教案吧 > 初中教案 > 七年级教案 >

七年级上册教案数学教案

时间: 新华 七年级教案

编写教案可以帮助教师明确教学目标、教学内容和教学步骤,更好地规划教学流程,提高教学效率。优秀的七年级上册教案数学教案要怎么写?下面给大家整理七年级上册教案数学教案,希望对大家能有帮助。

七年级上册教案数学教案篇1

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的`信心。

教学重点:

掌握有理数的两种分类方法

教学难点:

给定的数字将被填入它所属的集合中

教学方法:

问题导向法

学习方法:

自主探究法

教学过程:

一、形势归纳

小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33

(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

称整数和分数为有理数。(指点题,板书)

二、自学指导

学生自学课本,根据课本寻找自学的机会

提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

七年级上册教案数学教案篇2

一.知识与技能

进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.

二.过程与方法

经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.

三.情感态度与价值观

鼓励学生积极思考,激发学生学习的兴趣.

教学重、难点与关键

1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量.

2.难点:正数、负数概念的综合运用.

3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量.

教具准备

投影仪

教学过程

四、复习提问课堂引入

1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?

2.如果用正数表示盈利5万元,那么-8千元表示什么?

五、新授

例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.

2.20__年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.

写出这些国家20__年商品进出口总额的增长率.

分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.

解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.

2.六个国家20__年商品进出口总额的增长率分别为:

美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.

归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义.

六、巩固练习

1.课本第5页的第8题.

点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多.

2.补充练习.

若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?

解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处.

七、课堂小结

通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量.

八、作业布置

课本第5页习题1.1第4、5、6、7题.

九、板书设计

正数和负数

七年级上册教案数学教案篇3

教学目标和要求:

1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

教学重点和难点:

重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

教学方法:

分层次教学,讲授、练习相结合。

教学过程:

一、复习引入:

1、列代数式

(1)若正方形的边长为a,则正方形的面积是()

(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为()

(3)若x表示正方形棱长,则正方形的体积是()

(4)若m表示一个有理数,则它的相反数是()

(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款()元。

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)

2、请学生说出所列代数式的意义。

3、请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)

二、讲授新课:

1.单项式:

通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。

2.练习:判断下列各代数式哪些是单项式?

(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5。

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

3.单项式系数和次数:

直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

概念:

单项式的系数:单项式中的数字因数。

单项式的次数:在单项式中,所有字母的指数之和。

4.例题:

例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。

①x+1;②;③πr2;④-ab。

答:①不是,因为原代数式中出现了加法运算;

②不是,因为原代数式是1与x的商;

③是,它的系数是π,次数是2;

④是,它的系数是-1,次数是3。

例2:下面各题的判断是否正确?

①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;

④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是。

通过其中的反例练习及例题,强调应注意以下几点:

①圆周率π是常数;

②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;

③单项式次数只与字母指数有关。

5.游戏:

规则:一个小组学生说出一个单项式,然后指定另一个小组的`学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)

6.课堂练习:课本p56:1,2。

三、课堂小结:

①单项式及单项式的系数、次数。

②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

四、作业布置:

课本p59:1,2。

2.1第2课时整式

教学内容

1、多项式、整式的有关概念

2、正确区分单项式和多项式

教学目标

1、知识与技能

(1)学生理解多项式的概念.

(2)使学生能准确地确定一个多项式的次数和项数.

(3)能正确区分单项式和多项式.

2、过程与方法

通过区别单项式与多项式,培养学生发散思维.

3、情感、态度与价值观

在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想.

教学重、难点

1.重点:多项式的概念及单项式的联系与区别.

2.难点及关键:多项式的次数的确定,多项式中各项的符号问题,以及多项式与单项式的联系与区别.

教学过程

一、创设情境,导入新课

师:上节课我们学习了单项式的有关概念,同学们看下面一些问题.

1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数.

,,,2,,,

2.圆的半径为,则半圆的面积为_____________,半圆的总长为_____________.

学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励.

【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为很自然地引出本节内容.

师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?

学生活动:同座进行讨论,然后选代表回答.

师:谁能把1题中不是单项式的式子读出来?(师做相应板书)

学生活动:小组讨论,、,,对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充.

二、探索新知

师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式.

