教案吧 > 小学教案 > 六年级教案 >

有关六年级下册数学教案

时间: 新华 六年级教案

教案可以帮助教师及时了解学生的学习情况和学习成果,从而针对性地调整教学策略。写好有关六年级下册数学教案要注意什么?小编给大家分享有关六年级下册数学教案,希望对大家有所帮助。

有关六年级下册数学教案篇1

教学内容:

课本第99页例9和“练一练”,练习十六第7-10题。

教学目标:

懂得商业打折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题相同,并能正确地解答这类应用题。

教学重点:

按折扣进行计算。

教学难点:

对折扣的理解,并正确列出算式。

课前准备:

课件

教学过程:

一、创设情境,引入新课

春节假期是人们旅游和购物的好时机,许多商家都看准这一机会,搞了许多促销活动。课前我让同学们去了解一些商家的促销手段,有谁来向大家介绍一下你了解到的信息。

刚才很多同学都说出了一个新的词:打“折”。同学们所说的“打八折、打五折、打七六折、买一赠一、买四赠一”等都是商家的一种促销手段——打“折”。

二、实践感知,探究新知

1、提问:看到“打折”两个字,你会想到什么?

学生全班交流。

小结:工厂和商店有时要把商品减价,按原价的百分之几出售。这种减价出售通常叫做打“折”出售。

出示:华联超市的毛衣打“六折”出售。

提问:这句话是什么意思?那如果打“五折”是什么意思?打“八折”呢?

小结:“几折”就是十分之几,也就是百分之几十。

提问:一件衬衫打“八五折”出售是什么意思?打“七六折”呢?

质疑:刚才很多同学课前了解到的的信息中都有打“折”一词,现在请你说说你了解到的信息是什么意思?

学生交流课前搜集到的有关打折信息的意思。

提问:说一说下面每种商品打几折出售。

①一辆汽车按原价的90%出售。

②一座楼房按原价的96%出售。

③一只旧手表按新手表价格的80%出售。

2、教学例9。

学生自己读题。

出示例9的场景图。让学生说说从图中获取到哪些信息。

提问:你知道“所有图书一律打八折销售”是什么意思吗?

提问“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?

学生独立尝试。

全班交流算式和思考过程

解:设《趣味数学》的原价是ⅹ元。

ⅹ×80%=12

ⅹ=12÷0.8

ⅹ=15

答:《趣味数学》的原价是15元。

3、引导检验,沟通联系。

启发:算出的结果是不是正确?你会不会对这个结果进行检验?

先让学生独立进行检验,再交流交验方法。

启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。

4、指导完成“练一练”。

先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的相等关系?你又是怎样检验的?

三、巩固练习

1、做练习十六第7题。

指名口答。

2、做练习十六第8题。

让学生独立解答,再对学生解答的情况适当加以点评。

四、课堂总结

提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?

五、布置作业

练习十六第9、10题。

有关六年级下册数学教案篇2

单元目标:

1、使同学认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。

使同学理解求圆柱的侧面积和外表积的计算方法,并会正确计算。

使同学理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。

单元重点:

掌握圆柱的外表积的计算方法和圆柱、圆锥体积的计算公式。

单元难点:

圆柱、圆锥体积的计算公式的推导1、圆柱

(1)圆柱的认识

教学内容:教科书第10—12页圆柱的认识,练习二的第1—4题.

教学目标:

1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各局部的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

2、培养同学细致的观察能力和一定的空间想像能力。

3、激发同学学习的兴趣。

教学重点:认识圆柱的特征。

教学难点:看懂圆柱的平面图。

教学过程:

一、复习

1.已知圆的半径或直径,怎样计算圆的周长?(指名同学回答,使同学熟悉圆的周长公式:C=2πr或C=πd)

2.求下面各圆的周长(教师依次出示题目,然后指名同学回答,其他同学评判答案是否正确)

(1)半径是1米(2)直径是3厘米

(3)半径是2分米(4)直径是5分米

二、认识圆柱特征

1.整体感知圆柱

(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、平安、可滚动……)

(2)找找圆柱,请同学找出生活中圆柱形的物体。

2.圆柱的外表

(1)摸摸圆柱。请同学摸摸自身手中圆柱的外表,说说发现了什么?

(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)

3.圆柱的高

(1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导同学考虑:药水水柱的高低和水柱的什么有关?

(2)引导小结:水柱的高低和水柱的高有关.

(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)

(4)讨论交流:圆柱的高的特点。

①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?

②初步感知:面对圆柱的高,你想说些什么?

归纳小结并板书:圆柱的高有无数条,高的长度都相等。

③深化感知:面对这数不清的高,丈量哪一条最为简便?

老师引导同学操作分析,得出丈量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.

4.圆柱的侧面展开(例2)

(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.

反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?

┌长方形

板书:沿高剪┤斜着剪:平行四边形

└正方形

强调:我们先研究具有代表性的长方形与圆柱的关系.

(2)寻求发现.展开的长方形的长和宽与圆柱的关系.

