七年级数学活动教案大全
一份优秀的教案应该考虑到所需教具的准备,例如教学用具、实验器材、多媒体设备等,以确保教学的顺利进行。下面给大家整理一些七年级数学活动教案大全,方便大家学习怎么写七年级数学活动教案大全。
七年级数学活动教案大全篇1
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法
教学难点:给定的数字将被填入它所属的集合中
教学方法:问题导向法
学习方法:自主探究法
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1.有以下数字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数,
2._______和_________统称为分数
3.__________统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:;正整数:、负整数:、正分数:、负分数:.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{…}负数集合:{…}
正整数集合:{…}负分数集合:{…}
4.下列说法正确的是()
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D.0既不是正数也不是负数
5、下列说法正确的有()
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
七年级数学活动教案大全篇2
学习目标
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
重点难点
同位角、内错角、同旁内角的特征
教学过程
一·导入
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?
若都不是,请自学课本P6内容后回答它们各是什么关系的角?
二·问题导学
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。
2. 如图⑶是"直线 , 被直线 所截"形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角
4.讨论与交流:
(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:"F" 字型,"同旁同侧"
"三线八角" 内错角:"Z" 字型,"之间两侧"
同旁内角:"U" 字型,"之间同侧"
三·典题训练
例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角 B、∠2与∠3是同位角
C、∠1与∠3是同位角 D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.
⒊如图⑹, 直线DE截AB, AC, 构成八个角:
① 指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课: 备课人:徐新齐 审核人:霍红超
一.基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
二.基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.
七年级数学活动教案大全篇3
一、教学内容:
人教版教材五年级上册第五单元多边形的面积整理与复习
二、教学目标:
1、使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。
2、使学生感受数学方法和思想的重要性及其应用的广泛性。体会数学的价值,培养对数学学习的热爱
三、教学重、难点
重点:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。
难点:引导学生整理多边形面积的推导过程,掌握转化的数学思想方法,建构知识网络。
四、教学准备
多媒体课件,多边形纸模
五、教学步骤与过程
(一)导入复习
师:同学们,我们学过哪些平面图形的面积计算公式?(正方形、长方形、平行四边形、三角形、梯形)
师:这节课我们就来重点整理和复习有关这些多边形的面积的知识。
板书课题:多边形面积计算复习课
(二)回顾整理,建构网络
1.复习了平行四边形、三角形、梯形面积公式的推导过程。
⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。
⑵根据学生的回答,出示每个公式的推导过程。
六、课堂练习
学生独立计算。指名学生板演,集体订正七、说一说,你学会了什么?从整理图中能看出各种图形之间的关系吗?
七、作业布置
练习十九
七年级数学活动教案大全篇4
第一章有理数
单元教学内容
1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.
2.通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系.
(2)数轴能反映数的性质.
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.
(4)数轴可使有理数大小的比较形象化.
3.对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.
4.正确理解绝对值的概念是难点.
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值.
(2)有理数的绝对值是一个非负数,即最小的绝对值是零.
(3)两个互为相反数的绝对值相等,即│a│=│-a│.
(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.
(5)若│a│=│b│,则a=b,或a=-b或a=b=0.
三维目标
1.知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.
(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解.
(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.
(4)会利用数轴和绝对值比较有理数的大小.
2.过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.
3.情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.
重、难点与关键
1.重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值.
2.难点:准确理解负数、绝对值等概念.
3.关键:正确理解负数的意义和绝对值的意义.
课时划分
1.1正数和负数2课时
1.2有理数5课时
1.3有理数的加减法4课时
1.4有理数的乘除法5课时
1.5有理数的乘方4课时
第一章有理数(复习)2课时
1.1正数和负数
第一课时
三维目标
一.知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.
二.过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.
三.情感态度与价值观
培养学生积极思考,合作交流的意识和能力.
教学重、难点与关键
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.
2.难点:正确理解负数的概念.
