教案模板七年级数学
编写教案有助于更好地满足学生的学习需求,提高学生的学习效果。这里给大家分享教案模板七年级数学,方便大家写教案模板七年级数学时参考。
教案模板七年级数学篇1
●教学目标
1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备
多媒体课件
●教学过程
一、创设问题情境
1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?
小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型
1、绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记-5=5;5的绝对值是5,记做5=5。
注意:①与原点的关系②是个距离的概念
2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)
三、应用深化知识
1、例题求解
例1、求下列各数的绝对值
-1.6,,0,-10,+10
2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)
特点:1、一个正数的绝对值是它本身
2、一个负数的绝对值是它的相反数
3、零的绝对值是零
4、互为相反数的两个数的绝对值相等
3.出示题目
(1)-3的符号是_______,绝对值是______;
(2)+3的符号是_______,绝对值是______;
(3)-6.5的符号是_______,绝对值是______;
(4)+6.5的符号是_______,绝对值是______;
学生口答。
师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?
5、练习3:回答下列问题
①一个数的绝对值是它本身,这个数是什么数?
②一个数的绝对值是它的相反数,这个数是什么数?
③一个数的绝对值一定是正数吗?
④一个数的绝对值不可能是负数,对吗?
⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?
(由学生口答完成,进一步巩固绝对值的概念)
6、例2.求绝对值等于4的数
(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)
分析:
①从数字上分析
∵+4=4,-4=4∴绝对值等于4的数是+4和-4画一个数轴(如下图)
②从几何意义上分析,画一个数轴(如下图)
因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M
所以绝对值等于4的数是+4和-4.
6、练习:做书上12页课内练习1、2两题。
四、归纳小结
1、本节课我们学习了什么知识?
2、你觉得本节课有什么收获?
3、由学生自行总结在自主探究,合作学习中的体会。
五、课后作业
1、让学生去寻找一些生活中只考虑绝对值的实际例子。
2、课本15页的作业题。
教案模板七年级数学篇2
教学目标
1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据法则,熟练进行运算;
难点:有理数乘法法则的理解.
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.
因此,在进行有理数乘法时,需要时时强调:先定符号后定值.
三、运用举例,变式练习
例1 计算:
例2 某一物体温度每小时上升a度,现在温度是0度.
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际.
课堂练习
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.
3.当a,b是下列各数值时,填写空格中计算的积与和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判断下列方程的解是正数还是负数或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
1.计算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).
2.计算:
3.填空(用“>”或“<”号连接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0时,那么a ____________2a;
(4)如果a<0时,那么a __________2a.
探究活动
问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.
教案模板七年级数学篇3
一、教学目标
(一)知识教学点
1.了解;方程算术解法与代数解法的区别。
2.掌握:代数解法解简易方程。
(二)能力训练点
1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。
2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。
(三)德育渗透点
1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。
2.渗透化“未知”为“已知”的化归思想。
(四)美育渗透点
通过用新的方法解简易方程,使学生初步领略数学中的方法美。
二、学法引导
1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。
2.学生学法:识记→练习反馈
三、重点、难点、疑点及解决办法
1.重点:代数解法解简易方程。
2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。
3.疑点:代数解法解简易方程的依据。
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片。
六、师生互动活动设计
教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。
七、教学步骤
(一)创设情境,复习导入
(出示投影1)
引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?
师:该问题如何解决呢?请同学们考虑好后写在练习本上.
学生活动:解答问题,一个学生板演.
师生共同订正,对照板演学生的做法,师问:有无不同解法?
学生活动:回答问题,一个学生板演,其他学生比较两种解法.
问;这两种解法有什么不同呢?
学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).
师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.
[板书]1.5简易方程
(二)探索新知,讲授新课
师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?
学生活动:踊跃举手,回答问题。
[板书]含有未知数的等式叫方程
接问:你还知道关于方程的其他概念吗?
学生活动:积极思考并回答。
[板书]方程的解;解方程
追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,
师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。
[板书]
学生活动:相互讨论达成共识(合理。因把x=5代入方程3x+9=24,左边=右边,所以x=5是方程的解)
【教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。
师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。
(三)尝试反馈,巩固练习
例1解方程(x/2)-5=11
问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?
学生活动:思考并回答.(师板书)
问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?
