教案吧 > 初中教案 > 七年级教案 >

七年级数学设计教案

时间: 新华 七年级教案

编写教案可以使教师在教学前有充分的准备,免除临时抱佛脚的情况出现。写好七年级数学设计教案有什么技巧?这里给大家整理七年级数学设计教案,方便大家学习。

七年级数学设计教案篇1

学习目标:

1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。

2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。

3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。

学习重点:

理解有序数对的概念,用有序数对来表示位置。

学习难点:

理解有序数对是有序的并用它解决实际问题,

学习过程:

一、学前准备

预习疑难

二、探索与思考

1、观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?

2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?

(1)如何找到6排3号这个座位呢?

(2)在电影票上6排3号与3排6号有什么不同?

(3)如果将6排3号简记作(6,3),那么3排6号如何表示?

(4)(5,6)表示什么含义?(6,5)呢?

3、结论:

①可用排数和列数两个不同的数来确定位置;

②排数和列数的先后顺序对位置有影响。

4、概念:

有序数对:用含有的词表示一个位置,其中各个数表示不同的含义,我们把这种两个数a与b组成的数对,叫做有序数对,记作(a,b)。

三、理解与运用

用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.你有没有见过用其他的方式来表示位置的?

四、学习体会:

1、本节课你有哪些收获?你还有哪些疑惑?

2、预习时的疑难解决了吗?

五、自我检测

1、小游戏:

怪兽吃豆豆是一种计算机游戏,图中的标志表示怪兽先后经过的几个位置.如果用(1,2)表示怪兽按图中箭头所指路线经过的第3个位置.那么你能用同样的方表示出图中怪兽经过的其他几个位置吗?

2、有趣玩一玩:

中国象棋中的马颇有骑士风度,自古有马踏八方之说,如图六(1),按中国象棋中马的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从日字形长方形的对角线的一个端点到另一个端点,不能多也不能少。

六、方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

七年级数学设计教案篇2

《1.2有理数》教学设计

【学习目标】:

1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;

2、了解分类的标准与集合的含义;

3、体验分类是数学上常用的处理问题方法;

【学习重点】:正确理解有理数的概念

【学习难点】:正确理解分类的标准和按照一定标准分类

《1.2.1有理数》同步练习含答案

5.对-3.14,下面说法正确的是(B)

A.是负数,不是分数

B.是负数,也是分数

C.是分数,不是有理数

D.不是分数,是有理数

《1.2有理数》同步练习含答案解析

8.如果a与1互为相反数,则a=()

A.2B.﹣2C.1D.﹣1

【考点】绝对值;相反数.

【分析】根据互为相反数的定义,知a=﹣1,从而求解.

互为相反数的定义:只有符号不同的两个数叫互为相反数.

【解答】解:根据a与1互为相反数,得

a=﹣1.

所以a=1.

故选C.

【点评】此题主要是考查了相反数的概念和绝对值的性质.

9.若1﹣a=a﹣1,则a的取值范围是()

A.a>1B.a≥1C.a<1D.a≤1

【考点】绝对值.

【分析】根据1﹣a=a﹣1得到1﹣a≤0,从而求得答案.

【解答】解:∵1﹣a=a﹣1,

∴1﹣a≤0,

∴a≥1,

故选B.

【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.

七年级数学设计教案篇3

学习目标

1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛

2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.

重点难点

同位角、内错角、同旁内角的特征

教学过程

一·导入

1.指出右图中所有的邻补角和对顶角?

2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?

若都不是,请自学课本P6内容后回答它们各是什么关系的角?

二·问题导学

1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。

2. 如图⑶是"直线 , 被直线 所截"形成的图形

(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。

(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。

(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。

3.找出图⑶中所有的同位角、内错角、同旁内角

4.讨论与交流:

(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?

(2)归纳总结同位角、内错角、同旁内角的特征:

同位角:"F" 字型,"同旁同侧"

"三线八角" 内错角:"Z" 字型,"之间两侧"

同旁内角:"U" 字型,"之间同侧"

三·典题训练

例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?

