是多少?
(2)学生操作,了解学生是怎样分和怎样想的。组织交流,你是怎么分的?
(3)小结:把1块饼平均分给4个小朋友,每人分得14块。完成板书。
2.教学例3:
把3块饼平均分给4个小朋友,每人能分得多少块?
可以怎样列式?3÷4得数是多少?
大家拿出3张圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?
3.独立完成
把3块饼平均分给5个小朋友,每人能分得多少块?
3除以5,商是多少?怎样用分数表示?小组交流。
4.总结归纳
请大家观察上面两个等式,你发现分数与除法有什么关系?
被除数÷除数=被除数/除数
如果用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b
讨论:b可以是0吗?(在除法中,0不能作除数;分数中的&39;分母,相当于除法中的除数,所以分母不能是0。)
5.教学试一试。学生尝试填空。你是怎样想的?
把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?(指出:两个数相除,得不到整数商时,可以用分数表示。)
6.做练一练第1、3题
学生独立填写,要求说说填写时是怎样想的。
7.做练一练的第2题
学生填写后,引导比较:上下两行题目有什么不同?
三、练习巩固,加深认识
1.做练习八第6题
让学生看图填空。
交流:结果各是多少米?怎样从图上看出结果?
追问:如果列式计算,应该怎样列式,得数是多少
2.做练习八第7题。
让学生独立完成,交流结果。
3.做练习八第8题。
让学生独立解答,交流方法板书。
四、反思总结
今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?
六年级教案电子版数学篇13
教学目标:
1、通过测量各种目标物影子长度的实践活动,使学生主动探索掌握影子长度与目标物实际高度之间的比例关系,并能学以致用,解决大树、旗杆、高楼等物体有多高的问题。
2、通过分组合作,培养学生动手动脑、解决实际问题的能力和团结协作精神。
3、通过活动,使学生感受到数学与现实生活的密切联系,进一步激发学习数学的兴趣,并在活动中培养创新精神。
教学重点:
引导学生探索发现“同一地点,同时测量长度不同的竿,高度与影长的比值是相等的”教学难点:运用发现的规律解决“大树有多高”之类的实际问题。
教学准备:
课前测量数据,多媒体课件。
教学过程设计:
一、预习导学
1、师:同学们,下面我们来看段小视频。
2、师:同学们,物体的影子是怎么形成的呢?
3、师:所形成的影子的长短是由什么决定的呢?(班班通出示图片,学生观察、交流、汇报。)
4、师:那么物体的影子长度和物体的高度之间有着什么样的联系呢?你们想知道吗?这节课,我们就来一起研究一下。(板书课题)
二、新课探究
1、探究两根长度相同的竿的影长。
(出示视频)学生记录数据。
师:通过同学的测量,同时同一地点测量两根长度相同的竿,影长有什么关系?
(生分析数据,汇报)结论:同一时间,同一地点测量相同长度的竿,影长是相同的。
2、探究两根长度不同的竿的影长。
(出示视频)学生记录数据
师:通过测量,同时同一地点测量两根长度不同的竿,影长有什么关系?(生分析数据,汇报)
结论:同一时间,同一地点测量不同长度的竿,影长是不相同的。
3、探究竿长度与影长之间的关系。
(出示表格)1号2号3号4号竿长/cm
影长/cm竿长与影长的比值
要求:竹竿长与影长的比值保留两位小数。(小组合作完成)观察比较:比较每次求得的比值,你有什么发现?(思考,交流,汇报)结论:在同一地点,同时测量不同长度的竿,高度与影长的比值是相同的。
4、验证结论师:刚才发现的结论正确么?如果是正确的,老师课前还准备了5号竿,同学们运用所发现的结论,计算一下5号竿的竿长。
(出示视频,学生记录数据,计算)
三、当堂练习
1、在上海中心大厦测得其影长为158米,同时测得一根竹竿的长为180厘米,影长为45cm,那么长海中心大厦的高为多少米?
2、早晨在校园里测得一棵梧桐树的影长为37。5米,同时测得一根竹竿长2米,其影长为3米,这棵梧桐树高()米?
3、在学校的操场上,有一棵大树和一根旗杆,若此时大树的影长6m,旗杆高4m,影长5m,求大树的高度?
四、你知道么?约公元前600年,泰勒斯从遥远的希腊来到了埃及。在此之前,他已经到过很多东方国家,学习了各国的数学和天文知识。到埃及后,他学会了土地丈量的方法和规则。他学到的这些知识能够帮助他解决这个千古难题吗?他苦苦思索着。有一天,当他看到金字塔在阳光下的影子时,他突然想到办法了。泰勒斯仔细地观察着影子的变化,找出金字塔地面正方形的一边的中点(这个点到边的两边的距离相等),并作了标记。然后他笔直地站立在沙地上,并请人不断测量他的影子的长度。当影子的长度和他的身高相等时,他立即跑过去测量金字塔影子的顶点到做标记的中点的距离。他稍做计算,就得出了这座金字塔的高度。
五、课堂总结
六年级教案电子版数学篇14
教学要求:
1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。
2、使学生正确掌握分解质因数和求两个数的公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的公约数,两个或三个数的最小公倍数。
教学过程:
一、揭示课题
1、口算(指名口算课本第64页第11题)
2、引入新课
我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求公约数最小公倍数。
二、复习约数和倍数
1、提问:什么是整除(板书整除)如果A能被B整除,必须具备哪些条件?
当A能被B整除,也就是B整除A时,还可以怎样说?板书:
约数
倍数
2、做“练一练”第1题
学生做在课本上,说明倍数和约数的依存关系。
3、学生练习
(1)从小到大写出9的五个倍数
复习约数倍数相关知识(略)
(2)写出18的所有约数
三、复习质数合数
1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:
板书:1
质数
合数
怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。
2、口答:
(1)说出比10小的质数和合数。
(2)最小的质数和最小的合数各是几?
(3)下面哪些是质数?哪些是合数?
785123579190
3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的什么数?(板书:质因数,分解质因数)
4、做“练一练”第3题
练后指名口答,集体订正。
四、复习公约数和公倍数。
1、学生练习
(1)写出18和24所有的公约数,指出公约数。
(2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。
学生口答,老师板书
提问:什么叫做公约数和公约数?什么叫做公倍数和最小公倍数?
(板书——公约数、公约数——公倍数——最小公倍数)
2、“练一练”第4题
集体练习,指名口答,说一说方法怎样归纳三种关系?
追问:用短除法求公约数和最小公倍数有什么相同和不同?
五、复习
能被2、5、3整除各有什么特征
1、提问:能被2、5、3整除各有什么特征。
(板书:——能被2、5、3整除的数)
2、“练一练”第5题
提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,
板书:偶数
奇数
想一想,自然数可以分为哪几类?
六、课堂小结
根据板书内容,说说相互之间有什么联系。
七、课堂练习
1、练习十一和12题
2、课堂作业
(练习十一第15、16题、17题中(3)(4)
八、课外作业:练习十一第18题。
六年级教案电子版数学篇15
教学目标:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:
圆柱切割组合模具、小黑板。
教学过程:
一、创设情境,生成问题
1、什么是体积?(物体所占空间的大小叫做物体的体积。)
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
二、探索交流,解决问题
1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?
(启发学生思考。)
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)
(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)
4、推导圆柱体积公式
小组讨论:怎样计算圆柱的体积?
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:V=Sh
5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?
四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?
五:课后作业:
教材第9页,练一练第1、3、4、题