教案吧 > 初中教案 > 七年级教案 >

2024年七年级数学教案

时间: 新华 七年级教案

编写教案的过程是教师不断学习和成长的过程,它可以帮助教师提高专业素养和教学能力。2024年七年级数学教案怎么写,这里给大家分享2024年七年级数学教案,供大家参考。

2024年七年级数学教案篇1

学习目标

1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛

2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.

重点难点

同位角、内错角、同旁内角的特征

教学过程

一·导入

1.指出右图中所有的邻补角和对顶角?

2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?

若都不是,请自学课本P6内容后回答它们各是什么关系的角?

二·问题导学

1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。

2. 如图⑶是"直线 , 被直线 所截"形成的图形

(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。

(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。

(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。

3.找出图⑶中所有的同位角、内错角、同旁内角

4.讨论与交流:

(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?

(2)归纳总结同位角、内错角、同旁内角的特征:

同位角:"F" 字型,"同旁同侧"

"三线八角" 内错角:"Z" 字型,"之间两侧"

同旁内角:"U" 字型,"之间同侧"

三·典题训练

例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?

小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;

两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;

自我检测

⒈如图⑷,下列说法不正确的是( )

A、∠1与∠2是同位角 B、∠2与∠3是同位角

C、∠1与∠3是同位角 D、∠1与∠4不是同位角

⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.

⒊如图⑹, 直线DE截AB, AC, 构成八个角:

① 指出图中所有的同位角、内错角、同旁内角.

②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?

⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.

②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)

相交线与平行线练习

课型:复习课: 备课人:徐新齐 审核人:霍红超

一.基础知识填空

1、如图,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如图,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如图,∵∠D=∠DCF(已知)

∴_____//______( )

6、如图,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2题) (第5、6题) (第7题) (第9题)

7、如图,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

二.基础过关题:

1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。

证明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代换 )

∴BD∥CE( )。

2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。

证明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.

2024年七年级数学教案篇2

教学目标:

1.理解有理数的意义.

2.能把给出的有理数按要求分类.

3.了解0在有理数分类中的作用.

教学重点:会把所给的各数填入它所在的数集图里.

教学难点:掌握有理数的两种分类.

教与学互动设计:

(一)创设情境,导入新课

讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

(二)合作交流,解读探究

3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

议一议 你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

说明 我们把所有的这些数统称为有理数.

试一试 你能对以上各种类型的数作出一张分类表吗?

有理数

做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

有理数

数的集合

把所有正数组成的集合,叫做正数集合.

试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

(三)应用迁移,巩固提高

【例1】 把下列各数填入相应的集合内:

,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89

【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

有理数 有理数

(四)总结反思,拓展升华

提问:今天你获得了哪些知识?

由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

(五)课堂跟踪反馈

夯实基础

1.把下列各数填入相应的大括号内:

-7,0.125, ,-3 ,3,0,50%,-0.3

(1)整数集合{};

(2)分数集合{};

(3)负分数集合{ };

(4)非负数集合{ };

(5)有理数集合{ }.

2.下列说法中正确的是(  )

A.整数就是自然数

B. 0不是自然数

C.正数和负数统称为有理数

D. 0是整数,而不是正数

提升能力

3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

2024年七年级数学教案篇3

列代数式

教学目标

1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2. 初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;( -7)

(4)乙数比x大16%((1+16%)x)

(应用引导的方法启发学生解答本题)

2在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题。

二、讲授新课

例1 用代数式表示乙数:

(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数。

解:设甲数为x,则乙数的代数式为

(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x

例2 用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的 与乙数的 的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

解:设甲数为a,乙数为b,则

(1)2(a+b); (2) a- b; (3)a2+b2;

(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

例3 用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n; (2)5m+2

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4 设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的 ;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和

分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5 设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个; (2)( m)m个

三、课堂练习

1设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

2用代数式表示:

(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数

3用代数式表示:

(1)与a-1的和是25的数; (2)与2b+1的积是9的数;

(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数

〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)〕

四、师生共同小结

首先,请学生回答:

1怎样列代数式?2列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握

五、作业

1用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:

=99a+b(cm)

2024年七年级数学教案篇4

课型:新课:备课人:韩贺敏审核人:霍红超

学习目标:1.理解平行线的意义两条直线的两种位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

学习重点:探索和掌握平行公理及其推论.