小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;

两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;

自我检测

⒈如图⑷,下列说法不正确的是( )

A、∠1与∠2是同位角 B、∠2与∠3是同位角

C、∠1与∠3是同位角 D、∠1与∠4不是同位角

⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.

⒊如图⑹, 直线DE截AB, AC, 构成八个角:

① 指出图中所有的同位角、内错角、同旁内角.

②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?

⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.

②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)

相交线与平行线练习

课型:复习课: 备课人:徐新齐 审核人:霍红超

一.基础知识填空

1、如图,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如图,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如图,∵∠D=∠DCF(已知)

∴_____//______( )

6、如图,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2题) (第5、6题) (第7题) (第9题)

7、如图,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

二.基础过关题:

1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。

证明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代换 )

∴BD∥CE( )。

2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。

证明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.

七年级数学设计教案篇4

一、知识与技能

(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。

(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

二、过程与方法

通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力。

三、情感态度与价值观

培养学生积极参与探索活动,体会数形结合的方法。

教学重、难点与关键

1.重点:正确理解绝对值的概念,能求一个数的绝对值。

2.难点:正确理解绝对值的几何意义和代数意义。

3.关键:借助数轴理解绝对值的几何意义,根据绝对值定义和相反数的概念,理解绝对值的代数意义。

四、教学过程

1.复习提问,新课引入

2.什么叫互为相反数?

3.在数轴上表示互为相反数的两个点和原点的位置关系怎样?

五、新授

在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向。

1.观察课本第11页图1.2-5,回答:

(1)两辆汽车行驶的路线相同吗?

(2)它们行驶路程的远近相同吗?

这两辆车行驶的路线不同(方向相反),但行驶的路程的远近相同,都是10km.

课本图1.2-5中表示-10的&39;点B和表示10的点A离开原点的距离都是10,我们就把这个距离10叫做数-10、10的绝对值。

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│。

这里的数a可以是正数、负数和0.

七年级数学设计教案篇5

【教学目标】

知识与技能

了解并掌握数据收集的基本方法。

过程与方法

在调查的过程中,要有认真的态度,积极参与。

情感、态度与价值观

体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

【教学重难点】

重点:掌握统计调查的基本方法。

难点:能根据实际情况合理地选择调查方法。

【教学过程】

一、讲授新课

像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(individual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize)。

例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling)。

师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。

学生小组合作、讨论,学生代表展示结果。

教师指导、评论。

师:除了问卷调查外,我们还有哪些方法收集到数据呢?

学生小组讨论、交流,学生代表回答。

师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?

(1)你班中的同学是如何安排周末时间的?

(2)我国濒临灭绝的植物数量;

(3)某种玉米种子的发芽率;

(4)学校门口十字路口每天7:00~7:10时的车流量。

学生讨论,并举手回答。

师:采用何种方法一定要结合实际问题来定。在解决问题(1)的过程中,不但要同学们动手调查,并且对全班所有学生都要调查,像这样对全体对象进行的调查叫做全面调查(普查)。同学们还知道哪些数据的收集需要全面调查吗?

学生讨论,并回答。

生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等。

师:很好!下列问题也适合采用普查方式来收集数据吗?

(1)了解某批次炮弹的杀伤半径;

(2)某一天全国牛肉的平均价格;

(3)一批罐头产品的质量检查;

(4)对某条河的河水的污染情况的调查。

学生讨论、分析,并举手回答。

师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

二、例题讲解

【例】(1)电视台准备在某市调查一电视节目的收视率,需要对所有看电视的人进行全面调查吗?对一所中学学生的调查结果能否作为该节目的收视率?

(2)对本年级同学是否喜欢某电视节目调查的结果,能代表学校全体同学的意见吗?如果不适用,应如何改进调查方法?