3.关键:创设情境,充分利用学生身边熟悉的事物,?加深对负数意义的理解.教具准备
投影仪.
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数.
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2?页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前
11面也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面33
的“+”、“-”号叫做它的符号,这种符号叫做性质符号.
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.
(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.
用正负数表示具有相反意义的量
(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量.?正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.
(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.
(7)、你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.
六、巩固练习
课本第3页,练习1、2、3、4题.
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.
八、作业布置
1.课本第5页习题1.1复习巩固第1、2、3题.
九、板书设计
1.1正数和负数
第一课时
1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前面
11也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面的33
“+”、“-”号叫做它的符号,这种符号叫做性质符号.
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思
1.1正数和负数
第二课时
三维目标
一.知识与技能
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.
二.过程与方法
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.
三.情感态度与价值观
鼓励学生积极思考,激发学生学习的兴趣.
教学重、难点与关键
1.重点:正确理解正、负数的概念,能应用正数、?负数表示生活中具有相反意义的量.
2.难点:正数、负数概念的综合运用.
3.关键:通过对实例的进一步分析,?使学生认识到正负数可以用来表示现实生活中具有相反意义的量.
教具准备
投影仪.
教学过程
四、复习提问课堂引入
1.什么叫正数?什么叫负数?举例说明,?有没有既不是正数也不是负数的数?
2.如果用正数表示盈利5万元,那么-8千元表示什么?
五、新授
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.
2.20__年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,?中国增长7.5%.
写出这些国家20__年商品进出口总额的增长率.
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.?“负”与“正”是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.
七年级数学活动教案大全篇5
教学目标
1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据法则,熟练进行运算;
难点:有理数乘法法则的理解.
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.
因此,在进行有理数乘法时,需要时时强调:先定符号后定值.
三、运用举例,变式练习
例1 计算:
例2 某一物体温度每小时上升a度,现在温度是0度.
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际.
课堂练习
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.
3.当a,b是下列各数值时,填写空格中计算的积与和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判断下列方程的解是正数还是负数或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
1.计算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).
2.计算:
3.填空(用“>”或“<”号连接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0时,那么a ____________2a;
(4)如果a<0时,那么a __________2a.
探究活动
问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.
七年级数学活动教案大全篇6
教学目标 1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点 两个负数大小的比较
知识重点 绝对值的概念
教学过程(师生活动) 设计理念
设置情境
引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.
因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
合作交流
探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?
-3,5,0,+58,0.6
要求小组讨论,合作学习.
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).
巩固练习:教科书第15页练习.
其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.
学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.
结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:
把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?
应怎样比较两个数的大小呢?
学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:
在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.
在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.
要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。
课堂练习 例2,比较下列各数的大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
练习:第18页练习
小结与作业
课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?
本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10
2, 选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.
