教案吧 > 初中教案 > 七年级教案 >

七年级数学教案反思

时间: 新华 七年级教案

一份优秀的教案应该考虑到所需教具的准备,例如教学用具、实验器材、多媒体设备等,以确保教学的顺利进行。什么才算好的七年级数学教案反思?接下来给大家分享一些七年级数学教案反思,供大家参考。

七年级数学教案反思篇1

一、教学目标

【知识与技能】

了解数轴的概念,能用数轴上的点准确地表示有理数。

【过程与方法】

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】

在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点

【教学重点】

数轴的三要素,用数轴上的点表示有理数。

【教学难点】

数形结合的思想方法。

三、教学过程

(一)引入新课

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?

师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习

如图,写出数轴上点A,B,C,D,E表示的数。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:

课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

七年级数学教案反思篇2

一、学习与导学目标:

知识与技能:借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;

过程与方法:经历概念的生成、应用,体会相反数的意义,简化数的符号,学习观察、归纳、概括的策略与方法;

情感态度:通过师生、生生合作学习,促进交流,激发兴趣。

二、学程与导程活动:

A、准备活动:

1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

B、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)

3、从上述意义上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

C、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

结合前面相反数意义的量的学习,还可赋予-(-5)怎样的意义,从而帮助自己理解-(-5)=5吗?

4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

三、笔记与板书提纲:

课题应用举例中的2

活动引例应用举例中的4(学生练习),5

概念

四、练习与拓展选题:

1、教科书P18/3;

2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

七年级数学教案反思篇3

教学目的

1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

重点、难点

重点:工程中的工作量、工作的效率和工作时间的关系。

难点:把全部工作量看作“1”。

教学过程

一、复习提问

1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全

部工作量的多少?

2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成

全部工作量的多少?

3.工作量、工作效率、工作时间之间有怎样的关系?

二、新授

阅读教科书第18页中的问题6。

分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

2.怎样用列方程解决这个问题?本题中的等量关系是什么?

[等量关系是:师傅做的工作量+徒弟做的工作量=1)

[先要求出师傅与徒弟各完成的工作量是多少?]

两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2

师傅完成的工作量为= ,徒弟完成的工作量为=

所以他们两人完成的工作量相同,因此每人各得225元。

三、巩固练习

一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现

由甲独做10小时;

请你提出问题,并加以解答。

例如 (1)剩下的乙独做要几小时完成?

(2)剩下的由甲、乙合作,还需多少小时完成?

(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

四、小结

1.本节课主要分析了工作问题中工作量、工作效率和工作时间之

间的关系,即 工作量=工作效率×工作时间

工作效率= 工作时间=

2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

五、作业

教科书习题6.3.3第1、2题。

七年级数学教案反思篇4

教学目标:

1.了解正数与负数是实际生活的需要.

2.会判断一个数是正数还是负数.

3.会用正负数表示互为相反意义的量.

教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.

教学难点:负数的引入.

教与学互动设计:

(一)创设情境,导入新课

课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.

(二)合作交流,解读探究

举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.

想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).

活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.

讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.

总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.

(三)应用迁移,巩固提高

【例1】举出几对具有相反意义的量,并分别用正、负数表示.

【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.

【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?

【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()

A.3B.-3C.-2.5D.-7.45

【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.

(四)总结反思,拓展升华

为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.

1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

星期日一二三四五六

(元)+16+5.0-1.2-2.1-0.9+10-2.6

(1)本周小张一共用掉了多少钱?存进了多少钱?

(2)储蓄罐中的钱与原来相比是多了还是少了?

(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.

2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.

(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.

(五)课堂跟踪反馈

夯实基础

1.填空题:

(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.

(2)如果4年后记作+4年,那么8年前记作年.

(3)如果运出货物7吨记作-7吨,那么+100吨表示.

(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.

2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.

(1)用正数或负数记录下午1时和下午5时的水位;

(2)下午5时的水位比中午12时水位高多少?

提升能力

3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.