解:(1)电视台不可能对每个看电视的人进行全面调查。对这?所中学学生的调查结果不能作为该节目的收视率,因为调查对象只有中学生,缺乏代表性;

(2)对本年级同学是否喜欢某电视节目的调查结果不能代表

《6。2普查与抽样调查》课时练习

2。下列事件中最适合使用普查方式收集数据的是()

A。为制作校服,了解某班同学的身高情况

B。了解全市初三学生的视力情况

C。了解一种节能灯的使用寿命

D。了解我省农民的年人均收入情况

答案:A

解析:解答:A。人数不多,适合使用普查方式,所以A正确;

B。人数较多,结果的实际意义不大,因而不适用普查方式,所以B错误;

C。是具有破坏性的调查,因而不适用普查方式,所以C错误;

D。人数较多,结果的实际意义不大,因而不适用普查方式,所以D错误。

故选:A。

分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似。此题考查了抽样调查和全面调查,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查选用普查。

《6。2普查与抽样调查》基础巩固

1、(知识点1)要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()

A、选取该校一个班级的学生

B、选取该校50名男生

C、选取该校50名女生

D、随机选取该校50名九年级学生

2、(题型二)下列调查适合用抽样调查的是()

A、了解义乌电视台“同年哥讲新闻”栏目的收视率

B、了解禽流感H7N9确诊病人同机乘客的健康状况

C、了解某班每个学生家庭电脑的数量

D、“神七”载人飞船发射前对重要零部件的检查

3、(题型三)为了了解某市八年级男生的身高,有关部门准备对200名八年级男生的身高做调查,以下调查方案中比较合理的是()

A、查阅外地200名八年级男生的身高统计资料

B、测量该市一所中学200名八年级男生的身高

C、测量该市两所农村中学各100名八年级男生的身高

D、在该市市区任选两所中学,农村任选两所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高

七年级数学设计教案篇6

一、指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

七年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。__班均是刚刚接手,对班上学生不了解,从原科任老师处得知:两班比较,__班优生稍多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。__班学生单纯,有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教材分析

第十一章:一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十二章:数据的描述通过对实际问题的讨论,使学生体会数据的作用,更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息,本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息。教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。

第十三章:全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十四章:轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十五章:整式在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

四、教学措施

1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素养。

5、教学中注重自主学习、合作学习、探究学习。

七年级数学设计教案篇7

教学目的:

(一)知识点目标:

1.了解正数和负数在实际生活中的应用。

2.深刻理解正数和负数是反映客观世界中具有相反意义的理。

3.进一步理解0的特殊意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。

2.熟练地用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:能用正、负数表示具有相反意义的量。

教学难点:进一步理解负数、数0表示的量的意义。

教学方法:小组合作、师生互动。

教学过程:

创设问题情境,引入新课:分小组派代表,注意数学语言规范。

1.认真想一想,你能用学过的知识解决下列问题吗?

某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是 毫米,加工要求直径可以是 毫米,最小可以是 毫米。

2.下列说法中正确的( )

A、带有“一”的数是负数; B、0℃表示没有温度;

C、0既可以看作是正数,也可以看作是负数。

D、0既不是正数,也不是负数。

[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。

讲授新课:

例1. 仔细找一找,找了具有相反意义的量:

甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。

例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;

(2)2001年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,

英国减少3.5%,意大利增长0.2%,中国增长7.5%。

写出这些国家2001年商品进出口总额的增长率。

例3. 下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?

例4. 小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?

复习巩固:练习:课本P6 练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题1.1 的第3、6、7、8题。

活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?

课后反思:————

七年级数学设计教案篇8

教学目标

1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3.通过加法运算练习,培养学生的运算能力。

教学建议

(一)重点、难点分析

本节课的重点是依据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的计算.

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.

(二)知识结构

(三)教法建议

1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如

-3-4表示-3、-4两数的代数和,

-4+3表示-4、+3两数的代数和,

3+4表示3和+4的代数和

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如

12-5+7 应变成 12+7-5,而不能变成12-7+5。

七年级数学设计教案篇9

人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案

课题:10.1平方根(1)

教学目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;

3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。

教学难点根据算术平方根的概念正确求出非负数的算术平方根。

知识重点算术平方根的概念。

教学过程(师生活动)设计理念

情境导入同学们,20__年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度(米/秒)而小于第二宇宙速度:(米/秒).、的大小满足.怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容.

这节课我们先学习有关算术平方根的概念.

请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对

本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知

幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.