2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。 教学目标: 1、经历探索有理数减法法则的过程。 2、理解并初步掌握有理数减法法则,会做有理数减法运算。 3、能根据具体问题,培养抽象概括能力和口头表达能力。 教学重点: 运用有理数减法法则做有理数减法运算。 教学难点: 有理数减法法则的得出。 教具学具: 多媒体、教材、计算器 教学方法; 研讨法、讲练结合 教学过程一、引入新课: 师:下面列出的是连续四周的最高和最低气温: 第1周第二周第三周第四周 最高气温+6℃0℃+4℃-2℃ 最低气温+2℃-5℃-2℃-5℃ 周温差 求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。 生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。 列式为; (+6)-(+2)=4 0-(-5)=5 (+4)-(-2)=6 (-2)-(-5)=3 教学过程二、有理数减法法则的推倒: 师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。 2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么? 3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。 举例:(-5)+()=-2 得出(-5)+(+3)=-2 所以得到(-2)-(-5)=+3 而(-2)+(+5)=+3 有理数减法法则:减去一个数,等于加上这个数的相反数。 教学过程三、法则的应用: 例1:先做笔算,再用计数器检验。 (1)(-34)-(+56)-(-28); (2)(+25)-(-293)-(+472) 教学过程 解:(1)原式=-34+(-56)+(+28) =-90+(+28) =-62 (2)原式=+25+(+293)+(-472) =+25+(-836) =676 注意:强调计算过程不能跳步,体现有理数减法法则的运用。 检测题 教学过程四、练习反馈: 师:巡视个别指导,订正答案。 教学过程五、小结: 有理数减法法则: 减去一个数,等于加上这个数的相反数。 有理数减法法则: 减去一个数,等于加上 这个数的相反数。例1:先做笔算,再用计数器检验。 (1)(-34)-(+56)-(-28); (2)(+25)-(-293)-(+472) 学习目标 1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛 2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角. 重点难点 同位角、内错角、同旁内角的特征 教学过程 一·导入 1.指出右图中所有的邻补角和对顶角? 2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗? 若都不是,请自学课本P6内容后回答它们各是什么关系的角? 二·问题导学 1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。 2. 如图⑶是"直线 , 被直线 所截"形成的图形 (1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。 (2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。 (3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。 3.找出图⑶中所有的同位角、内错角、同旁内角 4.讨论与交流: (1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别? (2)归纳总结同位角、内错角、同旁内角的特征: 同位角:"F" 字型,"同旁同侧" "三线八角" 内错角:"Z" 字型,"之间两侧" 同旁内角:"U" 字型,"之间同侧" 三·典题训练 例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角? 小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角; 两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角; 自我检测 ⒈如图⑷,下列说法不正确的是( ) A、∠1与∠2是同位角 B、∠2与∠3是同位角 C、∠1与∠3是同位角 D、∠1与∠4不是同位角 ⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角. ⒊如图⑹, 直线DE截AB, AC, 构成八个角: ① 指出图中所有的同位角、内错角、同旁内角. ②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角? ⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D . ①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角. ②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800) 相交线与平行线练习 课型:复习课: 备课人:徐新齐 审核人:霍红超 一.基础知识填空 1、如图,∵AB⊥CD(已知) ∴∠BOC=90°( ) 2、如图,∵∠AOC=90°(已知) ∴AB⊥CD( ) 3、∵a∥b,a∥c(已知) ∴b∥c( ) 4、∵a⊥b,a⊥c(已知) ∴b∥c( ) 5、如图,∵∠D=∠DCF(已知) ∴_____//______( ) 6、如图,∵∠D+∠BAD=180°(已知) ∴_____//______( ) (第1、2题) (第5、6题) (第7题) (第9题) 7、如图,∵ ∠2 = ∠3( ) ∠1 = ∠2(已知) ∴∠1 = ∠3( ) ∴CD____EF ( ) 8、∵∠1+∠2 =180°,∠2+∠3=180°(已知) ∴∠1 = ∠3( ) 9、∵a//b(已知) ∴∠1=∠2( ) ∠2=∠3( ) ∠2+∠4=180°( ) 10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°. 二.基础过关题: 1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。 证明:∵∠A=∠F ( 已知 ) ∴AC∥DF ( ) ∴∠D=∠ ( ) 又∵∠C=∠D ( 已知 ), ∴∠1=∠C ( 等量代换 ) ∴BD∥CE( )。 2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。 证明:∵∠B=∠BGD ( 已知 ) ∴AB∥CD ( ) ∵∠DGF=∠F;( 已知 ) ∴CD∥EF ( ) ∵AB∥EF ( ) ∴∠B + ∠F =180°( )。 3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN. 教学目标: 知识目标: (1)理解绝对值的概念及表示法。 (2)理解数的绝对值的几何意义。 能力目标: (1)掌握求一个数的绝对值及有关的简单计算, (2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。 情感目标:让学生经历绝对值的产生过程,体会数形结合思想。 教学重点、难点: 重点:绝对值的概念和求一个数的绝对值。 难点:绝对值的几何意义。 教学手段: 多媒体(powerpoint)教学与板书相结合。 教学过程: 一、新课引入 我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。 乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。例如有2位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10Km到达A处,另一位同学乘上乙出租车向西行驶10Km到达B处。 二、合作学习 把全班同学分4—5组分组讨论完成下面的三个问题 1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正) 2:思考两位同学付费额度是否一样?为什么? 3:结论付费额度与行驶方向有没有关系? 然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价) 这两位同学由于乘车离开书店的.距离一样,所以付费额度也是一样的,与行驶方向无关。说明在数轴上的A(+10)、B(—10)两点到原点(书店)的距离是一样的,都是10。同样数轴上+5和—5两点到原点的距离也是一样的。 我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。(注意是离开原点的距离) 如数轴上表示-5的点到原点的距离是5,所以—5的绝对值是5,记作;+5的绝对值也是5,记作。其实际意义是:数轴上+5这个点到原点的距离为5。(强调绝对值符号的书写格式) 三、课内练习 1、求下列各数的绝对值:-1.60-10+10同时说出它们的几何意义。 2、说出下列各数的绝对值:-7-2.0501000 由上述两题可概括出:(在教师的引导下让学生得出结论) 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。(注意一个数的绝对值不可能是负数,而是非负数。) (一)典例分析 1、求绝对值等于4的数? 注:分析例题时尽量培养学生利用数轴来解决问题的能力。 2、计算: 四、反馈练习 3、举一个生活中的实际例子,说明解决有的问题只需考虑数的绝对值。(如港口的吞吐量;一位学生上学、放学一共所走过的路等) 4、填表: 相反数 绝对值 21 —0。75 5、画一条数轴,在数轴上分别标出绝对值是6,1。2,0的数 6、计算: 五、探究学习 1、某人因工作需要租出租车从A站出发,先向南行驶6Km至B处,后向北行驶10Km至C处,接着又向南行驶7Km至D处,最后又向北行驶2Km至E处。 请通过列式计算回答下列两个问题: (1)这个人乘车一共行驶了多少千米? (2)这个人最后的目的地在离出发地的什么方向上,相隔多少千米? 2、写出绝对值小于3的整数,并把它们记在数轴上。 六、小结 一头牛耕耘在一块田地上,忙碌了一整天,表面上它在原地踏步,没有踏出这块土地,但我们说,它付出了艰辛和汗水,因为它所走过的距离之和,有时候我们是无法想象的。这就是今天所学的绝对值的意义所在。所以绝对值是不考虑方向意义时的一种数值表示。 七、布置作业 做作业本中相应的部分。 教学目标 1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数; 2. 会初步应用正负数表示具有相反意义的量; 3.使学生初步了解有理数的意义,并能将给出的有理数进行分类; 4.培养学生逐步树立分类讨论的思想; 5. 通过本节课的教学,渗透对立统一的辩证思想。 教学建议 一、重点、难点分析 本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。 正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。 关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。 二、教法建议 这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了. 为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。 三、正数与负数概念的理解 1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。 2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5… 3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。 4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。 四、有理数的分类 整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。 2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。 3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。 4)分数和小数的区别: 分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。 5)到目前为止,所学过的数(除π外)都是有理数。 教学目标: 1.了解正数与负数是实际生活的需要. 2.会判断一个数是正数还是负数. 3.会用正负数表示互为相反意义的量. 教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义. 教学难点:负数的引入. 教与学互动设计: (一)创设情境,导入新课 课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况. (二)合作交流,解读探究 举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等. 想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢? 为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外). 活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示. 讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数. 总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点. (三)应用迁移,巩固提高 【例1】举出几对具有相反意义的量,并分别用正、负数表示. 【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等. 