教案吧 > 小学教案 > 六年级教案 >

六年级数学教案反思

时间: 新华 六年级教案

通过编写教案,教师可以将教学计划、教学重点、难点、教学方法等组织起来,形成完整的教学内容体系。这里分享一些六年级数学教案反思下载,供大家写六年级数学教案反思参考。

六年级数学教案反思篇1

教学过程

一、情景引入

1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)

二、自主探究、

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

4、确定方法,探究实验,验证体积公式。

(1)、首先要求学生利用实验工具,自主商讨确定研究方法。

(2)、学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

(5)、学生汇报:实验的结果与猜想的结果基本相同。

(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)、小结:

要想求出一个圆柱的体积,需要知道什么条件? 

(8)、学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况: 

v=sh  

三、巩固发展 

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)

集体订正,说一说圆柱体的体积还可以怎样算?

4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的2/3,计算水杯中水的体积?

5、拓展练习

(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

(2)、一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?               

四、全课小结:

谈谈这节课你有哪些收获。

教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

教学目标:

1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式。

教学难点:圆柱体积计算公式的推导过程

六年级数学教案反思篇2

教学目标:

1、理解反比例的意义。

2、能根据反比例的意义,正确判断两种量是否成反比例。

3、培养学生的抽象概括能力和判断推理能力。

教学重点:

引导学生理解反比例的意义。

教学难点:

利用反比例的意义,正确判断两种量是否成反比例。

教学过程:

一、复习铺垫

1、成正比例的量有什么特征?

2、下表中的两种量是不是成正比例?为什么?

二、自主探究

(一)教学例1

1.出示例1,提出观察思考要求:

从表中你发现了什么?这个表同复习的表相比,有什么不同?

(1)表中的两种量是每小时加工的数量和所需的加工时间。

教师板书:每小时加工数和加工时间

(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。

教师追问:这是两种相关联的量吗?为什么?

(3)每两个相对应的数的乘积都是600.

2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?

教师板书:零件总数

每小时加工数×加工时间=零件总数

3.小结

通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。

(二)教学例2

1.出示例2,根据题意,学生口述填表。

2.教师提问:

(1)表中有哪两种量?是相关联的量吗?

教师板书:每本张数和装订本数

(2)装订的本数是怎样随着每本的张数变化的?

(3)表中的两种量有什么变化规律?

(三)比较例1和例2,概括反比例的意义。

1.请你比较例1和例2,它们有什么相同点?

(1)都有两种相关联的量。

(2)都是一种量变化,另一种量也随着变化。

(3)都是两种量中相对应的两个数的积一定。

2.教师小结

像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。

3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?

教师板书: xy =k(一定)

三、课堂小结

1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。

2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?

四、课堂练习

完成教材43页做一做

五、课后作业

练习七6、7、8、9题。

六、板书设计

成反比例的量 xy=k(一定)

每小时加工数×加工时间=零件总数(一定)

每本页数×装订本数=纸的总页数(一定)

六年级数学教案反思篇3

教学目标:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

教学重、难点:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

教学准备:

圆柱切割组合模具、小黑板。

教学过程:

一、创设情境,生成问题

1、什么是体积?(物体所占空间的大小叫做物体的体积。)

2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?

二、探索交流,解决问题

1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?

(启发学生思考。)

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:

(1)圆柱切开后可以拼成一个什么形体?(长方体)

(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)

4、推导圆柱体积公式

小组讨论:怎样计算圆柱的体积?

学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书:V=Sh

5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?

三、巩固应用练习。

1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?

四:课堂小结:

通过这节课你学会了哪些知识,有什么收获?

五:课后作业:

教材第9页,练一练第1、3、4、题

六年级数学教案反思篇4

教学目标:

1、使学生明确本学期的学习任务。

2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。

教学过程:

一、课堂教学常规的说明:

1、上课的各项要求说明等。

2、练习的各项要求说明等。

3、其他说明。

二、复习旧知:

(一)填空:

1、分数单位是1/8的最大真分数是(),最小假分数是(),最小的带分数是()。

2、1米的3/7是()米,3米的1/7是()米。

3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了()厘米,时针扫过了()平方厘米。

(二)解决问题:

1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?

2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?

3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?

4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?

5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?

6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?

7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?

8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?

9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?

10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)

(三)拓展练习:

1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?

2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?

(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?

3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?

4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?

5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?

6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?