学生活动:思考并回答(师板书)
解:方程两边都加上5,得
(x/2)-5+5=11+5
x/2=16
(x/2)__2=16__2
x=32
问:这个结果正确吗?请同学们自己检验.
学生活动:练习本上检验并回答问题.(正确)
师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.
学生活动:回答这两个问题.
教案模板七年级数学篇4
教学目标 1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点 两个负数大小的比较
知识重点 绝对值的概念
教学过程(师生活动) 设计理念
设置情境
引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.
因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
合作交流
探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?
-3,5,0,+58,0.6
要求小组讨论,合作学习.
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).
巩固练习:教科书第15页练习.
其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.
学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.
结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:
把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?
应怎样比较两个数的大小呢?
学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:
在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.
在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.
要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。
课堂练习 例2,比较下列各数的大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
练习:第18页练习
小结与作业
课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?
本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10
2, 选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.
2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。 教学目的 通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。 重点、难点 1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。 2.难点:找出能表示整个题意的等量关系。 教学过程 一、复习 1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数 本利和=本金×利息×年数+本金 2.商品利润等有关知识。 利润=售价-成本 ; =商品利润率 二、新授 问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元? 利息-利息税=48.6 可设小明爸爸前年存了x元,那么二年后共得利息为 2.43%×X×2,利息税为2.43%X×2×20% 根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6 问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得 2.43%x·2·80%=48.6 解方程,得 x=1250 例1.一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元? 大家想一想这15元的利润是怎么来的? 标价的80%(即售价)-成本=15 若设这种服装每件的成本是x元,那么 每件服装的标价为:(1+40%)x 每件服装的实际售价为:(1+40%)x·80% 每件服装的利润为:(1+40%)x·80%-x 由等量关系,列出方程: (1+40%)x·80%-x=15 解方程,得 x=125 答:每件服装的成本是125元。 三、巩固练习 教科书第15页,练习1、2。 四、小结 当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。 五、作业 教科书第16页,习题6.3.1,第4、5题。 教学目标 1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。 2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。 3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。 教学重点与难点 教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。 教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。 教学准备 多媒体课件 教学过程 一、创设问题情境 1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作__________,B处记作__________。 以O为原点,取适当的单位长度画数轴,并标出A、B的位置。 (用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。 2、这两只小狗在跑的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征(从形和数两个角度去感受绝对值)。 3、在数轴上找到-5和5的点,它们到原点的距离分别是多少表示和的点呢 小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。 二、建立数学模型 1、绝对值的概念 (借助于数轴这一工具,师生共同讨论,引出绝对值的概念) 绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记-5=5;5的绝对值是5,记做5=5。 注意:①与原点的关系②是个距离的概念 2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。] (通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。) 三、应用深化知识 1、例题求解 例1、求下列各数的绝对值 -1.6,0,-10,+10 2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结) 特点: 1、一个正数的绝对值是它本身 2、一个负数的绝对值是它的相反数 3、零的绝对值是零 4、互为相反数的两个数的绝对值相等 3.出示题目 (1)-3的符号是______X,绝对值是______; (2)+3的符号是______X,绝对值是______; (3)-6.5的符号是______X,绝对值是______; (4)+6.5的符号是______X,绝对值是______; 学生口答。 