学习难点:对平行线本质属性的理解,用几何语言描述图形的性质

一、学习过程:预习提问

两条直线相交有几个交点?

平面内两条直线的位置关系除相交外,还有哪些呢?

(一)画平行线

1、工具:直尺、三角板

2、方法:一"落";二"靠";三"移";四"画"。

3、请你根据此方法练习画平行线:

已知:直线a,点B,点C.

(1)过点B画直线a的平行线,能画几条?

(2)过点C画直线a的平行线,它与过点B的平行线平行吗?

(二)平行公理及推论

1、思考:上图中,①过点B画直线a的平行线,能画条;

②过点C画直线a的平行线,能画条;

③你画的直线有什么位置关系?。

②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

二、自我检测:(一)选择题:

1、下列推理正确的是()

A、因为a//d,b//c,所以c//dB、因为a//c,b//d,所以c//d

C、因为a//b,a//c,所以b//cD、因为a//b,d//c,所以a//c

2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为()

A.0个B.1个C.2个D.3个

(二)填空题:

1、在同一平面内,与已知直线L平行的直线有条,而经过L外一点,与已知直线L平行的直线有且只有条。

2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

(1)L1与L2没有公共点,则L1与L2;

(2)L1与L2有且只有一个公共点,则L1与L2;

(3)L1与L2有两个公共点,则L1与L2。

3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是。

4、平面内有a、b、c三条直线,则它们的交点个数可能是个。

三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

2024年七年级数学教案篇5

学习目标:

1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。

2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。

3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。

学习重点:

理解有序数对的概念,用有序数对来表示位置。

学习难点:

理解有序数对是有序的并用它解决实际问题,

学习过程:

一、学前准备

预习疑难

二、探索与思考

1、观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?

2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?

(1)如何找到6排3号这个座位呢?

(2)在电影票上6排3号与3排6号有什么不同?

(3)如果将6排3号简记作(6,3),那么3排6号如何表示?

(4)(5,6)表示什么含义?(6,5)呢?

3、结论:

①可用排数和列数两个不同的数来确定位置;

②排数和列数的先后顺序对位置有影响。

4、概念:

有序数对:用含有的词表示一个位置,其中各个数表示不同的含义,我们把这种两个数a与b组成的数对,叫做有序数对,记作(a,b)。

三、理解与运用

用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.你有没有见过用其他的方式来表示位置的?

四、学习体会:

1、本节课你有哪些收获?你还有哪些疑惑?

2、预习时的疑难解决了吗?

五、自我检测

1、小游戏:

怪兽吃豆豆是一种计算机游戏,图中的标志表示怪兽先后经过的几个位置.如果用(1,2)表示怪兽按图中箭头所指路线经过的第3个位置.那么你能用同样的方表示出图中怪兽经过的其他几个位置吗?

2、有趣玩一玩:

中国象棋中的马颇有骑士风度,自古有马踏八方之说,如图六(1),按中国象棋中马的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从日字形长方形的对角线的一个端点到另一个端点,不能多也不能少。

六、方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

2024年七年级数学教案篇6

一.教学目标

(1) 使学生进一步理解并掌握判定两条直线平行的方法;

(2) 了解逻辑推理过程.

二.教学重点与难点

重点:判定两条直线平行方法的应用;

难点:逻辑推理过程.

三.教学过程

复习提问:

1.判定两条直线平行的方法有哪些?

2.如图(1)

(1) 如果∠1=∠4,根据_________________,可得AB∥CD;

(2) 如果∠1=∠2,根据_________________,可得AB∥CD;

(3) 如果∠1+∠3=1800,根据______________,可得AB∥CD .