六年级数学教案反思篇5

教学内容:

P4例2及“练一练”、练习二第1—5题

教学目标:

1、使学生在解决实际问题的过程中,理解并掌握形如ax±bx=c的方程的解法,会列上述方程解决三步计算的实际问题。

2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

3、使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。

教学重点难点:

如何合适地用字母或含有字母的式子表示题中两个未知的数量。

教学资源:小黑板

教学过程:

一、谈话导入,揭示课题

前两节课,我们已经学过列方程解决实际问题,你能说说列方程解决实际问题的大致步骤吗?

这节课我们按列方程解决实际问题的步骤继续研究这方面的知识。

二、师生探究,学习新知

1、学习例2

(1)出示例2。读题,理解题意。

(2)师:你能用线段图表示题中数量之间的关系吗?

生各自独立画线段图。

(3)展示交流,明确合适的画法。

(4)师:结合题目和线段图,你能说说数量之间的相等关系吗?

生答,师出示,齐读:

水面面积+陆地面积=颐和园的占地面积

(5)师:如果用x来表示陆地面积,那么可以怎样表示水面面积呢?生答后师在线段图上标注好,并写出设句,齐读设句。

(6)让生根据数量关系列出方程。

师板:x+3x=290

说说这个方程与前面学的方程有什么不同。

问:你会解这个方程吗?把你的想法和同桌交流一下。

(7)全班交流,师随机板书过程,并说明:解这样的方程时,一般应先化简。

追问:求出的x的值表示哪个数量?水面面积该怎样求?

生答师板:3x=72.5×3=217.5

(8)问:这道题怎样检验?

生交流自己的想法后,让生看书P4的检验过程,说说每一步检验的是什么。师随机板检验过程,写出答句。

2、“练一练”

(1)学生独立完成,要求写出检验过程。

(2)集体交流,说说是根据怎样的数量关系列出方程的,又是怎样解列出的方程的。

(3)比较:

引导学生说说“练一练”的解答过程与例2有什么相同的地方?有什么不同的地方?

追问:你觉得列方程解答这样的问题要注意些什么?

三、巩固练习

1、练习二第1题

(1)先让学生说说这几道方程与例题中的方程有什么共同的特点,解这些方程时先要做什么,这样做的依据是什么。

(2)学生独立完成。

(3)交流反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验,是怎样检验的。

2、练习二第2题

学生独立完成后,再要求说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的。

提醒学生:填出的含有字母的式子要进行化简。

3、练习二第5题

(1)先独立解答。

(2)交流,让学生说清楚自己解决问题时的思考过程,进一步明确列出的方程依据了怎样的数量关系。

四、全课总结:

这节课学习了什么内容?你有什么想要提醒大家注意?

五、作业:

练习二第3、4题。

六年级数学教案反思篇6

教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则。

教学过程:

(一)铺垫

1.出示复习题。(投影片)

(1)整数乘法的意义是什么?

(2)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少?9个11是多少?8个6是多少?

(3)计算:1/6+2/6+3/63/10+3/10+3/10

计算3/10+3/10+3/10时向学生提问:这道题有什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

2.引出课题。

分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

(二)探究新知。

1.教学分数乘整数的意义。出示例1,指名读题。

(1)分析演示:师:每人吃2/9块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。问:一个人吃了2/9块,三个人吃了几个2/9块?使学生从图中看到三个人吃了3个2/9块。让学生用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:

2/9+2/9+2/9=2+2+2/9=6/9=2/3(块),(教师将3个双层扇形图片拼成一个一块蛋糕的2/3图片)

(2)观察引导:

这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:

2/9×3。再启发学生说出2/9×3表示求3个2/9相加的和。

(3)比较2/9×3和12×5两种算式异同:

提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。通过讨论使学生得出:

相同点:两个算式表示的意义相同。

不同点:2/9×3是分数乘整数,12×5是整数乘整数。

(4)概括总结:

教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

2.教学分数乘以整数的计算法则。

(1)推导算理:

由分数乘整数的意义导入。

问:2/9×3表示什么意义?引导学生说出表示求3个2/9的和。学生计算,提示:分子中3个2连加简便写法怎么写?学生答后板书:2×3/9=6/9=2/3(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

(2)引导观察:2×3/9的分子部分、分母与算式2/9×3两个数有什么关系?(互相讨论)

观察结果:2×3/9的分子部分2×3就是算式中2/9的分子2与整数3相乘,分母没有变。

(3)概括总结:请根据观察结果总结2/9×3的计算方法。(互相讨论)

汇报结果:(多找几名学生汇报)使学生得出2/9×3是用分数2/9的分子2与整数3相乘的积作分子,分母不变。根据

2/9×3的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分后约得的数要与原数上下对齐。然后让学生将2/9×3按简便方法计算。

3.反馈练习:

1)教材第2页“做一做”第1题。

订正时让学生说出乘法中被乘数、乘数各表示什么?