【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么? 【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为() A.3B.-3C.-2.5D.-7.45 【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟. (四)总结反思,拓展升华 为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数. 1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”): 星期日一二三四五六 (元)+16+5.0-1.2-2.1-0.9+10-2.6 (1)本周小张一共用掉了多少钱?存进了多少钱? (2)储蓄罐中的钱与原来相比是多了还是少了? (3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣. 2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”. (1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”; (2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏. (五)课堂跟踪反馈 夯实基础 1.填空题: (1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨. (2)如果4年后记作+4年,那么8年前记作年. (3)如果运出货物7吨记作-7吨,那么+100吨表示. (4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了. 2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米. (1)用正数或负数记录下午1时和下午5时的水位; (2)下午5时的水位比中午12时水位高多少? 提升能力 3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数. (六)课时小结 1.与以前相比,0的意义又多了哪些内容? 2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示) 一、教学目标: 1.知识目标: 使学生理解同类项的概念和合并同类项的意义,学会合并同类项。 2.能力目标: 培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。 3.情感目标: 借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。 二、教学重点、难点: 重点:同类项的概念和合并同类项的法则 难点:合并同类项 三、教学过程: (一)情景导入: 1、观察下面的图片,并将这些图片分类: 你是依据什么来进行分类的呢? 生活中,我们常常为了需要把具有相同特征的事物归为一类。 2、对下列水果进行分类: (二)新知探究1: 1、对下列八个单项式进行分类: a,6_2,5,cd,-1,2_2,4a,-2cd 这些被归为同一类的项有什么相同的特征? 2、揭示同类项的概念。 同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。 《3.4合并同类项》同步练习 1.已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________. 2.若-4_ay+_2yb=-3_2y,则a+b=_______. 3.下面运算正确的是() A.3a+2b=5abB.3a2b-3ba2=0 C.3_2+2_3=5_5D.3y2-2y2=1 4.已知一个多项式与3_2+9_的和等于3_2+4_-1,则这个多项式是() A.-5_-1B.5_+1 C.-13_-1D.13_+1 《3.4合并同类项》测试 1.下列说法中,正确的是() A.字母相同的项是同类项 B.指数相同的项是同类项 C.次数相同的项是同类项 D.只有系数不同的项是同类项 学习目标: 1.理解平行线的意义两条直线的两种位置关系; 2.理解并掌握平行公理及其推论的内容; 3.会根据几何语句画图,会用直尺和三角板画平行线; 学习重点:探索和掌握平行公理及其推论. 学习难点:对平行线本质属性的理解,用几何语言描述图形的性质 一、学习过程:预习提问 两条直线相交有几个交点? 平面内两条直线的位置关系除相交外,还有哪些呢? (一)画平行线 1、 工具:直尺、三角板 2、 方法:一"落";二"靠";三"移";四"画"。 3、请你根据此方法练习画平行线: 已知:直线a,点B,点C. (1)过点B画直线a的平行线,能画几条? (2)过点C画直线a的平行线,它与过点B的平行线平行吗? (二)平行公理及推论 1、思考:上图中,①过点B画直线a的平行线,能画 条; ②过点C画直线a的平行线,能画 条; ③你画的直线有什么位置关系? 。 ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么? 二、自我检测:(一)选择题: 1、下列推理正确的是 ( ) A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c 2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( ) A.0个 B.1个 C.2个 D.3个 (二)填空题: 1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。 2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系: (1)L1与L2 没有公共点,则 L1与L2 ; (2)L1与L2有且只有一个公共点,则L1与L2 ; (3)L1与L2有两个公共点,则L1与L2 。 3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。 4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。 三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°. 一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角 在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。 观察剪刀剪布的过程,引入两条相交直线所成的角。 学生观察、思考、回答问题 教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化? 教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题, 二.认识邻补角和对顶角,探索对顶角性质 1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配 共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。 