学生活动:讨论归纳什么叫多项式.可让学生互相补充.

教师概括并板书

多项式:几个单项式的和叫多项式.

师:强调每个单项式的符号问题,使学生引起注意.

练习:下列代数式,,,,,,,,中,是多项式的有:

___________________________________________________________.

学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论.

【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正.

师:提出问题,多项式、,,各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正.

师:在中,是两个单项式相加得到,就叫做二项式,两个单项式中,次数是1,次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式.

学生活动:同桌讨论,,,,应怎样称谓,然后找学生回答.

师:给予归纳,并做适当板书:

学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答.

根据学生回答,师归纳:

在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如这一项不是.多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项.

【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力.

师:提出问题:对于多项式是几次几项式呢?多项式的项数,各单项式的次数以及各项字母的指数各是多少呢?

学生活动:讨论(学生应都能准确回答)

师归纳:各项字母的指数,发现多项式的排列是按照字母b的升幂来排列。指出多项式的表达必须按照某个字母的升幂或降幂来排列的。

则还可以表示为,还有吗?

学生活动:小组讨论并展示各组的成果。

三、应用新知,解决问题

1、填表:

2、填空:

(1)是___次___项式;是___次____项式;的常数项是___________.

(2)是____次____项式,最高次数是_______,最高次项的系数是______,常数项是_______.

3、将下列多项式按照某个字母的升幂,降幂来排列。

学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正.

【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言.

归纳:单项式和多项式统称为整式.

说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做板书,使所学知识纳入知识系统.

四、应用拓展

1、下列各代数式:0,,,,,,中,单项式有__________,多项式有____________,整式有_____________.

学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏

【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系.

2、单项式,,的和_________,它是____次_____项式.

3、是_____次____项式,是____次____项式,它的常数项_________.

4、是_____次_____项式,最高次项是_______,最高次项的系数是_______,常数项是________.

5、的2倍与的平方的的和,用代数式表示__________,它是__________(填单项式或多项式).

学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言.

师:做肯定或否定,强调3题中最高次项的系数是,是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的.

【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对这个数字要有一个明确的认识.

6、自编题目练习:

每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确.

【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力.

师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式.

学生活动:学生边回答师边板书,然后学生讨论是否符合要求.

【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力.

五、归纳小结

学生归纳,教师点评

“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数.

第二课时作业设计

1.判断题

(1)-5不是多项式()

(2)是二次二项式()

(3)是二次三项式()

(4)是一次三项式()

(5)的最高次项系数是3()

2.填空题

(1)把上列代数式分别填在相应的括号里

,,,0,,,

;;

;;

.

(2)如果代数式是关于的三次二项式则,.

3、把下列各整式填入相应的圈里:

2m,xy3+1,2ab+6,ax2+bx+c,a,

单项式多项式

4、下列多项式分别有几项?每项的系数和次数分别是多少?

(1)(2)

5、多项式是次项式,最高次项是,常数项是,按字母y的降幂排列为。

6、下列运算中,错误的是()。

A.B.

C.D.

7、是次项式,其中最高次项的系数是。多项式2x2-3x+1是次项式。

8、多项式1-x3+x2是()

A.二次三项式B.三次三项式C.三次二项式D.五次三项式

9、多项式x3-2x2y-xy2-1的最高次项是()

A.x3B.2x2yC.-xy2D.x3,-2x2y,-xy2

10、52x2-x是()

A.一次二项式B.二次二项式

C.四次二项式D.五次二项式

11、多项式3xy2-2x2y+x3y3中,按x的指数从大到小各项依次是,按y的指数从小到大各项依次是________

12、当a=,b=时,是关于x、y的三次二项式

13、若x+y=3,则4-2x-2y=。

14、一个关于字母x、y的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?你能写出符合要求的一个多项式吗?

七年级上册教案数学教案篇4

【教学目标】

1.进一步理解有理数加法的实际意义;

2.经历探索有理数加法法则的过程,理解有理数加法法则;

3.感受数学模型的思想;

4.养成认真计算的习惯.

【对话探索设计】

〖探索1

1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?

2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?

3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?

假设原点为运动起点,用数轴检验你的答案.

〖法则理解

有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.

这条法则包括两种情况:

(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;

(2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5)=-(3+5)=-8.答案-8之所以取-号,是因为______________,8是由_____的绝对值和______的绝对值相______而得.