2)教材第2页“做一做”第2题。

教师提示:乘的时候如果分子分母能约分的要先约分。

3)教材第6页“练习一”第1、2、3题。

学生独立完成,集体交流,重点让学生说一说思路。

(三)全课小结。

这节课我们学习了分数乘整数的知识,相乘时,用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算,结果相同。

板书

分数乘整数

2/9×3=2×3/9=6/9=2/3

分数乘整数,用分子乘整数的积作分子,分母不变。

教学反思:

六年级数学教案反思篇7

教学目标:

1、理解按比列分配的意义,掌握按比列分配的应用题的数量关系和解答方法。

2、培育数学意识。

教学重难点:理解、分析按比列分配应用题的数量关系。

教学过程:

一、复习引入

1、学生说出本班上学期的人数(男生:15人、女生:10人)

男生与女生的比是:()女生占全班的人数的:()

2、口答应用题

六年级和二年级共同承担了面积为100平方米的卫生区清洁任务,平均每个班的清洁区是多少平方米?

(1)学生口答:100÷2

(2)教师提问:

这是一道分配应用题,分谁?怎么分?

六年级和二年级承担同样多的卫生任务,合理吗?能平均分吗?

(3)谈话引入

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。

二、讲授新课

1、把复习题2增加条件“如果按3﹕2分配”,两个班清洁区各是多少平方米?

(1)教师提问:分谁?怎么分?求的是什么?

(2)思考:由“如果按3﹕2分配”这句话你可以联想到什么?

(3)学生尝试列式计算:

(4)比较思路:A求出总份数。B各部分的量占总量的几分之几?C按照求一个数的`几分之几是多少的方法解答。

2、教学例3

(1)提问:

A、这道题与前面的题有什么区别?

B、分配的是什么?按什么来分?

C、怎样计算各班载的棵树占总棵树的几分之几?

(2)学生独立解题,并检验。

3、小结

(1)观察我们今天学习的两道例题有什么共同的特点?

(2)怎样解答?

4、补充课题:按比列分配

我们把具有这种特点,并用这种特定方法解答的分配应用题叫做“按比列分配”的应用题。

5、提问什么是按比列分配?

6、回到复习题

提问:平均分是按几比几分配?

指出平均分应用题是按比列分配应用题的一种特殊情况。

三、巩固练习

P62.做一做1、2、3.

四、全课小结

这节课我们学习了按比列分配的应用题,解答这类应用题一般用分数的方法,用分数方法的关键是把比转化为分数。

六年级数学教案反思篇8

《圆锥的体积》

1、通过课堂评价促进小组探究学习的有效性

我将班上同学分成了9个小组,在课堂开始前告诉同学们在今天的小组学习中会选出一个优秀小组,并且从合作,纪律,发现三个方面进行评价,组长安排组员活动体现小组合作性,巩固了小组合作探究的实效性,活动时间结束时从纪律方面进行评价,有效的组织了教学,使学生的兴奋点得到有效控制,尽快投入到公式的推到过程中,在推到过程中鼓励同学们表达自己的观点,从发现方面对学生进行评价提高学生的积极性。

2、层次清楚,步步深入,重点突出

在教学“圆锥的体积”时,我首先复习了圆柱的体积的计算过程,再用生活中的问题引入学习圆锥体积的必要性,调动了学生的积极性。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

3、激发学生的求知欲

新课一开始,我就让学生比较两堆沙的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

4、全体学生的积极参与,突出学生的主体作用

由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

5、课堂教学后的改进

关于两堆沙的多少的比较课让学生有更多的发展空间,例如从价钱,重量等方面考虑,在这些都不知道的情况下才通过求体积的方法,事实上从价钱上来看更简单一些,要让学生有选择合适的方法解决问题的能力。