当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用 几何语言准确表达 ; 有公共的顶点O,而且的两边分别是两边的反向延长线 2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系? (学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 3学生根据观察和度量完成下表: 两条直线相交所形成的角分类位置关系数量关系 教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质 三.初步应用 练习: 下列说法对不对 (1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角 (2)邻补角是互补的两个角,互补的两个角是邻补角 (3)对顶角相等,相等的两个角是对顶角 学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象 四.巩固运用例题:如图,直线a,b相交,,求的度数。 [巩固练习](教科书5页练习)已知,如图,,求:的度数 [小结] 邻补角、对顶角. [作业]课本P9-1,2P10-7,8 [备选题] 一判断题: 如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角() 两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补() 二填空题 1如图,直线AB、CD、EF相交于点O,的对顶角是,的邻补角是 若:=2:3,,则= 2如图,直线AB、CD相交于点O 则 5.1.2垂线 [教学目标] 1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。 2.掌握点到直线的距离的概念,并会度量点到直线的距离。 3.掌握垂线的性质,并会利用所学知识进行简单的推理。 [教学重点与难点] 1.教学重点:垂线的定义及性质。 2.教学难点:垂线的画法。 [教学过程设计] 一.复习提问: 1、叙述邻补角及对顶角的定义。 2、对顶角有怎样的性质。 二.新课: 引言: 前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。 (一)垂线的定义 当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 如图,直线AB、CD互相垂直,记作,垂足为O。 请同学举出日常生活中,两条直线互相垂直的实例。 注意: 1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。 2、掌握如下的推理过程:(如上图) 反之, (二)垂线的画法 探究: 1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条? 2、经过直线l上一点A画l的垂线,这样的垂线能画出几条? 3、经过直线l外一点B画l的垂线,这样的垂线能画出几条? 画法: 让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。 注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。 (三)垂线的性质 经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即: 性质1过一点有且只有一条直线与已知直线垂直。 练习:教材第7页 探究: 如图,连接直线l外一点P与直线l上各点O, A,B,C,……,其中(我们称PO为点P到直线 l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短? 性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。 简单说成:垂线段最短。 (四)点到直线的距离 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 如上图,PO的长度叫做点P到直线l的距离。 例1 (1)AB与AC互相垂直; (2)AD与AC互相垂直; (3)点C到AB的垂线段是线段AB; (4)点A到BC的距离是线段AD; (5)线段AB的长度是点B到AC的距离; (6)线段AB是点B到AC的距离。 其中正确的有() A.1个B.2个 C.3个D.4个 解:A 例2如图,直线AB,CD相交于点O, 解:略 例3如图,一辆汽车在直线形公路AB上由A 向B行驶,M,N分别是位于公路两侧的村庄, 设汽车行驶到点P位置时,距离村庄M最近, 行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。 练习: 1. 2.教材第9页3、4 教材第10页9、10、11、12 小结: 1.要掌握好垂线、垂线段、点到直线的距离这几个概念; 2.要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形; 3.垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。 作业:教材第9页5、6. 5.2.1平行线 [教学目标] 1.理解平行线的意义,了解同一平面内两条直线的位置关系; 2.理解并掌握平行公理及其推论的内容; 3.会根据几何语句画图,会用直尺和三角板画平行线; 4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角; 4.了解平行线在实际生活中的应用,能举例加以说明. [教学重点与难点] 1.教学重点:平行线的概念与平行公理; 2.教学难点:对平行公理的理解. [教学过程] 一、复习提问 相交线是如何定义的? 二、新课引入 平面内两条直线的位置关系除平行外,还有哪些呢? 制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念. 三、同一平面内两条直线的位置关系 1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b. (画出图形) 2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行. 3.对平行线概念的理解: 两个关键:一是“在同一个平面内”(举例说明);二是“不相交”. 一个前提:对两条直线而言. 4.平行线的画法 平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线). 四、平行公理 1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”. 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 提问垂线的性质,并进行比较. 3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c. 