〖练习

1.上午6时的气温是-5℃,下午5时的气温比上午6时下降3℃,下午5时的气温是多少?

2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1,两场比赛黄队净胜几个球?

3.第一天向北走-30km,第二天又向北走-40km,两天一共向北走多少km?

4.仿照(-3)+(-5)=-(3+5)=-8的格式解答:

(1)-10+(-30)=

(2)(-100)+(-200)=

(3)(-188)+(-309)=

〖探索2

1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?

2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?

3.正数和负数相加,结果是正数还是负数?

〖法则理解

有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.

例如(+6)+(-2)=+(6-2)=+4.答案+4之所以取+号,是因为两个加数(+6与-2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.

又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3)=-(8-3)=-5.

〖议一议

有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算.他说的对不对?

〖练习

1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1,两场比赛黄队净胜几个球?

2.如果物体先向右运动5米,再向右运动-8米,那么两次运动后总的结果是什么?

3.检查3包洗衣粉的重量(单位:克),把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:

-3.5,+1.2,-2.7.

这3包洗衣粉的重量一共超过标准重量多少?

4.仿照(-8)+(+3)=-(8-3)=-5的格式解题:

(1)(-3)+(+8)=

(2)-5+(+4)=

(3)(-100)+(+30)=

(4)(-100)+(+109)=

〖法则理解

有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.

例如(+3)+(-3)=______,(-108)+(+108)=______.

〖例题学习

P21.例1,例2

P22.练习2(按例1格式算.)

〖作业

P29.习题1,P32.习题8,9,10

【备选素材】

用一个□表示+1,用一个■表示-1.显然□+■=0,

(1)■■+□□□=(■+□)+(■+□)+□=_____.

这表明-2+3=+(3-2)=1.

想一想:答案为什么是正的?为什么转化为减法运算?

(2)计算■■■■■+□□□□□=_____.

(3)计算■■■■■+□□=(■■+□□)+■■■=______.

这说明-5+(+2)=-(___-___)=_______.

(4)计算■■■+□□□□□=?

七年级上册教案数学教案篇5

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

情感、态度、价值观:通过本节课的学习,体验成功的&39;喜悦,保持学好数学的信心。

教学重点:

掌握有理数的两种分类方法

教学难点:

给定的数字将被填入它所属的集合中

教学方法:

问题导向法

学习方法:

自主探究法

教学过程:

一、形势归纳

小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33

(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

称整数和分数为有理数。(指点题,板书)

二、自学指导

学生自学课本,根据课本寻找自学的机会

提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

七年级上册教案数学教案篇6

教学目的

使学生灵活应用解方程的一般步骤,提高综合解题能力。

重点、难点

1、重点:灵活应用解题步骤。

2、难点:在“灵活”二字上下功夫。

教学过程:

一、一、复习

1、一元一次方程的解题步骤。

2、分数的基本性质。

二、新授

例1.解方程(见课本)

分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。

例2.解方程(见课本)

例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)

分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。

三、巩固练习。

根据公式V=V0+at,填写下列表中的空格。

VV0at

028

48314

1554

76137

四、小结。

若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。

五、作业。

教科书第13页第3题

七年级上册教案数学教案篇7

教学目的

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。

重点、难点

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

教学过程

一、复习提问

1.去括号和添括号法则。

2.求几个数的最小公倍数的方法。

二、新授

例1:解方程(见课本)

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程(x+15)=-(x-7)

三、巩固练习

教科书第10页,练习1、2。

四、小结

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业

教科书第13页习题6.2,2第2题。

七年级上册教案数学教案篇8

最近,我在初一(4)班上了一节数学公开课,课题是《3.4实际问题与二元一次方程组》第二课时“销售中的盈亏”,本节课是探究课,在教学中我采用小组合作交流探究的教学方式,在老师的时事点评和引导下,让学生自己动手,动口,动脑,计算,归纳销售中的常用公式,力求体现自主,合作,探究式学习,让学生在“轻松,和谐”的课堂中高效完成本节学习任务。本节课我的教学过程主要分六个环节:第一,设计情境,激发学生学习兴趣,引入本节课课题;第二,尝试练习,熟悉公式;第三,探究销售中的盈亏问题;第四,小组展示,解决探究问题;第五,巩固练习,提升能力;第六,归纳总结销售问题中常见的四个量之间的关系提炼解决问题的方法。