3.如图(2)

(1) 如果∠1=∠D,那么______∥________;

(2) 如果∠1=∠B,那么______∥________;

(3) 如果∠A+∠B=1800,那么______∥________;

(4) 如果∠A+∠D=1800,那么______∥________;

新课:

例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?

分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?

答:这两条直线平行.

如图所示

理由如下: ∵b⊥a,c⊥a

∴∠1=∠2=900(垂直定义)

∴b∥c(同位角相等,两直线平行)

思考:

这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?

例2 如图所示,∠1=∠2,∠BAC=200,∠ACF=800.

(1) 求∠2的度数;

(2) FC与AD平行吗?为什么?

巩固练习

1. 教科书19页练习

2. 如图所示,如果∠1=470,∠2=1330,∠D=470,那么BC与DE平行吗?AB与CD平行吗?

3. 如图所示,已知∠D=∠A,∠B=∠FCB,试问ED与CF平行吗?

4. 如图,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出图中互相平行的直线.

作业:教科书19页习题5.2第7、8题

2024年七年级数学教案篇7

新的学期刚刚开始,为了提高自己的业务水平和教学素质,提高学生的学习积极性,紧紧围绕提高课堂教学效率这个中心,即以学生为本,以校为本的教育思想,具体计划工作主要有以下几点:

本学期所教班级

科目:数学

班级:七年级(1)班七年级(6)班

教学内容安排:完成本期教学任务。使两班数学成绩有一定的提高。

一、加强教育教学理论学习,提高个人的理论素养

1、认真学习教学大纲和有关数学课程等材料。

2、加大对自己和学生的自我分析和解剖。

二、按数学课程标准,进行教学研究,提高课堂教学效益

1、在备课中,积极开展共同研究,全面合作的活动,努力促进教学的进度与学生的接受力相挂钩。

2、加强对自己和上课的标准,探讨课堂教学结构、模式和方法,多向其他有经验的老师虚心学习和请教,使自己尽快成为熟悉教学业务,具有一定教学业务水平合格教师。

3、加强对自己知识水平的提高,俗话说,要想给别人一杯水,自己首先有一桶水的容量。只有自己有了充足的知识,才能在教学上能够左右逢圆,得心应手,使学生能够对知识更加理解得透彻。

4、加大对学生的管束力度,并让学生从心理上认识到自己的学习的重要性,使他们养成良好的学习和生活习惯。

5、初中新教材的数学教学要充分体现以人为本的教学目标。切实重视学生思维能力培养,切实提高学生的解决问题的技能和创新能力。力争让学生全面发展。

6、加强教学常规调研,做好备课笔记、听课笔记、作业批改等的检查或抽查工作。认真学习其他老师经验,切实提高备课和上课的质量,严格控制学生作业量,规范作业批改。

7、针对不同学习基础的学生的不同情况,进行不同的教育方式,既让后进的学生认识到自己仍然是老师的好学生,又使学习较好学生意识到自己还有不足之处,始终保持奋斗和旺盛的精力和乐趣,并注意做好学生的思想教育工作,寓思想教育于教学工作中。

8、总之,我会在教学工作中会努力努力再努力,日常管理上勤奋勤奋再勤奋,不断得使自己有所进步,使自己走得更远,更远,更远。

2024年七年级数学教案篇8

一、目标

1.用它们拼成各种形状不同的四边形,并计算它们的周长。

(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)

2.教师揭示以上这些工作实际上是在进行整式的加减运算

3.回顾以上过程思考:整式的加减运算要进行哪些工作?

生1:“去括号”

生2:“合并同类项”

师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用

二、揭示如何进行整式的加减运算

1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

2.教学例二例2求2a2-4a+1与-3a2+2a-5的差.

(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

解:(2a2-4a+1)-(-3a2+2a-5)

=2a2-4a+1+3a2-2a+5

=5a2-6a+6

3.拓展练习

(1)求多项式2x-3+7与6x-5-2的和.