提出问题

感知新知多媒体展示教科书第160页的问题(问题略),然后提出问题:

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数_的值.

练习:教科书第160页的填表.练习:教科书第160页的填表.这个问题抽象成数学问题

就是已知正方形的面积求正方形的边长,这与学生以前学过的

已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

归纳新知上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.

一般地,如果一个正数_的平方等于a,即=a,那么这个正数_叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式=a(_≥0)中,规定_=.

思考:这里的数a应该是怎样的数呢?

试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.

想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根,因为……也可以写成,读作“二次根号a”。

算术平方根的概念比较抽象,原因之一是学生对石这个新

的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识.

应用新知例.(课本第160页的例1)求下列各数的算术平方根:

(1)100;(2)1;(3);(4)0.0001

建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数_,使=100,因为

例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果.

探究拓展提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

教科书在边空提出问题“小正方形的对角线的长是多少”,

这是为在10.3节介绍在数轴上画出表示的点做准备.

小结与作业

课堂小结提问:1、这节课学习了什么呢?

2、算术平方根的`具体意义是怎么样的?

3、怎样求一个正数的算术平方根?

布置作业3、必做题:课本第167页习题10.1第1、2、3题;168页第11题。

4、备选题:

(1)判断下列说法是否正确:

i.是25的算术平方根;

ii.一6是的算术平方根;

iii.0的算术平方根是0;

iv.0.01是0.1的算术平方根;

⑤一个正方形的边长就是这个正方形的面积的算术平方根.

(2)下列各式哪些有意义,哪些没有意义?

①-②③④

(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。

在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根.

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题.

通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练.

通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.

七年级数学设计教案篇10

教学建议

一、重点、难点分析

本节教学的重点是掌握三元一次方程组的解法,教学难点是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础.

1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组.

2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程.

3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法.

4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未知数值来.

5.解一次方程组的消元“转化”基本思想,可以推广到“四元”、“五元”等多元方程组,这是今后要学习的内容.

二、知识结构

三、教法建议

1.解三元一次方程组时,由于方程较多,学生容易出错.因此,应提醒学生注意,在消去一个未知数得出比原方程组少一个未知数的二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.

2.消元时,先要考虑好消去哪一个未知数.开始练习时,可以先把要消去的未知数写出来(如教科书在分析中所写的那样),然后再进行消元.

在例2中,如果先确定消去,那么这三个方程两两分组的方法有3种;①与②,①与③,②与③.我们可以从中任选2种消去.这里特别要注意选定2种后,必须消去同一个未知数.如果违背了这一点,所得的两个新方程虽然各含两个未知数,但由它们组成的方程组仍然含有三个未知数,这在实际上没有消元.

教学设计示例

一、素质教育目标

(一)知识教学点

1.知道什么是三元一次方程.

2.会解某个方程只有两元的简单的三元一次方程组.

3.掌握解三元一次方程组过程中化三元为二元或一元的思路.

(二)能力训练点

1.培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.

2.培养学生的计算能力、训练解题技巧.

(三)德育渗透点

渗透“消元”的思想,设法把未知数转化为已知.

(四)美育渗透点

通过本节课的学习,渗透方程恒等变形的数学美,以及方程组解的奇异美.

二、学法引导

1.教学方法:观察法、讨论法、练习法.

2.学生学法:三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性较强,因此在解题前必须认真观察方程组中各个方程的系数特点,选择好先消去的“元”,这是决定解题过程繁简的关键.一般来说应先消去系数最简单的未知数.

三、重点?难点?疑点及解决办法

(一)重点

使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.

(二)难点

针对方程组的特点,选择最好的解法.

(三)疑点

如何进行消元.

(四)解决办法

加强理解二元及三元一次方程组的解题思想是“消元”,故在求解中为便于计算应选择系数较简单的未知数将它消去.

四、课时安排

一课时.

五、教具学具准备

投影仪、自制胶片.

六、师生互动活动设计

1.教师先复习解二元一次方程组的解题思想及办法,让学生充分理解方程组的消元思想及方法.

2.教师由引例引出三元一次方程组,由学生思考、讨论后解决如何消三元变二元,教师讲解、小结.