反思本节课的教学,成功之处有:

1.设计情境,引入课题,体现教学来源于生活有服务于生活的理念,“汉滨初中对面的电脑城中销售一种路由器,先将进价提高20%,后再降20%出售,卖96元一台,问商家是盈是亏?”通过本问题,起到两个作用,一是引入课题,二是看待问题的方式不能只看表面而做出解答,必须用数量关系进行计算在做出判断。

2.精选练习,达到让学生熟悉公式的目的。

3.化解探究问题中的难点,把问题细化为6个小问题,便于小组分工合作,及时完成任务。

4.采用小组合作学习,充分展示学生探究问题的全过程。

5.在教学中能激励性的语言去鼓励学生大胆发言和展示,让学生在比较轻松和谐的课堂氛围中完成学习任务。

回顾本节课,我觉得在一些教学设计和教学过程中还存在着以下不足之处:

1.不能正确的把握各个环节的时间,为达到预期的学习效果。学生的语言表达能力和概括能力也有待进一步的提高。

2.在教学中未注重学生思维多样性的培养。我总担心学生说错,一开始就让学生沿着我预先想好的方向去思考,控制了学生的思维发展。

3.分层,分题组布置或推荐作业方面做的很不到位。

4.给学生思考问题的时间不充分,很急躁。

5.学生的参与度还有待进一步提高。

教师只有把学习的主动权交给学生,把思维的过程还给学生,使问题在分组讨论、合作交流中得以共同解决,才能把自主、合作、探究的新型学习方式落到实处,才能还课堂以本来的面目,学生是学习的主体,是课的堂的主体。

七年级上册教案数学教案篇9

《1.1正数和负数》教学设计

教学目标

1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量(规定了向指定方向变化的量);

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;

3.激发学生学习数学的兴趣.

[教学重点与难点]

重点:深化对正负数概念的理解.

难点:正确理解和表示向指定方向变化的量

《1.1正数和负数》同步练习

1、下列说法正确的是()

A、零是正数不是负数B、零既不是正数也不是负数

C、零既是正数也是负数D、不是正数的数一定是负数,不是负数的数一定是正数

2、向东行进-30米表示的意义是()

A、向东行进30米B、向东行进-30米

C、向西行进30米D、向西行进-30米

3、零上13℃记作+13℃,零下2℃可记作()

A、2B、-2C、2℃D、-2℃

4、某市2015年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()

A、-10℃B、-6℃C、6℃D、10℃

5、中,正数有,负数有.

6、如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作m,

水位不升不降时水位变化记作m.

7、在同一个问题中,分别用正数与负数表示的量具有的意义.

8、甲、乙两人同时从A地出发,如果向南走48m,记作+48m,则乙向北走32m,记为,

这时甲乙两人相距m..

9、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在℃~℃范围内保存才合适.

10、20__年我国全年平均降水量比上年减少24㎜,20__年比上年增长8㎜,20__年比上年减少20㎜。用正数和负数表示这三年我国全年平均降水量比上年的增长量.

11、如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?

12、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?

13、某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?

《1.1正数和负数》同步练习含答案

19.体育课上,对初三(1)班的学生进行了仰卧起坐的测试,以能做28个为标准,超过的次数用正数来表示,不足的次数用负数来表示,其中10名女学生成绩如下:1、4、0、8、6、8、0、6、-5、-1.

(1)这10名女生的达标率为多少?

(2)没达标的同学做了几个仰卧起坐?

解:(1)这10名女生的达标率为8÷10×100%=80%.

(2)没达标的同学做仰卧起坐的个数分别是23个和27个.