五、三线八角 由前面的教具演示引出. 如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对. 六、课堂练习 1.在同一平面内,两条直线可能的位置关系是. 2.在同一平面内,三条直线的交点个数可能是. 3.下列说法正确的是() A.经过一点有且只有一条直线与已知直线平行 B.经过一点有无数条直线与已知直线平行 C.经过一点有一条直线与已知直线平行 D.经过直线外一点有且只有一条直线与已知直线平行 4.若∠与∠是同旁内角,且∠=50°,则∠的度数是() A.50°B.130°C.50°或130°D.不能确定 5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是() A.1B.2C.3D.4 6.如图,直线AB,CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角.如果∠5=∠1,那么∠1∠3. 七、小结 让学生独立总结本节内容,叙述本节的概念和结论. 八、课后作业 1.教材P19第7题; 2.画图说明在同一平面内三条直线的位置关系及交点情况. [补充内容] 1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的, 试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明) 一、知识与能力 理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。 二、过程与方法 经历对有理数进行分类的探索过程,初步感受分类讨论的思想。 三、情感态度与价值观 通过对有理数的学习,体会到数学与现实世界的紧密联系。 教学重难点及突破 在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。 教学准备 用电脑制作动画体现有理数的分类过程。 教学过程 四、课堂引入 1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类? 2.举例说明现实中具有相反意义的量。 3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义? 4.举两个例子说明+5与-5的区别。 一、知识与能力 理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。 二、过程与方法 经历对有理数进行分类的探索过程,初步感受分类讨论的思想。 三、情感态度与价值观 通过对有理数的学习,体会到数学与现实世界的紧密联系。 教学重难点及突破 在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的.学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。 教学准备 用电脑制作动画体现有理数的分类过程。 教学过程 四、课堂引入 1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类? 2.举例说明现实中具有相反意义的量。 3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义? 4.举两个例子说明+5与-5的区别。 【学习目标】 1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动经验. 2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较. 【学习重点】 利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小. 【学习难点】 两个负数大小的比较. 行为提示:创景设疑,帮助学生知道本节课学什么. 行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点. 情景导入 生成问题 旧知回顾: 1.什么是绝对值? 答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值. 2.正数、负数、0的绝对值分别是什么? 答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 自学互研 生成能力 知识模块一 用数轴比较有理数的大小 阅读教材P14~P15的内容,回答下列问题: 问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大? 答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.正数大于0,0大于负数,正数大于负数. 方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大. 学习笔记: 行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间. 典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是( A ) A.a>b>c B.a>c>b C.b>c>a D.c>b>a 仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是( C ) A.-aC.a<-1<-a D.a<-a<-1 仿例2:把下列各数在数轴上表示出来,并用“<”连接各数. -1.5,-0.5,-3.5,-5. 解:将这些数在数轴上表示出来,如图: 从数轴上可看出:-5<-3.5<-1.5<-0.5. 知识模块二 用法则比较有理数的大小 阅读教材P15的内容,回答下列问题: 问题:两个负数怎样比较大小? 答:可在数轴上比较,也可根据“两个负数比较大小,绝对值大的反而小”来比较. 典例:比较大小: (1)-2.1<1; (2)-3.2>-4.3; (3)-12<13; (4)-14<0. 仿例1:比较-12、-13、14的大小结果正确的是( A ) A.-12<-13<14 B.-12<14<-13 C.14<-13<-12 D.-13<-12<14 仿例2:比较下列各对数的大小: (1)-(-3)与|-2|; 解:∵-(-3)=3,|-2|=2, ∴-(-3)>|-2|; (2)-(-6)与|-6|. 解:∵-(-6)=6,|-6|=6, ∴-(-6)=|-6|. 变例:整数x满足|x|<3,则x=-2、-1、0、1、2,负整数x满足3<|x|≤6,则x=-4、-5、-6. 交流展示 生成新知 1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑. 2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”. 知识模块一 用数轴比较有理数的大小 知识模块二 用法则比较有理数的大小 检测反馈 达成目标 【当堂检测】见所赠光盘和学生用书 【课后检测】见学生用书 课后反思 查漏补缺 1.收获:________________________________________________________________________ 2.