3.由学生尝试,解决例题.

4.学生练习,教师小结、讲评.

七、教学步骤

(一)明确目标

本节课将学习如何求三元一次方程组的解.

(二)整体感知

通过复习二元一次方程组的解题思想,从而类推出三元一次方程组的解题思想及解题方法,让学生牢牢抓住利用消元的思想化三元为二元,再化二元为一元的办法来求解.

(三)教学过程

1.复习导入、探索新知

(1)解二元一次方程组的基本方法有哪几种?

(2)解二元一次方程组的基本思想是什么?

甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.

题目中有几个未知数?含有几个相等关系?你能根据题意列出几个方程?

学生活动:回答问题、设未知数、列方程.

这个问题必须三个条件都满足,因此,我们把三个方程合在一起,写成下面的形式:

这个方程组有三个未知数,每个方程的未知数的次数都是1,并且一共有三个方程,像这样的方程组,就是我们要学的三元一次方程组.

怎样解这个三元一次方程组呢?你能不能设法消云一个或两个未知数,把它化成二元一次方程组或一元一次方程?

学生活动:思考、讨论后说出消元方案.

教师对学生的回答给予肯定或否定,纠正后说出消元方案:依照代入法,由较简单的方程②,可得④,进一步将④分别代入①和③中,就可消去,得到只含、的&39;二元一次方程组.

解:由②,得④

把④代入①,得⑤

把④代入③,得⑥

⑤与⑥组成方程组

解这个方程组得

把代入④,得

注意:a.得二元一次方程组后,解二元一次方程的过程在练习本上完成.

b.得,后,求,要代入前面最简单的方程④.

c.检验.

这道题也可以用加减法解,②中不含,那么可以考虑将①与③结合消去,与②组成二元一次方程组.

学生活动:在练习本上用加减法解方程组.

【教法说明】通过一题多解,不仅能开阔学生的思维,培养学生的兴趣,而且,可以巩固解方程组时通过“消元”把未知转化为已知的基本思想.

2.学生尝试解决例题

例1?解方程组

学生活动:独立分析、思考,尝试解题,有的学生可能用代入法解,有的学生可能用加减法解,选一个用加减法解的学生板演,然后,让用代入法的学生比较哪种方法简单.

解:②×3+③,得?④

①与④组成方程组

解这个方程组,得

把,代入②,得

归纳:这个方程组的特点是方程①不含,而②、③中的系数绝对值成整数倍关系,显然用加减法从②、③中消去后,再与①组成只含、的二元一次方程组的解法最为合理.而用代入法由①得到的式子含有分母,代入②、③较繁.

【教法说明】有了前例的基础,让学生独立尝试解题,可以培养他们分析问题、解决问题的能力;在解题后归纳题目的特点为,点明消元方法和消元对象,更有助于学生探索方法、掌握技巧.

3.尝试反馈,巩固知识

练习:P30(1)

学生活动:独立完成练习后,同桌、前后桌之间按不同解法的同学交换,看哪种方法最简单.

4.变式训练要,培养能力

补例:解方程组

学生活动:独立完成.

【教法说明】此方程组中方程①、③中、的系数完全相同,用③-①可直接得到,再把代入②可求,代入①可求.这道题直接化三元为一元,能使学生体会到解法技巧的重要性,觉得数学问题真是奥妙无穷!

(四)总结、扩展

1.解三元一次方程组的基本思想是什么?方法有哪些?

2.解题前要认真观察各方程的系数特点,选择最好的解法,当方程组中某个方程只含二元时,一般的,这个方程中缺哪个元,就利用另两个方程用加减法消哪个元;如果这个二元方程系数较简单,也可以用代入法求解.

3.注意检验.

【教法说明】这样总结,既突出了本课重点,又突出了本节内容中例题、习题的特点?某个方程只含两元,使学生在以后解题时有很强的针对性.

八、布置作业

(一)必做题:P31A组1.

(二)选做题:解方程组

(三)思考题:课本第32页“想一想”.

【教法说明】作业

(一)是为了巩固本节所学知识;作业

(二)有很强的技巧性,可培养学生兴趣;作业

(三)培养学生分析问题、解决问题的能力.