七年级上册教案数学教案篇10

本节课是在学生学会了运用等式的基本性质解一元一次方程的基础上学习的,但是在解题过程中,书写理由太费劲,移项的出现使得解一元一次方程有了更简洁的表示方法和解法,但是移项实际上就是等式的性质(在等式的两边同加伙同减同一个代数式,所的结果仍然是等式)的另一种说法,因而移项概念的得出与运用等式的性质解方程是密不可分的,所以我在前置自学中设计了运用等式的性质解一元一次方程的几个题目,并让学生课间做到黑板上,为学生自主探究移项概念做好了铺垫工作;因为这节课的重点是移项法则的应用,因而我又设计了几个巩固移项概念的题组,通过小组合作学习、自主学习等多种方式来解决问题,对移项的概念和法则加深理解和应用;然后自学课本例题,掌握解一元一次方程的基本步骤和算理,并加以巩固应用,让学生体会出解题步骤的简洁性并通过达标测试中的应用问题,使学生进一步体会到解一元一次方程在解决实际问题中的重要性。

我在设计问题时,本想在导入新课时设计一个贴近学生生活的实际问题,最后在学习完解一元一次方程后,让学生运用所学知识解决这个问题,但是考虑到时间问题没有设计,因而对于加强学生学习数学的应用意识做得还不够好。

七年级上册教案数学教案篇11

做得较好的方面:

1、本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。

2、本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。

做得不足的方面:

1、应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。

2、对需要帮助的学生进行针对性的个别指导较少。

3、对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算(a+b)2环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。

七年级上册教案数学教案篇12

教学目标:

1、知识与技能:理解有理数加法的运算律,能熟练地运用运算律简化有理数加法的运算,能灵活运用有理数的加法解决简单实际问题。

2、过程与方法:经过有理数加法运算律的探索过程,了解加法的运算律,能用运算律简化运算。

重点、难点:

1、重点:运算律的理解及合理、灵活的运用。

2、难点:合理运用运算律。

教学过程:

一、创设情景,导入新课

1、叙述有理数的加法法则。

2、有理数加法与小学里学过的数的加法有什么区别和联系?

答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算和的绝对值,用的是小学里学过的加法或减法运算。

二、合作交流,解读探究

1、计算下列各题,并说明是根据哪一条运算法则?

(1)(-9.18)+6.18;(2)6.18+(-9.18);(3)(-2.37)+(-4.63)

2、计算下列各题:

(1)+(-4);(2)8+;

(3)+(-11);(4)(-7)+;

(5)+(+27);(6)(-22)+.

通过上面练习,引导学生得出:

交换律两个有理数相加,交换加数的位置,和不变。

用代数式表示上面一段话:

a+b=b+a

运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数。

结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

用代数式表示上面一段话:

(a+b)+c=a+(b+c)

这里a,b,c表示任意三个有理数。

根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加。

三、应用迁移,巩固提高

例(P22例3)计算:

(1)33+(-2)+7+(-8)

(2)4.375+(-82)+(-4.375)

引导学生发现,在本例中,把正数与负数分别结合在一起再相加,有相反数的先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加,计算就比较简便。

本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数。

例2(P23例4)

教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便。第一问可以让学生自已作行程示意图帮助理解,注意第一问和第二问的区别。

练习课本P.23练习:1、2

四、总结反思

本节课你有哪些收获?

五、作业

1、课本P27习题1.4A组第3、4题

2、课本P28习题1.4B组第12题

七年级上册教案数学教案篇13

(1)常见的几何体;

(2)构成图形的基本元素——点、线、面及点、线与平面

图形的一些简单性质;点动成线,线动成面,面动成体

(3)棱柱的特征;并注意棱柱和圆柱的联系与区别

(4)长方体、正方体的表面沿某些棱展开的平面图形及圆

柱、圆锥的侧面展开图;

(5)用一个平面去截一个几何体,截面的形状;

(6)物体的三视图,立方体及其简单组合的三视图;

(7)生活中的平面图形.

一.填空:

1.这个几何体的名称是______;它有_____个面组成;它有____个顶点;经过每个顶点有____条边。

2.正方体或长方体是一个立体图形,它是由______个面,______条棱,_____个顶点组成的.

3.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可)

4.一个棱柱有十个顶点,且所有侧棱的和为30cm,则每条侧棱长为cm.

5.将下面4个图用纸复制下来,然后沿所画线折起来,把折成的立体图形名称写在图的下边横线上:

6.如图是一些相同的正方块构成的立体图形的三视图,则构成这个立体图形的小方块数为.

7.如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了

80,那么这根木料本来的体积是

8.要把一个长方体的表面剪开展成平面图形,至少需要剪开________条棱.

9.如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱.