师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗 5、练习3:回答下列问题 ①一个数的绝对值是它本身,这个数是什么数 ②一个数的绝对值是它的相反数,这个数是什么数 ③一个数的绝对值一定是正数吗 ④一个数的绝对值不可能是负数,对吗 ⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗 (由学生口答完成,进一步巩固绝对值的概念) 6、例2.求绝对值等于4的数 (让学生考虑这样的数有几个,是怎样得出这个结果的呢对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。) 分析: ①从数字上分析 ∵+4=4,-4=4∴绝对值等于4的数是+4和-4画一个数轴 ②从几何意义上分析,画一个数轴 因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M 所以绝对值等于4的数是+4和-4. 6、练习:做书上12页课内练习1、2两题。 四、归纳小结 1、本节课我们学习了什么知识 2、你觉得本节课有什么收获 3、由学生自行总结在自主探究,合作学习中的体会。 五、课后作业 1、让学生去寻找一些生活中只考虑绝对值的实际例子。 2、课本15页的作业题。 教学过程: 一、复习 1、一辆汽车行驶的速度不变,行驶的时间和路程。 2、一辆汽车从甲地开往乙地,行驶的时间和速度。 看上面的题,回答下面的问题: (1)各有哪三种量? (2)其中哪一种量是固定不变的? (3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系? 3、这节课,我们就应用比例的知识解决一些实际问题。 二、新授 1、教学例5 (1)出示例5:张大妈家上个月用了8吨水,水费是2。8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱? (2)学生读题后,思考和讨论下面的问题: ①问题中有哪两种量? ②它们成什么比例关系?你是根据什么判断的? ③根据这样的比例关系,你能列出等式吗? (3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的`吨数的比值是相等的。 (4)根据正比例的意义列出方程: 解:设李奶奶家上个月的水费是χ元。 12。8/8=χ/10 8χ=12。8×10 χ=128÷8 χ=16答:李奶奶家上个月的水费是16元。 (5)将答案代入到比例式中进行检验。 2、修改题目:王大爷上个月的水费是19。2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了) 3、教学例6 (1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包? (2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。 (3)指名板演,全班评讲。 4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。 三、巩固练习 1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。 2、完成练习九第5、6、7题。 四、总结 用比例知识解决问题的步骤是什么? 教学目标: 1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。 2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。 3、培养学生良好的解答应用题的习惯。 教学重点: 用比例知识解答比较容易的归一、归总应用题。 教学难点: 正分析题中的比例关系,列出方程。 一、知识与能力 理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。 二、过程与方法 经历对有理数进行分类的探索过程,初步感受分类讨论的思想。 三、情感态度与价值观 通过对有理数的学习,体会到数学与现实世界的紧密联系。 教学重难点及突破 在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的.学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。 教学准备 用电脑制作动画体现有理数的分类过程。 教学过程 四、课堂引入 1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类? 2.举例说明现实中具有相反意义的量。 3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义? 4.举两个例子说明+5与-5的区别。 教学目标 1.使学生正确理解的意义,掌握的三要素; 2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来; 3.使学生初步理解数形结合的思想方法. 教学重点和难点 重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数. 难点:正确理解有理数与上点的对应关系. 课堂教学过程 设计 一、从学生原有认知结构提出问题 1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗? 2.用“射线”能不能表示有理数?为什么? 3.你认为把“射线”做怎样的改动,才能用来表示有理数呢? 待学生回答后,教师指出,这就是我们本节课所要学习的内容——. 二、讲授新课 让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃. 与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画): 1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃); 2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负); 3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,… 提问:我们能不能用这条直线表示任何有理数?(可列举几个数) 在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做. 进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢? 通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可. 三、运用举例 变式练习 例1 画一个,并在上画出表示下列各数的点: 例2 指出上A,B,C,D,E各点分别表示什么数. 课堂练习 示出来. 2.说出下面上A,B,C,D,O,M各点表示什么数? 最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示. 四、小结 指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法. 本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究. 五、作业 1.在下面上: (1)分别指出表示-2,3,-4,0,1各数的点. (2)A,H,D,E,O各点分别表示什么数? 2.在下面上,A,B,C,D各点分别表示什么数? 3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点: (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5}; 课堂教学设计说明 从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.教学中,的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在上对应一亿万分之一的点,你能画出来吗?它是不是存在等. 教学目标: 1.