在操作活动过程中,指向性过于直接,在第二次教学中我做了一些新的尝试。简单的导入,我出示了一组圆柱和圆锥,先让学生猜一猜学生它们体积的关系,因为学生都有预习,“圆锥体积是圆柱体积的三分之一”很快从学生口中脱出。“那我们就来做个试验验证一下!”我给六个小组分别准备了等底等高、等底不等高、等高不等底、既不等底也不等高的圆柱和圆锥,当然,实验还没结束,学生中的问题就出来了,“我们做的正好是三分之一”、“怎么回事?我们的是二分之一?”,“我们的是四分之一”……“是不是书上写错了?”学生思维出现激烈的碰撞,这时我没有评判结果,适时让学生观察、对比、通过合作、讨论,“等底等高”这一前提,这样让学生在看似混乱无序的实践中,增加对实验条件的辨别,既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展,而不必苦口婆心地强调“等底等高”,对“三分之一”的认识也深入学生之心,圆锥体积计算漏乘“三分之一”的错误将得到很好的纠正。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果,这节教学虽没以前那么顺利,但我觉得今天的学生才真正掌握了知识。因为学生更需要经历知识形成的全过程。真正关注学生学习的过程,就要有效利用“错误”这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和体验成功的乐园!

圆锥的体积教学反思

“实践出真知”,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。特别是在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。在教学圆锥的体积时,我感悟特深刻。

以前教学圆锥的体积后,学生在实际运用公式时容易出错误的地方还是和往届一样,圆锥的体积=等底等高圆柱体积的三分之一,这个三分之一,在计算的时候经常出现遗漏。

怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历“提出猜测--设计实验--动手操作--得出公式”的自主探究学习的过程,我让学生拿出自己的学具——等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。

推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出“等底、等高”这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!

六年级数学教案反思篇9

教学目标

1、能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题.

(1)能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义.

(2)能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题.

(3)能处理有关几何问题,增长率的问题,和物理方面的实际问题.

2、通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.

3、通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.

教学建议

教材分析

(1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点.

(2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的学习,既是对知识的复习,也是对方法和思想的再认识.

教法建议

(1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特别是对实际问题中数学变量的隐含限制条件的提取尤为重要.

(2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行.

(3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主.

教学设计示例

函数初步应用

教学目标

1、能够运用常见函数的性质及平面几何有关知识解决某些简单的实际问题.

2、通过对实际问题的研究,培养学生分析问题,解决问题的能力

3、通过把实际问题向数学问题的转化,渗透数学建模的思想,提高学生用数学的意识,及学习数学的兴趣.

教学重点,难点

重点是应用问题的阅读分析和解决.

难点是根据实际问题建立相应的数学模型

教学方法

师生互动式

教学用具

投影仪

教学过程b

一、提出问题

数学来自生活,又应用于生活和生产实践.而实际问题中又蕴涵着丰富的数学知识,数学思想与方法.如刚刚学过的函数内容在实际生活中就有着广泛的应用.今天我们就一起来探讨几个应用问题.

问题一:如图,△是边长为2的正三角形,这个三角形在直线的左方被截得图形的面积为,求函数的解析式及定义域.(板书)

(作为应用问题由于学生是初次研究,所以可先选择以数学知识为背景的应用题,让学生研究)

首先由学生自己阅读题目,教师可利用计算机让直线运动起来,观察三角形的变化,由学生提出研究方法.由学生说出由于图形的不同计算方法也不同,应分类讨论.分界点应在,再由另一个学生说出面积的计算方法.

当时(采用直接计算的方法)

当时(板书)

(计算第二段时,可以再画一个相应的图形,如图)

综上!

此时可以问学生这是什么函数?定义域应怎样计算?让学生明确是分段函数的前提条件下,求出定义域为.(板书)

问题解决后可由教师简单小结一下研究过程中的主要步骤(1)阅读理解;(2)建立目标函数;(3)按要求解决数学问题.

下面我们一起看第二个问题

问题二:某工厂制定了从1999年底开始到20_年底期间的生产总值持续增长的两个三年计划,预计生产总值年平均增长率为,则第二个三年计划生产总值与第一个三年计划生产总值相比,增长率为多少?(投影仪打出)

首先让学生搞清增长率的含义是两个三年总产值之间的关系问题,所以问题转化为已知年增长率为,分别求两个三年计划的总产值.

设1999年总产值为,第一步让学生依次说出2000年到20_年的年总产值,它们分别为:

2000年20_年

20_年20_年

20_年20_年(板书)

第二步再让学生分别算出第一个三年总产值和第二个三年总产值

=++

=.