10.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=____,y=____.

11.四棱柱按如图粗线剪开一些棱,展成平面图形,请画出平面图来:

12.薄薄的硬币在桌面上转动时,看上去象球,这说明了_____________.

13.右图中,三角形共有个。

14.如图是用边长为1的小正方体摆放成的一个几何体的三视图,这个几何体的表面积为。

第13题主视图俯视图左视图

二:选择题(每题4分,共24分).

15.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.

Pqmn

①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,

它终于爬上了桌子………按小狗四次看礼物的顺序,四个画面的顺序为()

A.mnpqB.qnmpC.pqmnD.mnqp

16.以下四个平面图形中,不是正方体的展开图的是()

ABCD

17.只有盖的盒子长、宽、高分别为5、5、3cm,如图所示,有一只蚂蚁从A点出

发,沿棱爬行,爬行的路径不许重复,则蚂蚁回到A点时,最多爬行()

A.24cmB.32cmC.34cmD.48cm

18.一个几何体是由若干个相同的正方体组成的,其主视图和左视图

如图所示,则这个几何体最多可由多少个这样的正方体组成()

A.12个B.13个C.14个D.18个

19.把一个正方体截去一个角,剩下的几何体最多有几个面()

A.5个面B.6个面C.7个面D.8个面

20.从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得

到20__个三角形,则这个多边形的边数为().

A.20__B.20__C.20__D.20__

21.下列四个图形折叠后与所得的正方体的各个面上所标数字一致的是()

22.如图(1)是正方体表面积展开图,如果将其折回原来的

正方体图(2)时,与点P重合的两点应该是()

A.S和ZB.T和Y

C.U和YD.T和V

23.用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()

A.①②④B.①②③C.②③④D.①③④

24.如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同()

A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

25.从多边形一个顶点处出发,连接各个顶点得到20__个三角形,

则这个多边形的边数为()

A.20__B.20__C.20__D.20__

七年级上册教案数学教案篇14

学习目标

1、了解负数是从实际需要中产生的;

2、能判断一个数是正数还是负数,理解数0表示的量的意义;

3、会用正负数表示实际问题中具有相反意义的量.

重点难点

重点:正、负数的概念,具有相反意义的量

难点:理解负数的概念和数0表示的量的意义

教学流程

师生活动时间复备标注

一、导入新课

我先向同学们做个自我介绍,我姓,大家可以叫我老师,身高米,体重千克,今年岁,教龄是年龄的,我将和同学们一起度过三年的初中学习生活.

老师刚才的介绍中出现了一些数,它们是些什么数呢?

[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数.所以,数产生于人们实际生产和生活的需要.

在生活中,仅有整数和分数够用了吗?

二、新授

1、自学章前图、第2页,回答下列问题

数-3,3,2,-2,0,1.8%,-2.7%,这些数中,哪些数与以前学习的数不同?

什么是正数,什么是负数?

归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+1/3,…,就是2、0.5、1/3,….

这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.

如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.

2、自学第23页,回答下列问题

大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?

0有什么意义?

归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.

0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.

3、用正负数表示具有相反意义的量:自学课本34页

有哪些相反意义的量?

请举出你所知道的相反意义的量?

“相反意义的量”有什么特征?

归纳小结:一是意义相反,二是有数量,而且是同类量.

完成3页练习

4、例题

自学例题,完成归纳。寻找问题。

完成4页练习

三、课堂达标练习

课本第5页练习1、2、3、4、7、8.

四、课堂小结

1、到目前为止,我们学习的数有哪几种?

2、什么是正数、负数?零仅仅表示“没有”吗?

3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用.明确目标

七年级上册教案数学教案篇15

教学目的:

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点

1、重点:弄清应用题题意列出方程。

2、难点:弄清应用题题意列出方程。

教学过程

一、复习

1、什么叫一元一次方程?

2、解一元一次方程的理论根据是什么?

二、新授。

例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

分析:等量关系;A盘现有盐=B盘现有盐

检验所求出的解是否合理。培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了1400块,问初一同学有多少人参加了搬砖?

1.题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了1400块。

2.求什么?

初一同学有多少人参加搬砖?

3.等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=1400

三、巩固练习

教科书第12页练习1、2、3

四、小结

列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业

23697