①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

②同学再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化生长方形长和宽的过程。)

③同学交流后说出自身的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

(3)延伸发现.展开的平行四边形的底和高和正方形的边长与圆柱的关系。

①讨论:平行四边形能否通过什么方法转化生长方形?

课件显示:平行四边形通过割补转变生长方形,再还原成圆柱侧面的动画过程。

②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?

③引导小结:不论侧面怎样剪,得到各种图形,都能通过割补的方法转化生长方形.其中正方形是特殊的长方形.

三、巩固练习

1.做第11页“做一做”的第2题。

2.做第15页练习二的第3题。

教师行间巡视,对有困难的同学和时辅导。

3.做第15页练习二的第4题。

四、安排作业

完成一课三练P15的1、2题。

板书:

┌长方形

沿高剪┤斜着剪:平行四边形

└正方形

圆柱的底面周长→长方形的长

圆柱的高→长方形的宽

有关六年级下册数学教案篇3

一、教学目标:

1、首先带动课堂气氛

2、教会学生什么是面积。

3、学习圆柱体侧面积和表面积的含义。

4、能够求圆柱的侧面积和表面积的方法。

二、教学重点:

动手操作展开圆柱的侧面积

三、教学难点:

圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

四、教具准备:

圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。

五、教学过程:

(一)、创设情境,引起兴趣。

出示:牛奶盒,纸箱,可比克。

提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

(2)制作这些包装盒,至少需要多大面积的材料?(指名说)

师:谁能说说上一节课你学过圆柱体的哪些知识?

生:........

师:请同学们拿出你自制的圆柱体模型,动手摸一摸

生:动手摸圆柱体

师:谁能说一说你摸到的是哪些部分?

生:.......

师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

(二)、探索交流,解决问题。

圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)

1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。

2.操作活动:

(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流

3.小组交流能用已有的知识计算它的面积吗?

4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)

重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

板书:

长方形的面积=长×宽

↓↓↓

圆柱的侧面积=底面周长×高

所以,圆柱的侧面积=底面周长×高

S侧=C×h

如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

师:如果圆柱展开是平行四边形,是否也适用呢?

学生动手操作,动笔验证,得出了同样适用的结论。

(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

(四)、练习

求圆柱的侧面积(只列式不计算)

1。底面周长是1.6米,高是0.7米

2。底面直径是2分米,高是45分米

3。底面半径是3.2厘米,高是5分米

(五)研究圆柱表面积

1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)

2、动画:圆柱体表面展开过程

3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)

(六),巩固应用,内化提高

1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

六、教学结束:

布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。

有关六年级下册数学教案篇4

教学目标:

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:

综合应用所学知识解决实际问题。

教学过程:

一、复习回顾

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的&39;体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

有关六年级下册数学教案篇5

教学内容:

教材2-4页例题及“做一做”的内容。

教学目标:

1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3、情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

教学重点:

初步认识正数和负数以及读法和写法。

教学难点:

理解0既不是正数,也不是负数。

教具学具:

温度计、练习纸。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)

②向前走200米(向后走200米)

③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。

②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。

④零上10摄氏度(零下10摄氏度)。

3、谈话:老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

例1

1、认识温度计,理解用正负数来表示零上和零下的温度。

看教材:首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。

了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。

①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。

3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?

3、我们再来看x疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。

面以上的高度,-155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

2、学生交流、讨论。

3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

五、联系生活,巩固练习

1、练习一第2、3题

2、你知道吗:水沸腾时的温度是____。水结冰时的温度是____。地球表面的最低温度是

3、讨论生活中的正数和负数

(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)

(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

六、课堂小结

这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

七、布置作业

《家庭作业》第1页的练习。

有关六年级下册数学教案篇6

设计说明

“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。

1、借助定义、实例,渗透函数思想。

教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。

2、借助具体情境,在观察、讨论中发现规律。

教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。

3、借助已有的学习经验总结反比例关系式。

因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。

课前准备

教师准备PPT课件

学生准备玻璃杯直尺水实验记录单

教学过程

⊙复习引入

1、复习。

课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?

(1)引导学生独立解决问题。

(2)提问:你是根据什么公式进行计算的?

预设

生:圆柱的体积=底面积×高。

(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?

预设

生1:底面积=圆柱的.体积÷高,高=圆柱的体积÷底面积。

生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。

2、引入课题。

如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)

设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。

⊙探究新知

1、在具体情境中初步感知成反比例关系的量。

(1)课件出示教材47页例2,引导学生结合问题进行观察。

师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。

杯子的底面积与水的高度的变化情况如下表。

杯子的底面积/cm2

10

15

20

30

60

水的高度/cm

30

20

15

10

5

①表中有哪两种量?

②水的高度是怎样随着杯子底面积的大小变化而变化的?

③相对应的杯子的底面积与水的高度的乘积分别是多少?

(2)学生思考后在小组内交流。

(3)全班交流。

预设

生1:有杯子的底面积和水的高度这两种量。

生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。

生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。

(4)明确什么是成反比例的量。

因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。

30852