=++

=.(板书)

第三步计算增长率.

.(板书)

计算后教师可以让学生总结一下关于增长率问题的研究应注意的问题.最后教师再指出关于增长率的问题经常构建的数学模型为,其中为基数,为增长率,为时间.所以经常会用到指数函数有关知识加以解决.

总结后再提出最后一个问题

问题三:一商场批发某种商品的进价为每个80元,零售价为每个100元,为了促进销售,拟采用买一个这种商品赠送一个小礼品的办法,试验表明,礼品价格为1元时,销售量可增加10%,且在一定范围内礼品价格每增加1元销售量就可增加10%.设未赠送礼品时的销售量为件.

(1)写出礼品价值为元时,所获利润(元)关于的函数关系式;

(2)请你设计礼品价值,以使商场获得最大利润.(为节省时间,应用题都可以用投影仪打出)

题目出来后要求学生认真读题,找出关键量.再引导学生找出与利润相关的量.包括销售量,每件的利润及礼品价值等.让学生思考后,列出销售量的式子.再找学生说出每件商品的利润的表达式,完成第一问的列式计算.

解:.(板书)

完成第一问后让学生观察解析式的特点,提出如何求这个函数的最大值(此出最值问题是学生比较陌生的,方法也是学生不熟悉的)所以学生遇到思维障碍,教师可适当提示,如可以先具体计算几个值看一看能否发现规律,若看不出规律,能否把具体计算改进一下,再计算中能体现它是最大?也就是让学生意识到应用最大值的概念来解决问题.最终将问题概括为两个不等式的求解即

(2)若使利润最大应满足

同时成立即解得

当或时,有最大值.

由于这是实际应用问题,在答案的选择上应考虑价值为9元的礼品赠送,可获的最大利润.

三.小结

通过以上三个应用问题的研究,要学生了解解决应用问题的具体步骤及相应的注意事项.

四.作业略

五.板书设计

2.9函数初步应用

问题一:

解:

问题二

分析

问题三

分析

小结:

六年级数学教案反思篇10

教学目标:

1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

教学重点:

理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。教学难点:掌握求倒数的方法

教学过程:

一、导入

1、口算

2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

二、新授

1、教学倒数的意义。

(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

(2)学生汇报研究的结果:乘积是1的两个数互为倒数。

(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

2、教学求倒数的方法。

(1)写出 的倒数: 求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

3、教学特例,深入理解

(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

4、巩固练习:课本24页“做一做”

(1)学生独立解答,教师巡视。

(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。

三、练习

1、练习六第2题:同桌互说倒数。

2、辨析练习:练习六第3题“判断题”。

3、开放性训练。

( )×( )=( )× ( )=( )×( )

四、总结

你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?

教学追记:

倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

六年级数学教案反思篇11

教学目标:

1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:推导算理,总结法则。

教学过程:

一、导入

1、计算下列各题并说出计算方法。

__

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新课

1、教学例3

(1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式:×

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即的,由此得出×这个乘法算式表示“的是多少?”

(3)根据直观的操作结果,得出×=,根据刚才操作的过程和结果推导出计算方法:×==。

(4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

2、相关练习:练习二第5题。

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4

(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式:×。

(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式:()

(3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。

5、巩固练习:P11“做一做”(注意提醒学生要先观察能否约分,再着手计算)。

三、练习

1、练习三第6题

(1)求2枝长多少分米,就是求2个是多少?算式:×2

(2)求枝或枝长多少分米,就是求的是多少,或的是多少。

2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)

四、作业

练习二第3、7、8、10题。

六年级数学教案反思篇12

教学内容:教材第12页例3、练一练,练习二第6~11题。

教学要求:使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积,学会计算套管体积的计算方法,井能应用于实际求出物体的重量。

教学重点:计算套管体积的计算方法。

教学难点:根据不同的条件求圆柱的体积。

教学过程:

一、铺垫孕伏:

1.求下列圆柱的体积(口答列式)。

(1)底面积3平方分米,高4分米;

(2)底面半径2厘米,高2厘米;

(3)底面直径2分米,高3分米。

追问:圆柱的体积是怎样计算的?(板书:V=Sh)

2.复习环形面积的计算公式。

提问:怎样计算环形面积?你能举例和同学们说一说吗?小组交流。

3.引入新课。

我们已经学习过圆柱的体积计算。这节课,就在计算圆柱体积的基础上,学习套管体积的计算。(板书课题)

二、自主探究:

1.教学例3。

出示例3,读题。提问:这道题求什么?要求钢管的质量先要求什么?怎样求钢管的体积?小组讨论。解答这道题还要注意些什么?(单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。

2.新课小结。

提问:怎样计算套管体积?如果知道套管的内周长和外周长几套管的长,怎样求套管的体积?