提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

(2)(-3x2–x+2)+(4x2+3x-5)(3)(4a2-3a)+(2a2+a-1)

(4)(x2+5x–2)-(x2+3x-22)(5)2(1-a+a2)-3(2-a–a2)

4.教学例3

先化简下式,再求值:

(做此类题目应先与学生一起探讨一般步骤:

(1)去括号。

(2)合并同类项。

(3)代值)

解:5(3a2b–ab2)-4(-ab2+3a2b),其中=-2,=3

=15a2b–5ab2+4ab2-12a2b)

=3a2b–ab2

三、小结

1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

2.进行化简求值计算时

(1)去括号。

(2)合并同类项。

(3)代值

3.通过本节课的学习你还有哪些疑问?

四、布置作业

习题4.52.(3);4.(2);5.。

五、课后反思

省略

2024年七年级数学教案篇9

教学目的

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

教学过程

一、复习

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间 速度=路程 / 时间

二、新授

例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?

画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

三、巩固练习

教科书第17页练习1、2。

四、小结

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

四、作业

教科书习题6.3.2,第1至5题。

2024年七年级数学教案篇10

●教学目标

1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

●教学重点与难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

●教学准备

多媒体课件

●教学过程

一、创设问题情境

1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作­__________,B处记作__________。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。

3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?

小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念­———绝对值。

二、建立数学模型

1、绝对值的概念

(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记-5=5;5的绝对值是5,记做5=5。

注意:①与原点的关系②是个距离的概念

2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]

(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

三、应用深化知识

1、例题求解

例1、求下列各数的绝对值

-1.6,,0,-10,+10

2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

特点:1、一个正数的绝对值是它本身

2、一个负数的绝对值是它的相反数

3、零的绝对值是零

4、互为相反数的两个数的绝对值相等

3.出示题目

(1)-3的符号是_______,绝对值是______;

(2)+3的符号是_______,绝对值是______;

(3)-6.5的符号是_______,绝对值是______;

(4)+6.5的符号是_______,绝对值是______;

学生口答。

师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?

5、练习3:回答下列问题

①一个数的绝对值是它本身,这个数是什么数?

②一个数的绝对值是它的相反数,这个数是什么数?

③一个数的绝对值一定是正数吗?

④一个数的绝对值不可能是负数,对吗?

⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

(由学生口答完成,进一步巩固绝对值的概念)

6、例2.求绝对值等于4的数

(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

分析:

①从数字上分析

∵+4=4,-4=4∴绝对值等于4的数是+4和-4画一个数轴(如下图)

②从几何意义上分析,画一个数轴(如下图)

因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

所以绝对值等于4的数是+4和-4.

6、练习:做书上12页课内练习1、2两题。

四、归纳小结

1、本节课我们学习了什么知识?

2、你觉得本节课有什么收获?

3、由学生自行总结在自主探究,合作学习中的体会。

五、课后作业

1、让学生去寻找一些生活中只考虑绝对值的实际例子。

2、课本15页的作业题。

2024年七年级数学教案篇11

教学目标:

1.使学生结合具体情境,用平移的方法探索并发现简单图形覆盖现象中的规律,能根据把图形平移的次数推算被该图形覆盖的总次数,解决相应的简单实际问题。

2.使学生主动经历自主探索与合作交流的过程,体会有序列举和列表思考等解决问题的策略,进一步培养发现和概括规律的能力。

教学重、难点:

探索简单图形沿一个方向进行平移后覆盖次数的规律。能根据把图形平移的次数推算被该图形覆盖的总次数,解决相应的简单实际问题。

教学过程:

一、谈话激趣    

1、如果我想在第一排选座位相邻的四人小组,可以怎样选?有多少种选法?

学生讨论后回答。

如果在第2排选呢?又可以怎样选?有多少种选法?