(六)课时小结

1.与以前相比,0的意义又多了哪些内容?

2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

七年级数学教案反思篇5

教学目标

1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节的教学重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

(三)教法建议

1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6.如果因数是带分数,一般要将它化为假分数,以便于约分。

七年级数学教案反思篇6

一、教学要求

1、七年级(上)数学教材是全套教科书的基础内容,要注意教学目标的把握,注意好与小学知识的衔接,初中数学教学计划。教材虽然淡化了有关概念的教学,但教师要注意分寸的把握,了解教科书的变化及用意。要抓住方程这条主线,带动有关知识的学习。相关整式知识要根据需要把握。对“图形认识初步”的教学要求也应突出基础性,要注意丰富学习资源,帮助学生建立空间观念。要注意“阅读与思考”“观察与猜想”“实验与探究”“信息技术应用”等内容的利用,适时安排,加深认识,开阔眼界,增长见识,提高运用能力。练习要适当、适度、适时,如有理数的运算,一元一次方程的解法,列式子表示数量关系,一些基本几何图形的表示方法,不同几何语言的相关转化等基础知识和基本技能,对后续学习具有重要作用,因此要注意掌握,打好学生基础。对课本中练习题,“复习巩固”“综合应用”“拓广探索”要把握练习的时机,对一些情境性强,建立模型要求高的习题,要注意培养兴趣,不搞一刀切。计算器运算使用要求学生学会,但不能代替笔算能力。总之,要打好基础,防止分化,落实目标。

2、八年级(上)人教版教材,要求教师尊重教材的编写体系,对一些七年级学习过而掌握起来有难度的内容[如不等式(组)的应用问题],在八年级教师要作必要的补充,加强必要的练习,要加强数学与生产实践的联系,加强“全等三角形”“轴对称”等图形的认识与了解。注意发展统计观念,培养统计意识。课堂教学中,要注意从身边的实际问题出发,和学生一起去探索,去发现数学问题。要妥善处理好落实基础与培养能力的关系,努力提高课堂教学的效率,反对把大部分练习留在课外,加重学生过重学习负担的做法,对单元练习与检测,要处理好分散与集中的关系,及时地查漏补缺。教师要研究各种课型的上法,限度地大面积巩固学生基础,且使学生用数学解决问题的能力,迈上一个新台阶。

3、九年级(上)数学教学,要努力处理好落实双基与培养创新精神与实践能力的关系,处理好学科知识内的逻辑联系,处理好学科知识与科技、社会生活、学生实际以及其他学科之间的关系。本学期要上完上册的六章内容,这六章内容要注意基础性和应用性,在课时安排上充分保证新授课的时间。防止偏、怪、难的重复训练,部分九(下)内容,如“直角三角形的边角关系”、“二次函数”部分内容适当提前,让出时间给下学期的全面复习。要注意不同学生的不同要求,对学有余力的学生,要加强指导,让其更好的发展。对大面积而言要注意降低起点,加强基础,加强主干知识的练习与巩固。

二、教学进度

七年级:期中考试前可授完第二章第三节。一般不落后于第二章第二节(考虑假期),期中考试后授完本册全部内容。

八年级:期中考试前可授完第十三章第二节或第三节,期中考试后授完本册全部内容。

九年级:期中考试前根据各校进度授完九(上)三分之二左右内容,期中考试后授至九(下)第二章部分内容(具体以市调考进度为准)。

三、教研专题

1、数学教学目标分解与活动单元的设计与研究。

2、课型研究。

3、教学模式与复习效益研究。

4、中考数学命题研究。

七年级数学教案反思篇7

教学目标:

通过数轴,使学生理解绝对值的概念及表示方法

1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算

2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法

3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力

教学重点:

理解绝对值的概念、意义,会求一个数的绝对值

教学难点:

绝对值的概念、意义及应用

教学方法:

探索自主发现法,启发引导法

设计理念:

绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义.通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力.