七年级数学设计教案篇11

一、知识与技能

理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算、

二、过程与方法

经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、

三、情感态度与价值观

体会数学与现实生活的联系,提高学生学习数学的兴趣、

教学重点、难点与关键

1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、

2、难点:省略括号和加号的加法算式的运算方法、

3、关键:理解加减混合运算可以统一成加法,?以及正确理解省略加号的有理数加法形式、教具准备

投影仪、

四、教学过程

一、复习提问,引入新课

1、叙述有理数的加法、减法法则、

2、计算、

(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);

(4)(—8)—6;(5)5—14、

五、新授

我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、

六、巩固练习

1、课本第24页练习、

(1)题是已写成省略加号的代数和,可运用加法交换律、结合律、

原式=1+3—4—0。5=0—0。5=—0。5

(2)题运用加减混合运算律,同号结合、

原式=—2。4—4。6+3。5+3。5=—7+7=0

(3)题先把加减混合运算统一为加法运算、

原式=(—7)+(—5)+(—4)+(+10)

=—7—5—4+10(省略括号和加号)

=—16+10

=—6

七、课堂小结

有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加、总之要认真观察,灵活运用运算律、

八、作业布置

1、课本第25页第26页习题1、3第5、6、13题、

九、板书设计:

第四课时

1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便、

归纳:加减混合运算可以统一为加法运算、

用式子表示为a+b—c=a+b+(—c)、

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

本课教学反思

本节课主要采用过程教案法训练学生的听说读写。过程教案法的理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为。它包括写前阶段,写作阶段和写后修改编辑阶段。在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务。课堂是写作车间,学生与教师,学生与学生彼此交流,提出反馈或修改意见,学生不断进行写作,修改和再写作。在应用过程教案法对学生进行写作训练时,学生从没有想法到有想法,从不会构思到会构思,从不会修改到会修改,这一过程有利于培养学生的写作能力和自主学习能力。学生由于能得到教师的及时帮助和指导,所以,即使是英语基础薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心。

这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣,在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。

在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。

在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。

七年级数学设计教案篇12

教学目标

1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3,体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类

知识重点正确理解有理数的概念

教学过程(师生活动)设计理念

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。

问题1:观察黑板上的9个数,并给它们进行分类。

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’。

按照书本的说法,得出“整数”“分数”和“有理数”的概念

看书了解有理数名称的由来。

“统称”是指“合起来总的名称”的意思。

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。

2,教科书第10页练习。

此练习中出现了集合的概念,可向学生作如下的说明。

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业

1,必做题:教科书第18页习题1.2第1题

2,教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

七年级数学设计教案篇13

教学过程

一、目标展示

二、情景导入。

装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?

要解决这个问题,就要弄清楚平行的判定。

三、直线平行的条件

以前我们学过用直尺和三角尺画平行线,如图(课本P13图5、2—5)在三角板移动的过程中,什么没有变?

三角板经过点P的边与靠在直尺上的边所成的角没有变。

∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单地说:同位角相等,两条直线平行。

符号语言:∵∠1=∠2∴AB‖CD、

如图(课本P145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?

用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。”,可知这样画出的就是平行线。

学习目标一:了解平行线的概念、平面内两条直线的两种位置关系。

题组一:

1、叫做平行线。

如图:a与b互相平行,记作,a。

2、在同一平面内,两条直线的位置关系b只有与两种。

3、下列生活实例中:

(1)交通道路上的斑马线;

(2)天上的彩虹;

(3)阅兵队的纵队;

(4)百米跑道线,属于平行线的有。

学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。

题组二:

4、通过画图和观察,可得两个平行公理:

①、经过点,一条直线平行于已知直线;

②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b‖a,c‖a,则。

5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:

①、a与b没有公共点,则a与b;

②、a与b有且只有一个公共点,则a与b;

③、a与b有两个公共点,则a与b;

6、过一点画已知直线的平行线有()