知识与技能 结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系. 2.过程与方法 通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力. 3.情感、态度与价值观 联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣. 教学重点难点: 1.重点 让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题. 2.难点 探究三角形的三边关系应用三边关系解决生活中的实际问题. 教学设计: 本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业. 第一环节 回顾与思考 1、如何表示线段、射线和直线? 2、如何表示一个角? 第二环节 情境引入 活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片. 活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣 第三环节 三角形概念的讲解 (1)你能从中找出四个不同的三角形吗? (2)与你的同伴交流各自找到的三角形. (3)这些三角形有什么共同的特点? 通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项. 第四环节 探索三角形三边关系 一、教学内容 人教版一年级数学下册P43。 二、教学目标 1、通过具体的情境让学生感知100以内数的多少,会用“多一些、少一些、多得多、少得多”描述两个数之间的大小关系。 2、培养学生观察、分析、比较等多种能力,培养数感。 3、能在具体情境中把握数的相对大小关系,用自己的语言描述数之间的相对大小关系。 4、使学生感受到数学与生活的联系。 三、教学重难点 重点:结合生活实际,理解“多一些、少一些、多得多、少得多”等词语的含义并能运用词语表述。 难点:弄清“多一些、多得多”,“少一些、少得多”词语间的差别。 四、教学过程 (一)游戏导入 老师在纸上写一个数字,由一个学生当小老师点几个学生的学号来回答老师问题,由学生与老师之间的回答来引入多一些、少一些、多得多、少得多表示数的大小程度的词语。 (二)讲授新课 1、说一说,对比感悟 师:同学们,你们喜欢写字吗?今天动物王国里面有几个小动物也在写字(分别是小青蛙、小老鼠),看看他们有什么问题要我们解决的。 小青蛙写了14个字,小老鼠写了12个字,谁写的多?谁写的少?你知道他们之间的数量关系是怎么样的吗?(在这里引出多一些、少一些的知识点) 小青蛇看见他们在写字也加入他们的队伍,它写了72个字,那现在小青蛇和小青蛙、小老鼠他们之间的数量关系又是怎么样的呢? (在这里引出多得多、少得多的知识点) 2、通过引导学生分析、比较、交流,加深了解 动物王国里面的国王看见他们那么爱好学习,于是给他们颁发了奖品(彩笔),奖品设为一等奖、二等奖和三等奖,让学生根据提示来说出答案,理解词语(多一些、多得多,少一些、少得多)的意思。 (三)举一反三,巩固应用 1、出示课本43页做一做 2、课本45页第4题 (四)闯关(运用知识) 咱们班的小朋友真聪明,老师看见你们表现很棒,给你们设了两个个难关,你们相信自己能闯关吗? 第一关比较时间 第二关比较价格 (五)做一做课本45页数学游戏 (六)这节课你学会了什么新知识?你能用今天的知识说一说身边的事物吗? 五、板书设计 ()比()多一些()比()少一些 ()比()多得多()比()少得多 教学目标 1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系; 2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力; 3, 体验数形结合的思想。 教学难点 归纳相反数在数轴上表示的点的特征 知识重点 相反数的概念 教学过程(师生活动) 设计理念 设置情境 引入课题 问题1:请将下列4个数分成两类,并说出为什么要这样分类 4, -2,-5,+2 允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。 (引导学生观察与原点的距离) 思考结论:教科书第13页的思考 再换2个类似的数试一试。 归纳结论:教科书第13页的归纳。 以开放的形式创设情境,以学生进行讨论,并培养分类的能力 培养学生的观察与归纳能力,渗透数形思想 深化主题提炼定义 给出相反数的定义 问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么? 学生思考讨论交流,教师归纳总结。 规律:一般地,数a的相反数可以表示为-a 思考:数轴上表示相反数的两个点和原点有什么关系? 练一练:教科书第14页第一个练习 体验对称的图形的特点,为相反数在数轴上的特征做准备。 深化相反数的概念;“零的相反数是零”是相反数定义的一部分。 强化互为相反数的数在数轴上表示的点的几何意义 给出规律 解决问题 问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗? 学生交流。 分别表示+5和-5的相反数是-5和+5 练一练:教科书第14页第二个练习 利用相反数的概念得出求一个数的相反数的方法 小结与作业 课堂小结 1, 相反数的定义 2, 互为相反数的数在数轴上表示的点的特征 3, 怎样求一个数的相反数?怎样表示一个数的相反数? 本课作业 1, 必做题 教科书第18页习题1.2第3题 2, 选做题 教师自行安排 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想. 2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法. 3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地. 我们七年级数学备课组认真做好各项工作,现根据学校和上级有关部门工作计划,特制定本学期的备课组工作计划如下: 一.指导思想: 基于学习任务及小组合作学习的课堂,落实新课改,体现新理念,培养学生自主学习。以“面向全体学生,共同提高教学质量”为指导思想,同时在教学中渗透情感教育。树立本组团队合作意识。加强教学常规建设和课题研究,积极开展校本研究,进一步提高我们组数学整体的教学水平。 二.工作要点 1.切实加强教学常规管理,积极开展小组合作学习的课堂,提高课堂教学效率。 2.认真开展集体备课和课题研究活动,加强备课组团队合作意识,充分发挥学科骨干教师的示范作用。 3.深化数学教学研究,提升数学教师科研素养,积极撰写教学论文。 4.立足课堂,在有效教学策略上深入实践与研究。 三.具体措施 1.加强理论学习,提升教师素质。 进一步认真学习《课程标准》,领会教材编写意图的特点,认真分析教学内容,目标,重难点,严格执行新课程标准的指导思想,提出具体可行的教学方法,继续开展教科研活动,积极参与校本课程的研发工作,提高教科研能力。 2.加大课堂教学改革力度,做到“有效教学”。 探索适合学生实践的教学方式,把“基于学习任务及小组合作学习的课堂,”的教学模式作为本学期课堂教学研究,实现课堂教学理念的更新,做到课堂教学的有效性。 3.加强备课组教研活动,强化教研功能。 由备课组长负责继续实行集体备课制,备出优质课,特色课,全力打造实用课,共同探索新的教学模式,同事注重发挥每位教师各自的教学特色。 4.加强质量监测,及时反馈,提高教学质量。 认真完成各单元的练习卷,检测卷,由专人负责,他人审核,严把质量关。在平时教学中,及时反馈教学情况,认真分析原因,并及时调查和整改措施,努力提高教学质量。 教学目标: 1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。 2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。 3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。 教学重点: 初步认识正数和负数以及读法和写法。 