教学过程:

一、创设情境,复习导入

1.今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题.(用多媒体出示引例)

星期天张老师从学校出发,开车去游玩,她先向东行20千米,到了游乐园,下午她又向西行30千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

①+20千米,-30千米;②(20+30)0.15=7.5升

2.在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反

意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的

路程有关,而与行驶的方向没有关系,所以没有负数.这说明在实际生活中,有些问题

中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了.你还能举出其他

类似的例子吗?

3.小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈.教师巡视,偶尔参加其中一组的讨论,但不直接肯定或否定学生的问题,而是引导鼓励学生思考、交流,请各小组派代表汇报讨论结果.

我们小组举的例子是:我爸爸喜欢炒股,一天他支出10000元购买A股票,同一天他又抛出B股票收入15000元,规定支出为负,那么爸爸两次的交易额用有理数如何表示?如果交易所每次交易按总额的千分之一收费,那么爸爸的这两次交易需交多少交易费?

4.在实际生活中存在不关注相反意义的例子,刚才我们所举例子中的计算,都不必考虑它们的正、负性,看来我们的确很有必要给上面涉及的量取一个名字.我们把这个量叫做有理数的绝对值.

二、合作交流、探索新知

1.绝对值的概念

⑴如图,在数轴上,+3和-3虽然符号不同,但表示这两个数的点到原点的距离都是3,

我们把这个距离叫做+3和-3的绝对值.

+3的绝对值就是数轴上表示+3的点到原点的距离,+3的绝对值是3,记作:=3

-3的绝对值就是数轴上表示-3的点到原点的距离,-3的绝对值是3,记作:=3

⑵一个数a的绝对值是数轴上表示数a的点到原点的距离,数a的绝对值,记作:

2.探索绝对值意义

⑴学生探索:求6,-6,,-,2.5,-2.5的绝对值

小组讨论:互为相反数的两个数的绝对值有什么关系?

规律总结:互为相反数的两个数的绝对值相等

⑵学生抢答:

学生小组讨论得出:

一个正数的绝对值是它的本身.即:若a0,则=a

一个负数的绝对值是它的相反数.即:若a0,则=-a

0的绝对值是0.即:若a=0,则=0

(3)学生活动:

在数轴上自己标出五个数,让同桌指出它们的绝对值,引导学生观察,讨论得出:

任何一个数的绝对值都是非负数(正数和0).0

==

三、举一反三,灵活应用

例1.求下列各数的绝对值:-4,-1,0,+2,+3

解:;;;

;.

注:通过此题,复习巩固绝对值的概念,表示法,意义

例2,计算

①②

解:原式=5-3.4-0+1.9解:原式=

=3.5=0

注:通过此题,复习巩固绝对值的意义

例3.求出绝对值是12,,0的有理数

解:①∵

绝对值是12的有理数是12

②∵

绝对值是的有理数是

③∵

绝对值是0的有理数是0

小结:绝对值等于一个正数的数有两个,它们互为相反数;

绝对值等于0的数有一个,是0;

没有绝对值等于负数的数,绝对值是个非负数.0

四、达标反馈

1.填空

(1)数轴上离开原点2个单位长的点所表示的数是___

(2)数轴上到原点的距离等于1.5的点所表示的数是______

(3)正数的绝对值是_________,负数的绝对值是___________,零的`绝对值是______

(4)从数轴上看,一个数的绝对值就是表示这个数离开原点的________

(5)49是______的相反数,它是_______的绝对值

(6)如果一个数的绝对值等于,那么这个数是________

(7)绝对值小于3的整数有___,它们的和为___

(8)若=0,则a_____0

2.选择题

⑴-是一个

A.正数B.负数C.正数或零D.负数或零

⑵如果一个数的绝对值是5.2,那么这个数是

A.5.2B.一5.2C.5.2或-5.2D.以上都不对

⑶任何有理数的绝对值都是

A.正数B.负数C.有理数D.正数或零

⑷一个数的绝对值是它本身,那么这个数是

A.正数B.正数或零C.零D.有理数

五、学习小结:

1、绝对值的概念、意义

①数轴上的点到原点的距离叫做这个点表示的有理数的绝对值

②正数的绝对值是它的本身

负数的绝对值是它的相反数

0的绝对值是0

③==

④绝对值是非负数0

⑤有理数可理解为由性质符号和绝对值组成

⑥互为相反数的两个数可理解为符号相反、绝对值相同的两个数

2、学会发现、探索、合作交流,体会数形结合,分类讨论等数学思想方法

六、设计理念:

绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义.通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力.