三、巩固练习

1.做练一练第1题。

指名两人板演,其余学生分两组,每组-题做在练习本上。集体订正。

2.做练习二第6题。

让学生在练习本上完成。指名学生口答算式,老师板书。结合让学生说一说是怎样想的。

四、布置作业

练习二第7、8题及数训。

六年级数学教案反思篇13

教学目标

1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

教学重点、难点

1、圆柱体积计算公式的推导过程并能正确应用。

2、借助教具演示,弄清圆柱与长方体的关系。

教具、学具准备

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

教学设想

《圆柱的体积》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

教学过程

一、创设情境,激疑引入

“水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

1、出示装了水的圆柱容器。

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

(2)讨论后汇报:

生1:用量筒或量杯直接量出它的体积;

生2:用秤称出水的重量,然后进一步知道体积;

生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

生1:把水到入长方体容器中……

生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

2、创设问题情境。

师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验,探究新知

1、回顾旧知,帮助迁移

(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

生1:圆柱的上下两个底面是圆形

生2:侧面展开是长方形……

生3:说明圆柱和我们学过的圆和长方形有联系

师:请同学们想想圆柱的体积与什么有关?

生1:可能与它的大小有关

生2:不是吧,应该与它的高有关

[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

配合学生回答演示课件。

[设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

2、小组合作,探究新知

(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

(2)学生以小组为单位操作体验。

把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的越接近,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)

[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

(3)学生小组汇报交流:

近似的长方体的体积等于圆柱的体积,近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

教师根据学生汇报,用教具进行演示。

(4)概括板书:根据圆柱与近似长方体的关系,推导公式:

长方体的体积=底面积×高

↓↓↓

圆柱的体积=底面积×高

用字母表示计算公式V=sh

[设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践操作,动画演示,验证了学生的发现,从学生的认识和发现中,围绕着圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)]

三、实践应用,巩固新知。

1、火眼金睛判对错。

(1)长方体、正方体、圆柱的体积都等于底面积乘高。()

(2)圆柱的高越大,圆柱的体积就越大。()

(3)如果两个圆柱的体积相等,则它们一定等底等高。()

[设计意图:加深对刚学知识的分析和理解。]

2、计算下面各圆柱的体积。

(1)底面积是30平方厘米,高4厘米。

(2)底面周长是12。56米,高是2米。

(3)底面半径是2厘米,高10厘米。

[设计意图:让学生灵活运用公式进行计算。]

3、实践练习。

提供在创设情景中圆柱形接水容器的内底面直径和高。

这个圆柱形容器,内底面直径是10厘米,高12厘米,水面高度10厘米。

[设计意图:让学生领悟数学与现实生活的联系。]

4、课堂作业。

为了美化环境,阳光小区在楼前的空地上建了四个同样大小的圆柱形花坛。花坛的底面内直径为4米,高为0、6米,如果里面填土的高度是0、4米,这四个花坛共需要填土多少立方米?

[设计意图:使学生进一步感受到生活中处处有数学,同时培养学生的环保意识。]

四、反思回顾

师:通过本节课的学习,你有什么收获吗?

[设计意图:让不同层次的学生谈学习收获,可使每个学生都体验到成功的喜悦。这样,学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习的乐趣,增强了学好数学的信心。]

板书设计:

圆柱的体积

根据圆柱与近似长方体的关系,推导公式:

长方体的体积=底面积×高

↓↓↓

圆柱的体积=底面积×高

用字母表示计算公式V=sh

本节的教学从生活的实际创设情境,提出问题,让学生学习有用的数学,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识(长方体体积的计算)经验(圆面积公式的推导)解决新的问题,在新旧知识的联系上,巧妙的利用想象、课件演示将圆和圆柱有机的联系到一起,使学生想象合理、联系有方。在探究新知中,通过想象和操作,让学生充分经历了知识的形成过程,为较抽象的理论概括提供了必要而有效的感性材料,加强了实践与知识的联系,并创造性的补充了一些与学生身边实际生活相联系的练习题,提高了学生的学习兴趣。

六年级数学教案反思篇14

教学内容

教科书第54页例3,练习十二5,6,7题。

教学目标

1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

教学重、难点

运用正比例知识解决简单的实际问题。

教学准备

教具:多媒体课件。

学具:作业本,数学书。

教学过程

一、复习引入

1.判断下面各题中的两种量是不是成正比例?为什么?