2、这中间有没有什么规律呢?这节课我们就一起来学习“找规律”。

二、、初步经历探索规律的过程,感知规律。

谈话:(出示下表)下表的红框中两个数的和是3。在表中移动这个红框,可以使每次框出的两个数的和各不相同。

1 2 3 4 5 6 7 8 9 10

提问:一共可以得到多少个不同的和?请大家拿出自己手上的数表想一想,也可以用这样的方框试着框一框。

学生可能想到的方法有:

(1)列表排一排1+2=3,2+3=5……9+10=19 一共可以得到9个不同的和。

相机引导:这样列表排一排,要注意什么?(有序思考,不重复、不遗漏)

(2)用方框框9次,得到9个不同的和。

引导:你能把你用方框框数的过程演示给大家看吗?

结合学生的演示,强调:从哪里开始框起?方框依次向哪个方向平移?一共平移多少次?得到几个不同的和?

比较两种方法,哪种更简便?

(第一种要算出每个具体的和,第2种方法只要考虑把长方形平移多少次就行了。) 学生在平时常常遇到类似的四人小组搭配问题,借助这一问题,初步为下面的学习作了孕伏铺垫。

三、再次经历探索的过程,发现规律

如果每次框出三个数,一共可以得到多少个不同的和?你能用平移的的方法找到答案吗?拿出能框3个数的长方形框自己试一试。

学生操作后组织交流:你是怎样框的?(强调按顺序平移)一共平移了几次?(7次)得到多少个不同的和?(8个)

提问:如果每次框出4个数、5个数呢?再试着框一框,看看分别能得到多少个不同的和?组织学生交流结果。

操作要求:刚才我们用方框在数表里每次框出了2个数、3个数、4个数和5个数。你能联系每次平移的过程和得到的结果,把下表填写完整吗?

每次框几个数 平移的次数 得到几个不同的和

2 8 9

3

4

5

观察表格,自己想一想,平移的次数与每次框几个数有什么关系?得到几个不同的和与平移的次数有什么关系?把你发现的规律在小组里交流。

学生可能得到:平移的次数与每次框出的数的个数相加正好是10;得到不同和的个数比平移的次数多1;每次框出的数越多,平移的次数与得到不同和的个数就越少;每次框出的数的个数增加1,得到不同和的个数就减少1……

追问:利用大家发现的规律想一想,如果每次框6个数,平移的次数是几?能得到几个不同的和?

四、尝试用规律解决问题,加深对规律的认识

1.完成“试一试”。

提问:(出示题目)如果把表中的数增加到15,你能用刚才发现的规律说说每次框出2个数能得到多少个不同的和吗?每次框出3个数或4个数呢?

引导学生交流自己的想法并有条理地表达自己的想法(如果部分学生感到有困难,也可以让他们边操作边思考)

2.完成“练一练”。

提问:(出示花边)这是小红设计的一条花边。每次给相邻的两个方格盖上红色的透明纸,一共有多少种不同的盖法?

先让学生独立完成,然后组织交流。

提问:如果给紧连的3个方格盖上红色的透明纸,一共有多少种不同的盖法?每次盖5个方格呢?鼓励学生简捷地推算出答案。

五、课堂小结,联系实际应用规律

1.提问:这节课我们探索了什么规律?是用什么方法发现规律的?

2.做练习十的第1题。今天我们探索的规律在实际生活中也有一些应用。(出示练习十的第1题)你知道一共有多少种不同的拿法吗?

提示学生将每3张连号的票画一画,找到答案。

3.做练习十的第2题。(出示练习十的第2题)提示:可以根据题意先画图,再思考。学生解答后,再组织交流思考的过程。

2024年七年级数学教案篇12

一、三维目标。

(一)知识与技能。能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。经历类比带有括号的有理数的运算,发现去括号时的符号变化的`规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。培养学生主动探究、合作交流的意识,严谨治学的学习态度。

二、教学重、难点与关键。

1、重点:去括号法则,准确应用法则将整式化简。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

3、关键:准确理解去括号法则。

三、教具准备。

投影仪。

四、教学过程,课堂引入。

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

五、新授。

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米①冻土地段与非冻土地段相差100t—120(t-0.5)千米②上面的式子①、②都带有括号,它们应如何化简?