七年级数学教案反思篇8

绝对值

教学目标 

1,掌握绝对值的概念,有理数大小比较法则.

2,学会绝对值的计算,会比较两个或多个有理数的大小.

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点 两个负数大小的比较

知识重点 绝对值的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.

因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

合作交流

探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

-3,5,0,+58,0.6

要求小组讨论,合作学习.

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习.

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.

学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

课堂练习 例2,比较下列各数的大小(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式

练习:第18页练习

小结与作业

课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学教案反思篇9

一、学情分析

从上学期的学习中可看出,本班学生对知识掌握的程度不一,成绩悬殊较大。有的学生智力较好,自尊心强,好动。有的学生学习目的不明确,纪律涣散。教师要关爱每个学生,建立平等、和谐的师生关系。本学期需切实抓紧,抓实,重视做学生的思想工作,让绝大多数学生都能端正学习及生活态度,完成并稳定从小学到初中的转轨,更好地进行初中阶段的新的学习生活。

二、教学目标

通过义务教育初中阶段七年级数学新课程的学习,学生将在以下几个方面得到发展。

1、获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题来解决实际问题。认识自然界中的各种图形发现它们的广阔的应用。初步体验并学会全理地进行推断和预测。

2、初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维的习惯。

3、理解人与自然、社会的密切关系,和谐发展的意义,提高环境保护意识。

4、初步形成数学的基本观点和科学态度,为确立辨证唯物主义世界观奠定必在的基础。

5、树立学生牢固树立“校兴我荣、校衰我耻”的意识,让学生乐学、爱学,让每一个学生得到全面发展,让学校成为学生的“天堂”。

6、在课堂教学中,渗透思想品德教育,对学生进行爱国主义、集体主义、文明礼貌等的教育。培养学生正确的人生观、学习态度。

三、教材分析

要使学生在知识、能力、情感、态度和价值观等方面全面发展,必须引导学生主动参和体验各种学科探究活动,而不仅仅是被动地学习知识,因此摆脱“以学科为中心”和“知识为中心”的课程观念的束缚,实现以“学生为中心”,以人为本,促进学生实现学习方式的转变,从被动式学习转为主动探究式学习。这是这次教材改革的切入点和突破点,从这点出发,教材在内容的选择和组织上有如下特点:

1、承上启下,立足发展

本书力求成为一面“镜子”,反映知识的来龙去脉和思想方法的深刻内涵,不仅引导学生现在的学习,而且对学生今后的学习有所启示,既有使学生了解所学内容背景的历史资料,又有揭示初等数学与高等数学联系的内容,为学生今后的学习作铺垫。

2、体现过程,反映规律

学习数学是循序渐进、由表及里、逐步深入的过程,粗略、定性和直观的认识往往是创新的火种,本书力求在重视知识结论的同时,体现数学学习的过程和规律,从能启发学生的粗略、定性、直观认识的问题说起,通过“观察”、“思考”、“探究”、“讨论”、“归纳”等,逐步引导出精确、定量、抽象的认识。

3、注重基础,突出重点

现代社会要求学生具有相应的基本数学素养,七年级数学课程应更着重于基础性、普遍性、通用性的内容,本书就是力求注重基础,突出重点。强调解方程中的化归思想,以及消元、配方、降次等基本方法;用框图方式分析问题,体现程序化、机械化、算法化的思维方式;习题设计“复习巩固”、“综合运用”、“拓广探索”等不同层次。