(1)飞机飞行的速度一定,飞行的时间和航程。

(2)梯形的上底和下底不变,梯形的面积和高。

(3)一个加数一定,和与另一个加数。

(4)如果y=3x,y和x。

2.揭示课题

教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

二、合作交流,探索新知

1.用课件出示例3

教师:这幅图告诉我们一个什么事情?需要解决什么问题?

教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

2.全班交流解答方法

指导学生思考出:

(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的&39;倍数后,结果就是李老师所付的钱。

3.尝试用正比例知识解答

如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

(1)题中有哪两种相关联的量?

(2)题中什么量是不变的?一定的?

(3)题中这两种相关联的量是什么关系?

引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

随学生的回答,教师可同步板书:

教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

教师:同学们会计算吗?把这个比例式计算出来。

学生解答。

教师:解答得对不对呢?你准备怎样验算?

学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

三、课堂活动

1.出示教科书第49页的例1图和补充条件

竹竿长(m)26…

影子长(m)39…

教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

学生独立思考解答,讨论交流。

2.小结方法

教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

(1)设所求问题为x。

(2)判断题中的两个相关联的量是否成正比例关系。

(3)列出比例式。

(4)解比例,验算,写答语。

四、练习应用

完成练习十二的5,6,7题。

五、课堂小结

这节课我们学习了什么知识?你有什么收获?

六年级数学教案反思篇15

《负数的认识》是新教材新增的内容,《数学新课程标准》这方面的教学具体目标是:“在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。”根据这一目标和个人对此教材的理解设计了本课,通过实践有以下体会:

一、以学生生活经验为切入点,降低学习难度。

课的到入环节,以学生喜爱的游戏方式,说反义词感受生活中的相反现象。如:①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层);在银行存入了500元(取出了500元)。知识竞赛中,五(1)班得了20分(扣了20分),等等。这些相反意义现象学生在生活中比较常见为学生认识负数构建了平台。。接着采用学生几乎每天都能接触到有关气温方面的信息,在天气预报中也经常看到负数,他们已经直观地感受到这些数是用来表示零下温度的。这一生活经验,六年级的学生已相当熟悉,以这些生活经验为学习切入点,展开负数的教学,此“时”此“境”引入负数,更有助于理解生活中负数的具体含义,降低了学生的学习难度。

二、学习起点把握不准,预设不够贴切。

以前的数学教材中,“数与代数”领域已有较多内容,学生已能熟练地利用正数来表达、交流生活中遇到的实际问题。也由于当前大量媒体的介入,在生活中,对与负数学生也偶尔接触过,并几乎每天都接触到有关气温方面的信息,在天气预报中也经常看到负数,其实他们已经直观地感受到这些数是用来表示零下温度的。对于这些本人预设教案时有所考虑,但课堂上学生反馈的情况来看,学生比想象的知道的要多得多。特别是展开环节用温度切入教学时还安排详细的认识温度计环节,课中才发现学生其实在科学课早已会熟练的应用温度计了,完全没有必要安排这样的学习环节。再如我让学生举例:在生活中,在那里还见过象这样负几的数时,学生竟然举到电池的正、负,尽管这一现象也很好解释,并不产生对本课学习的困扰,但也实实在在是我课前完全没有想到的。可见,课前的预设还要多方面了解学生,多角度思考问题。

三、自身的教学机智有待提高。

如在教学中,发现了预设的过于详细,学生的学习起点定位过低,还有上面所提的认识温度计内容学生已经掌握等,显然应该要调整一下教学的进度内容。可是在课中并没有进行调整,显得课堂学习安排过于简单,时间也比较松散。课后反思,在课中加入摄氏度和华氏度的互化比较合适。首先,西方国家当前就使用华氏度,对面向世界当代孩子来说,这也将成为必备知识。其次,温度计上就有摄氏度和华氏度两种刻度,课堂上又有时间,方便穿插这一内容的学习,同时也增强了课外知识,也能拓宽孩子的视野。

29196