教学难点: 理解0既不是正数,也不是负数。 教学具准备: 多媒体课件、温度计、练习纸、卡片等。 教学过程: 一、游戏导入(感受生活中的相反现象) 1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。 ①向上看(向下看) ②向前走200米(向后走200米) ③电梯上升15层(下降15层)。 2、下面我们来难度大些的,看谁反应最快。 ①我在银行存入了500元(取出了500元)。 ②知识竞赛中,五(1)班得了20分(扣了20分)。 ③10月份,学校小卖部赚了500元。(亏了500元)。 ④零上10摄氏度(零下10摄氏度)。 说明什么是相反意义的量(意义正好相反) 3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头) 二、教学例1 1、认识温度计,理解用正负数来表示零上和零下的温度。 课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。 这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢? B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。 (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格) 指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。 (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗? (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。 ①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书) 负号能不能省略不写?为什么? ②北京的气温比0℃低,是零下4摄氏度。我们可以用—4℃来表示零下4摄氏度(板书—4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。 (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用—4这样的数可以表示零下温度。 2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上) 3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。 4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。 三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题) 1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。 2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么? 3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。 你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844。43米;吐鲁番盆地比海平面低155米)。 4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗? (1)交流:珠穆朗玛峰的海拔可以记作:+8844。43米或8844。43米。 吐鲁番盆地的海拔可以记作:—155米。(板书) (2)小结:以海平面为界线,+8844。43米或8844。43米这样的数可以表示海平面以上的高度,—155米这样的数可以表示海平面以下的高度。 四、小组讨论,归纳正数和负数。 1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗? 2、学生交流、讨论。 3、指出:因为+8844。43也可以写成8844。43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见) ①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我? ②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。 4、小结:什么是正数、负数? 师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0。5、+8844。43等这样的数叫做正数;象—4、—155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数) 五、联系生活,巩固练习 1、练习一第2、3题 2、你知道吗:水沸腾时的温度是__。水结冰时的温度是__。地球表面的最低温度是。 3、讨论生活中的正数和负数 (1)存折:这里的—800表示什么意思?(以原来的钱为标准,取出了800元记作—800;存入了1200元记作1200元,还可以记作+1200元) (2)电梯:这里的1和—1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,—1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢? 六、课堂小结 这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。 1.2一元一次不等式组的解法 2.2二元一次方程组的解法 2.3二元一次方程组的应用(1) 第10教案 教学目标 1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。 2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。 3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。 教学重点 1.列二元一次方程组解简单问题。 2.彻底理解题意 教学难点 找等量关系列二元一次方程组。 教学过程 一、情境引入。 小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗? 二、建立模型。 1.怎样设未知数? 2.找本题等量关系?从哪句话中找到的? 3.列方程组。 4.解方程组。 5.检验写答案。 思考:怎样用一元一次方程求解? 比较用一元一次方程求解,用二元一次方程组求解谁更容易? 三、练习。 1.根据问题建立二元一次方程组。 (1)甲、乙两数和是40差是6,求这两数。 (2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。 (3)已知关于求_、的方程, 是二元一次方程。求a、b的值。 2.P38练习第1题。 四、小结。 小组讨论:列二元一次方程组解应用题有哪些基本步骤? 五、作业。 P42。习题2.3A组第1题。 后记: 2.3二元一次方程组的应用(2) 第11教案 教学目标 1.会列二元一次方程组解简单的应用题并能检验结果的合理性。 2.提高分析问题、解决问题的能力。 3.体会数学的应用价值。 教学重点 根据实际问题列二元一次方程组。 教学难点 1.找实际问题中的相等关系。 2.彻底理解题意。 教学过程 一、引入。 本节课我们继续学习用二元一次方程组解决简单实际问题。 二、新课。 例1.小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗? 探究:1.你能画线段表示本题的数量关系吗? 2.填空:(用含S、V的代数式表示) 设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米。 3.列方程组。 4.解方程组。 5.检验写出答案。 讨论:本题是否还有其它解法? 三、练习。 1.建立方程模型。 (1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度。 (2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件? 2.P38练习第2题。 3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。 四、小结。 本节课你有何收获? 五、作业。 [教学目标] 1. 理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。 2. 掌握点到直线的距离的概念,并会度量点到直线的距离。 3. 掌握垂线的性质,并会利用所学知识进行简单的推理。 [教学重点与难点] 1.教学重点:垂线的定义及性质。 2.教学难点:垂线的画法。 [教学过程设计] 一. 复习提问: 1、 叙述邻补角及对顶角的定义。 2、 对顶角有怎样的性质。 二.新课: 引言: 前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。 (一)垂线的定义 当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 如图,直线AB、CD互相垂直,记作 ,垂足为O。 请同学举出日常生活中,两条直线互相垂直的实例。 注意: 1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。 2、掌握如下的推理过程:(如上图) 反之, (二)垂线的画法 探究: 1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条? 2、经过直线l上一点A画l的垂线,这样的垂线能画出几条? 3、经过直线l外一点B画l的垂线,这样的垂线能画出几条? 画法: 让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。 注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。 (三)垂线的性质 经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即: 性质1 过一点有且只有一条直线与已知直线垂直。 练习:教材第7页 探究: 如图,连接直线l外一点P与直线l上各点O, A,B,C,……,其中 (我们称PO为点P到直线 l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短? 性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。 简单说成: 垂线段最短。 (四)点到直线的距离 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 如上图,PO的长度叫做点 P到直线l的距离。 例1 (1)AB与AC互相垂直; (2)AD与AC互相垂直; (3)点C到AB的垂线段是线段AB; (4)点A到BC的距离是线段AD; (5)线段AB的长度是点B到AC的距离; (6)线段AB是点B到AC的距离。 其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 解:A 例2 如图,直线AB,CD相交于点O, 解:略 例3 如图,一辆汽车在直线形公路AB上由A 向B行驶,M,N分别是位于公路两侧的村庄, 设汽车行驶到点P位置时,距离村庄M最近, 行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。 练习: 1. 2.教材第9页3、4 教材第10页9、10、11、12 小结: 1. 要掌握好垂线、垂线段、点到直线的距离这几个概念; 2. 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形; 3. 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。 作业:教材第9页5、6. 教学目标 1.使学生正确理解数轴的意义,掌握数轴的三要素; 2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来; 3.使学生初步理解数形结合的思想方法. 教学重点和难点 重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数. 难点:正确理解有理数与数轴上点的对应关系. 课堂教学过程 设计 一、从学生原有认知结构提出问题 1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗? 2.用“射线”能不能表示有理数?为什么? 3.你认为把“射线”做怎样的改动,才能用来表示有理数呢? 待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴. 二、讲授新课 让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃. 与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画): 1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃); 2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负); 3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,… 提问:我们能不能用这条直线表示任何有理数?(可列举几个数) 在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴. 进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢? 通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可. 三、运用举例 变式练习 例1 画一个数轴,并在数轴上画出表示下列各数的点: 例2 指出数轴上A,B,C,D,E各点分别表示什么数. 课堂练习 示出来. 2.说出下面数轴上A,B,C,D,O,M各点表示什么数? 最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示. 四、小结 指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法. 本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究. 五、作业 1.在下面数轴上: (1)分别指出表示-2,3,-4,0,1各数的点. (2)A,H,D,E,O各点分别表示什么数? 2.在下面数轴上,A,B,C,D各点分别表示什么数? 3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点: (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5}; 课堂教学设计说明 从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等. 一、课题2.4有理数的减法 二、教学目标 1.使学生掌握有理数减法法则并熟练地进行有理数减法运算; 2.培养学生观察、分析、归纳及运算能力. 三、教学重点 有理数减法法则 四、教学难点 有理数减法法则 五、教学用具 三角尺、小黑板、小卡片 六、课时安排 1课时 七、教学过程 (一)、从学生原有认知结构提出问题 1.计算: (1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0. 2.化简下列各式符号: (1)-(-6);(2)-(+8);(3)+(-7); (4)+(+4);(5)-(-9);(6)-(+3). 3.