4、内容安排

(一)第五章:相交线与平行线

本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征、两条直线互相垂直所具有的特性、两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案。

重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用。

难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。

(二)第六章:平面直角坐标系

本章通过生活中的实例使学生感受到现实生活中的确定位置的重要性。并让学生比较系统地学习“有序数对”、“平面直角坐标系”的有关内容,最后通过“坐标方法的简单应用”将坐标与地理位置相结合,将图形坐标变化与图形位置变化之间的关系巧妙地结合在一起。本章关键是掌握好“平面直角坐标系”定位法。

重点:在给定的直角坐标系中会根据坐标描出点的位置,由点的位置写出它的坐标。

难点:平面直角坐标系的实际运用。

七年级数学教案反思篇10

一、教学目标:

⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。

⑶体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

二、教学重点、难点:

余角与补角的性质

三、教学过程:

复习、引入:

⑴复习角的定义。你知道有哪些特殊的角?

⑵用量角器量一量图中每组两个角的度数,并求出它们的和。

你有什么发现?

新课:

由学生的发现,给出余角和补角的定义(文字叙述)。

并且用数学符号语言进行理解。

问题1:如何求一个角的.余角和补角。

①∠1的余角:90°-∠1

②∠α的补角:180°-∠α

练习:填表(求一个角的余角、补角)

拓广:观察表格,你发现α的余角和α的补角有什么关系?

如何进行理论推导?

结论:α的补角比α的余角大90°

α一定是锐角

钝角没有余角,但一定有补角。

七年级数学教案反思篇11

教学建议

一、重点、难点分析

本节教学的重点是掌握三元一次方程组的解法,教学难点是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础.

1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组.

2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程.

3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法.

4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未知数值来.

5.解一次方程组的消元“转化”基本思想,可以推广到“四元”、“五元”等多元方程组,这是今后要学习的内容.

二、知识结构

三、教法建议

1.解三元一次方程组时,由于方程较多,学生容易出错.因此,应提醒学生注意,在消去一个未知数得出比原方程组少一个未知数的二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.

2.消元时,先要考虑好消去哪一个未知数.开始练习时,可以先把要消去的未知数写出来(如教科书在分析中所写的那样),然后再进行消元.

在例2中,如果先确定消去,那么这三个方程两两分组的方法有3种;①与②,①与③,②与③.我们可以从中任选2种消去.这里特别要注意选定2种后,必须消去同一个未知数.如果违背了这一点,所得的两个新方程虽然各含两个未知数,但由它们组成的方程组仍然含有三个未知数,这在实际上没有消元.

教学设计示例

一、素质教育目标

(一)知识教学点

1.知道什么是三元一次方程.

2.会解某个方程只有两元的简单的三元一次方程组.

3.掌握解三元一次方程组过程中化三元为二元或一元的思路.

(二)能力训练点

1.培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.

2.培养学生的计算能力、训练解题技巧.

(三)德育渗透点

渗透“消元”的思想,设法把未知数转化为已知.

(四)美育渗透点

通过本节课的学习,渗透方程恒等变形的数学美,以及方程组解的奇异美.

二、学法引导

1.教学方法:观察法、讨论法、练习法.

2.学生学法:三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性较强,因此在解题前必须认真观察方程组中各个方程的系数特点,选择好先消去的“元”,这是决定解题过程繁简的关键.一般来说应先消去系数最简单的未知数.

三、重点?难点?疑点及解决办法

(一)重点

使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.

(二)难点

针对方程组的特点,选择最好的解法.

(三)疑点

如何进行消元.

(四)解决办法

加强理解二元及三元一次方程组的解题思想是“消元”,故在求解中为便于计算应选择系数较简单的未知数将它消去.

四、课时安排

一课时.

五、教具学具准备

投影仪、自制胶片.

六、师生互动活动设计

1.教师先复习解二元一次方程组的解题思想及办法,让学生充分理解方程组的消元思想及方法.

2.教师由引例引出三元一次方程组,由学生思考、讨论后解决如何消三元变二元,教师讲解、小结.