利用分配律,可以去括号,合并同类项,得:100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60。

2024年七年级数学教案篇13

教学目标

知识与能力

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

教学思考

能用实验对数学猜想做出检验,从而增加猜想的可信度。解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

教学重点难点:

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

教学过程

创设情境,切入标题

同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。新课探究

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里)实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的`实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

游戏与交流

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

随堂练习

指导学生完成教材第206页习题。

课时小结

学生可从各个方面加以小结。布置作业

仿照课堂游戏,自编一个新的游戏。能否利用扑克牌设计本节转盘游戏。

2024年七年级数学教案篇14

一、教学内容

人教版一年级数学下册P43。

二、教学目标

1、通过具体的情境让学生感知100以内数的多少,会用“多一些、少一些、多得多、少得多”描述两个数之间的大小关系。

2、培养学生观察、分析、比较等多种能力,培养数感。

3、能在具体情境中把握数的相对大小关系,用自己的语言描述数之间的相对大小关系。

4、使学生感受到数学与生活的联系。

三、教学重难点

重点:结合生活实际,理解“多一些、少一些、多得多、少得多”等词语的含义并能运用词语表述。

难点:弄清“多一些、多得多”,“少一些、少得多”词语间的差别。

四、教学过程

(一)游戏导入

老师在纸上写一个数字,由一个学生当小老师点几个学生的学号来回答老师问题,由学生与老师之间的回答来引入多一些、少一些、多得多、少得多表示数的大小程度的词语。

(二)讲授新课

1、说一说,对比感悟

师:同学们,你们喜欢写字吗?今天动物王国里面有几个小动物也在写字(分别是小青蛙、小老鼠),看看他们有什么问题要我们解决的。

小青蛙写了14个字,小老鼠写了12个字,谁写的多?谁写的少?你知道他们之间的数量关系是怎么样的吗?(在这里引出多一些、少一些的知识点)

小青蛇看见他们在写字也加入他们的队伍,它写了72个字,那现在小青蛇和小青蛙、小老鼠他们之间的数量关系又是怎么样的呢?

(在这里引出多得多、少得多的知识点)

2、通过引导学生分析、比较、交流,加深了解

动物王国里面的国王看见他们那么爱好学习,于是给他们颁发了奖品(彩笔),奖品设为一等奖、二等奖和三等奖,让学生根据提示来说出答案,理解词语(多一些、多得多,少一些、少得多)的意思。

(三)举一反三,巩固应用

1、出示课本43页做一做

2、课本45页第4题

(四)闯关(运用知识)

咱们班的小朋友真聪明,老师看见你们表现很棒,给你们设了两个个难关,你们相信自己能闯关吗?

第一关比较时间

第二关比较价格

(五)做一做课本45页数学游戏

(六)这节课你学会了什么新知识?你能用今天的知识说一说身边的事物吗?

五、板书设计

()比()多一些()比()少一些

()比()多得多()比()少得多

2024年七年级数学教案篇15

教学目标 1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

3, 体验数形结合的思想。

教学难点 归纳相反数在数轴上表示的点的特征

知识重点 相反数的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 问题1:请将下列4个数分成两类,并说出为什么要这样分类

4, -2,-5,+2

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)

思考结论:教科书第13页的思考

再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。 以开放的形式创设情境,以学生进行讨论,并培养分类的能力

培养学生的观察与归纳能力,渗透数形思想

深化主题提炼定义 给出相反数的定义

问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习 体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义

给出规律

解决问题 问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5

练一练:教科书第14页第二个练习 利用相反数的概念得出求一个数的相反数的方法

小结与作业

课堂小结 1, 相反数的定义

2, 互为相反数的数在数轴上表示的点的特征

3, 怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业 1, 必做题 教科书第18页习题1.2第3题

2, 选做题 教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

16394