填空: (1)______+6=20;(2)20+______=17; (3)______+(-2)=-20;(4)(-20)+______=-6. 在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算. (二)、师生共同研究有理数减法法则 问题1(1)(+10)-(+3)=______; (2)(+10)+(-3)=______. 教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3). 教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?问题2(1)(+10)-(-3)=______; (2)(+10)+(+3)=______. 对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少? (2)的结果是多少? 于是,(+10)-(-3)=(+10)+(+3). 至此,教师引导学生归纳出有理数减法法则: 减去一个数,等于加上这个数的.相反数. 教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法) (三)、运用举例变式练习 例1计算: (1)(-3)-(-5);(2)0-7. 例2计算: (1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18). 通过计算上面一组有理数减法算式,引导学生发现: 在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数. 例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米? 阅读课本63页例3 (四)、小结 1.教师指导学生阅读教材后强调指出: 由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决. 2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的. (五)、课堂练习 1.计算: (1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8; 2.计算: (1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14; (5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249. 3.计算: (1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7; (4)(-5.9)-(-6.1); (5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93). 利用有理数减法解下列问题 4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少? 八、布置课后作业: 课本习题2.6知识技能的2、3、4和问题解决1 九、板书设计 2.5有理数的减法 (一)知识回顾(三)例题解析(五)课堂小结 例1、例2、例3 (二)观察发现(四)课堂练习练习设计 十、课后反思 一、学习与导学目标: 知识与技能:借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数; 过程与方法:经历概念的生成、应用,体会相反数的意义,简化数的符号,学习观察、归纳、概括的策略与方法; 情感态度:通过师生、生生合作学习,促进交流,激发兴趣。 二、学程与导程活动: A、准备活动: 1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。 2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。 提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少? 归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。 B、学习概念: 1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。 一般地,a和-a互为相反数。“-a”可读成“a的相反数”。 2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称) 3、从上述意义上看,你看如何规定0的相反数更为合理? 商讨得:0的相反数仍是0,即0的相反数等于它本身。 C、应用举例: 1、两人一组,一人任说一个有理数,请同伴说出它的相反数。 2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。 3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。 结合前面相反数意义的量的学习,还可赋予-(-5)怎样的意义,从而帮助自己理解-(-5)=5吗? 4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗? +(-2/3),-(-2/3),-(+2/3),+(+2/3) 你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。 5、若a=-5,则-a=;若-x=7,则x=。 三、笔记与板书提纲: 课题应用举例中的2 活动引例应用举例中的4(学生练习),5 概念 四、练习与拓展选题: 1、教科书P18/3; 2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。 【知识与技能】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。 【过程与方法】通过练习,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。 【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。 【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。 【教学难点】能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续学习打下基础。 【教具准备】小黑板科学计算器 【教学过程】 一、复习导入 1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)(,) 2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位) 3、0.36的平方根是() 4、(-5)2的算术平方根是() 二、练习内容 (一)填空 1、若=1.732,那么=()2、(-)2=() 3、=()4、若_=6,则=() 5、若=0,则_=()6、当_()时,有意义。 (二)选择 1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是() A.B.C.D.;2、4_2-49=0;3、(25/81)_2=1; 4、求8+(-1/6)2的算术平方根; 5、求b2-2b+1的算术平方根;(b<1) 6、 7、;(用四舍五入方法取到小数点后面第三位) 8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。 三、小结与巩固教案模板七年级数学篇5
教案模板七年级数学篇6
教案模板七年级数学篇7
教案模板七年级数学篇8
教案模板七年级数学篇9
教案模板七年级数学篇10
教案模板七年级数学篇11
教案模板七年级数学篇12
教案模板七年级数学篇13
教案模板七年级数学篇14
教案模板七年级数学篇15
教案模板七年级数学篇16
教案模板七年级数学篇17
教案模板七年级数学篇18
教案模板七年级数学篇19
教案模板七年级数学篇20