3.由学生尝试,解决例题.

4.学生练习,教师小结、讲评.

七、教学步骤

(一)明确目标

本节课将学习如何求三元一次方程组的解.

(二)整体感知

通过复习二元一次方程组的解题思想,从而类推出三元一次方程组的解题思想及解题方法,让学生牢牢抓住利用消元的思想化三元为二元,再化二元为一元的办法来求解.

(三)教学过程

1.复习导入、探索新知

(1)解二元一次方程组的基本方法有哪几种?

(2)解二元一次方程组的基本思想是什么?

甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.

题目中有几个未知数?含有几个相等关系?你能根据题意列出几个方程?

学生活动:回答问题、设未知数、列方程.

这个问题必须三个条件都满足,因此,我们把三个方程合在一起,写成下面的形式:

这个方程组有三个未知数,每个方程的未知数的次数都是1,并且一共有三个方程,像这样的方程组,就是我们要学的三元一次方程组.

怎样解这个三元一次方程组呢?你能不能设法消云一个或两个未知数,把它化成二元一次方程组或一元一次方程?

学生活动:思考、讨论后说出消元方案.

教师对学生的回答给予肯定或否定,纠正后说出消元方案:依照代入法,由较简单的方程②,可得④,进一步将④分别代入①和③中,就可消去,得到只含、的&39;二元一次方程组.

解:由②,得④

把④代入①,得⑤

把④代入③,得⑥

⑤与⑥组成方程组

解这个方程组得

把代入④,得

注意:a.得二元一次方程组后,解二元一次方程的过程在练习本上完成.

b.得,后,求,要代入前面最简单的方程④.

c.检验.

这道题也可以用加减法解,②中不含,那么可以考虑将①与③结合消去,与②组成二元一次方程组.

学生活动:在练习本上用加减法解方程组.

【教法说明】通过一题多解,不仅能开阔学生的思维,培养学生的兴趣,而且,可以巩固解方程组时通过“消元”把未知转化为已知的基本思想.

2.学生尝试解决例题

例1?解方程组

学生活动:独立分析、思考,尝试解题,有的学生可能用代入法解,有的学生可能用加减法解,选一个用加减法解的学生板演,然后,让用代入法的学生比较哪种方法简单.

解:②×3+③,得?④

①与④组成方程组

解这个方程组,得

把,代入②,得

归纳:这个方程组的特点是方程①不含,而②、③中的系数绝对值成整数倍关系,显然用加减法从②、③中消去后,再与①组成只含、的二元一次方程组的解法最为合理.而用代入法由①得到的式子含有分母,代入②、③较繁.

【教法说明】有了前例的基础,让学生独立尝试解题,可以培养他们分析问题、解决问题的能力;在解题后归纳题目的特点为,点明消元方法和消元对象,更有助于学生探索方法、掌握技巧.

3.尝试反馈,巩固知识

练习:P30(1)

学生活动:独立完成练习后,同桌、前后桌之间按不同解法的同学交换,看哪种方法最简单.

4.变式训练要,培养能力

补例:解方程组

学生活动:独立完成.

【教法说明】此方程组中方程①、③中、的系数完全相同,用③-①可直接得到,再把代入②可求,代入①可求.这道题直接化三元为一元,能使学生体会到解法技巧的重要性,觉得数学问题真是奥妙无穷!

(四)总结、扩展

1.解三元一次方程组的基本思想是什么?方法有哪些?

2.解题前要认真观察各方程的系数特点,选择最好的解法,当方程组中某个方程只含二元时,一般的,这个方程中缺哪个元,就利用另两个方程用加减法消哪个元;如果这个二元方程系数较简单,也可以用代入法求解.

3.注意检验.

【教法说明】这样总结,既突出了本课重点,又突出了本节内容中例题、习题的特点?某个方程只含两元,使学生在以后解题时有很强的针对性.

八、布置作业

(一)必做题:P31A组1.

(二)选做题:解方程组

(三)思考题:课本第32页“想一想”.