A、有且只有一条;B、有两条;C、不存在;D、不存在或只有一条

教学设计

1、落实教学常规,践行学校《教师日常教学行为要求》。

2、优化教学策略,老师要真正尊重学生的学习主体地位,提升课堂教学的有效性。提倡“学先教后”,让学生“先看、先想、先说、先做”,老师依学定教,点拔引领,让学生在不断的“思考、交流、展示、应用”中内悟知识。提倡“当堂训练”,在教学设计中,要将运用知识解决问题形成能力的环节,当堂落实。力争当堂完成“双基”任务。

七年级数学设计教案篇14

一、教学内容

人教版一年级数学下册P43。

二、教学目标

1、通过具体的情境让学生感知100以内数的多少,会用“多一些、少一些、多得多、少得多”描述两个数之间的大小关系。

2、培养学生观察、分析、比较等多种能力,培养数感。

3、能在具体情境中把握数的相对大小关系,用自己的语言描述数之间的相对大小关系。

4、使学生感受到数学与生活的联系。

三、教学重难点

重点:结合生活实际,理解“多一些、少一些、多得多、少得多”等词语的含义并能运用词语表述。

难点:弄清“多一些、多得多”,“少一些、少得多”词语间的差别。

四、教学过程

(一)游戏导入

老师在纸上写一个数字,由一个学生当小老师点几个学生的学号来回答老师问题,由学生与老师之间的回答来引入多一些、少一些、多得多、少得多表示数的大小程度的词语。

(二)讲授新课

1、说一说,对比感悟

师:同学们,你们喜欢写字吗?今天动物王国里面有几个小动物也在写字(分别是小青蛙、小老鼠),看看他们有什么问题要我们解决的。

小青蛙写了14个字,小老鼠写了12个字,谁写的多?谁写的少?你知道他们之间的数量关系是怎么样的吗?(在这里引出多一些、少一些的知识点)

小青蛇看见他们在写字也加入他们的队伍,它写了72个字,那现在小青蛇和小青蛙、小老鼠他们之间的数量关系又是怎么样的呢?

(在这里引出多得多、少得多的知识点)

2、通过引导学生分析、比较、交流,加深了解

动物王国里面的国王看见他们那么爱好学习,于是给他们颁发了奖品(彩笔),奖品设为一等奖、二等奖和三等奖,让学生根据提示来说出答案,理解词语(多一些、多得多,少一些、少得多)的意思。

(三)举一反三,巩固应用

1、出示课本43页做一做

2、课本45页第4题

(四)闯关(运用知识)

咱们班的小朋友真聪明,老师看见你们表现很棒,给你们设了两个个难关,你们相信自己能闯关吗?

第一关比较时间

第二关比较价格

(五)做一做课本45页数学游戏

(六)这节课你学会了什么新知识?你能用今天的知识说一说身边的事物吗?

五、板书设计

()比()多一些()比()少一些

()比()多得多()比()少得多

七年级数学设计教案篇15

一、素质教育目标

(一)知识教学点

1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.

2.给出一个数,能求它的绝对值.

(二)能力训练点

在把绝对值的代数定义转化成数学式子的过程当中,培养学生运用数学转化思想指导思维活动的能力.

(三)德育渗透点

1.通过解释绝对值的几何意义,渗透数形结合的思想.

2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.

(四)美育渗透点

通过数形结合理解绝对值的`意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.

二、学法引导

1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)

三、重点、难点、疑点及解决办法

1.重点:给出一个数会求出它的绝对值.

2.难点:绝对值的几何意义,代数定义的导出.

3.疑点:负数的绝对值是它的相反数.

四、课时安排

2课时

五、教具学具准备

投影仪(电脑)、三角板、自制胶片.

六、师生互动活动设计

教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.

七、教学步骤

(一)创设情境,复习导入

师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,0及它们的相反数的点.

学生活动:一个学生板演,其他学生在练习本上画.

绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

(二)探索新知,导入新课

师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

学生活动:思考讨论,很难得出答案.

师:在数轴上标出到原点距离是6个单位长度的点.

学生活动:一个学生板演,其他学生在练习本上做.

师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

学生活动:产生疑问,讨论.

师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.

[板书]2。4绝对值(1)

针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环。

10616