【教法说明】作业

(一)是为了巩固本节所学知识;作业

(二)有很强的技巧性,可培养学生兴趣;作业

(三)培养学生分析问题、解决问题的能力.

七年级数学教案反思篇12

教学目标

1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.

2、能力目标:能应用正负数表示生活中具有相反意义的量.

3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点

重点:理解有理数的意义.

难点:能用正负数表示生活中具有相反意义的量.

教学过程

一、创设情境、提出问题

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.

二、分析探索、问题解决

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题.

讲授正数、负数、有理数的定义.

用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.

三、巩固练习

1、用正数或负数表示下列各题中的数量:

(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

(2)球赛时,如果胜2局记作+2,那么-2表示______;

(3)若-4万表示亏损4万元,那么盈余3万元记作______;

(4)+150米表示高出海平面150米,低于海平面200米应记作______.

分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

2、下面说法中正确的是().

a.“向东5米”与“向西10米”不是相反意义的量;

b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

三、小结回顾、纳入体系

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数.

分类:有理数的分类:两种分法.

应用:有理数可以用来表示具有相反意义的量.

七年级数学教案反思篇13

教学目的

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

教学过程

一、复习

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间 速度=路程 / 时间

二、新授

例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?

画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

三、巩固练习

教科书第17页练习1、2。

四、小结

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

四、作业

教科书习题6.3.2,第1至5题。

七年级数学教案反思篇14

教学目标 1,掌握绝对值的概念,有理数大小比较法则.

2,学会绝对值的计算,会比较两个或多个有理数的大小.

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点 两个负数大小的比较

知识重点 绝对值的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.

因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

合作交流

探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

-3,5,0,+58,0.6

要求小组讨论,合作学习.

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习.

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.

学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

课堂练习 例2,比较下列各数的大小(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式

练习:第18页练习

小结与作业

课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学教案反思篇15

数学教学计划八年级新的学期已经开始,为了搞好本学期的教学工作,根据学校计划和科研室工作计划,特制定本学期教学工作计划如下:

一、学情分析

本学期我继续担任初二的数学教学工作。这两个班整体情况是学生基础较差,优秀生少,后进生站每个班的40%左右。少数学生学习积极性高,各科作业能按时按量完成,能够严格要求自己,但大部分学生学习不够认真,上课听讲、作业完成总是应付,不能够主动学习,所以造成基础掌握不扎实。要在本学期获得进步,则必须调动学生学习的积极性,查漏补缺,打好基础;同时注重学生逻辑思维的培养。

二、教学措施

1、认真研读新课程标准,钻研教材,努力构建和谐课堂教学模式,提高教学的实效性与有效性

2、根据教学内容,精心设计数学活动,培养学生探究合作能力,通过变式训练,培养思维的灵活性。特别是函数一章,利用数形结合,努力培养学生数学建模的思想和能力。

3、仔细批改作业,作好辅导,及时查缺补漏。

4、成立一帮一互助学习小组,辅导后进生,同时促进优生,共同进步。

三、合理落实各项教学常规

1、备好课是上好课的基础,是提高课堂教学质量的关键,所以在备课时深入钻研教材,正确地掌握和处理好教材的重点、难点,备好三环六步的各个环节。

2、上课时定向要明确,在充分了解学情的基础上,引导学生弄清疑难。点难拨疑时要面向全体学生,使各类学生都学有所得。都有所发展。

3、作业布置要分层,以关注不同层次的学生。批改要认真、及时,批语要多鼓励学生,根据作业情况查缺补漏,做好个别辅导。

4、进行个别辅导,优生提升能力,扎实打牢基础知识。

四、教研工作

积极参加教科室和教研组组织的各项教研活动。结合学校的双思三环六步讨论怎样优化三环六步教学设计,不断提高课堂教学效率,进行交流体会。在上好每一节课的基础上,及时写出教学反思并及时发布。通过教研不断创新自己的教育理念,提高自己的业务水平。

10670