困惑:________________________________________________________________________ 7.3.1多边形 [教学目标] 1.了解多边形及有关概念,理解正多边形及其有关概念. 2.区别凸多边形与凹多边形. [教学重点、难点] 1.重点: (1)了解多边形及其有关概念,理解正多边形及其有关概念. (2)区别凸多边形和凹多边形. 2.难点: 多边形定义的准确理解. [教学过程] 一、新课讲授 投影:图形见课本P84图7.3一l. 你能从投影里找出几个由一些线段围成的图形吗? 上面三图中让同学边看、边议. 在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性? (1)它们在同一平面内. (2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的. 这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢? 提问:三角形的定义. 你能仿照三角形的定义给多边形定义吗? 1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形. 如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.) 2.多边形的边、顶点、内角和外角. 多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 3.多边形的对角线 连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线. 让学生画出五边形的所有对角线. 4.凸多边形与凹多边形 看投影:图形见课本P85.7.3—6. 在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形. 5.正多边形 由正方形的特征出发,得出正多边形的概念. 各个角都相等,各条边都相等的多边形叫做正多边形. 二、课堂练习 课本P86练习1.2. 三、课堂小结 引导学生总结本节课的相关概念. 四、课后作业 课本P90第1题. 备用题: 一、判断题. 1.由四条线段首尾顺次相接组成的图形叫四边形.() 2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.() 3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.() 4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.() 二、填空题. 1.连接多边形的线段,叫做多边形的对角线. 2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形. 3.各个角,各条边的多边形,叫正多边形. 三、解答题. 1.画出图(1)中的六边形ABCDEF的所有对角线. 2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系? 3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系? 4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系? 1.2一元一次不等式组的解法 2.2二元一次方程组的解法 2.3二元一次方程组的应用(1) 第10教案 教学目标 1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。 2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。 3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。 教学重点 1.列二元一次方程组解简单问题。 2.彻底理解题意 教学难点 找等量关系列二元一次方程组。 教学过程 一、情境引入。 小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗? 二、建立模型。 1.怎样设未知数? 2.找本题等量关系?从哪句话中找到的? 3.列方程组。 4.解方程组。 5.检验写答案。 思考:怎样用一元一次方程求解? 比较用一元一次方程求解,用二元一次方程组求解谁更容易? 三、练习。 1.根据问题建立二元一次方程组。 (1)甲、乙两数和是40差是6,求这两数。 (2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。 (3)已知关于求_、的方程, 是二元一次方程。求a、b的值。 2.P38练习第1题。 四、小结。 小组讨论:列二元一次方程组解应用题有哪些基本步骤? 五、作业。 P42。习题2.3A组第1题。 后记: 2.3二元一次方程组的应用(2) 第11教案 教学目标 1.会列二元一次方程组解简单的应用题并能检验结果的合理性。 2.提高分析问题、解决问题的能力。 3.体会数学的应用价值。 教学重点 根据实际问题列二元一次方程组。 教学难点 1.找实际问题中的相等关系。 2.彻底理解题意。 教学过程 一、引入。 本节课我们继续学习用二元一次方程组解决简单实际问题。 二、新课。 例1.小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗? 探究:1.你能画线段表示本题的数量关系吗? 2.填空:(用含S、V的代数式表示) 设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米。 3.列方程组。 4.解方程组。 5.检验写出答案。 讨论:本题是否还有其它解法? 三、练习。 1.建立方程模型。 (1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度。 (2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件? 2.P38练习第2题。 3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。 四、小结。 本节课你有何收获? 五、作业。 【教学目标】 知识与技能 了解并掌握数据收集的基本方法。 过程与方法 在调查的过程中,要有认真的态度,积极参与。 情感、态度与价值观 体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。 【教学重难点】 重点:掌握统计调查的基本方法。 难点:能根据实际情况合理地选择调查方法。 【教学过程】 一、讲授新课 像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。 调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式。 在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(individual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize)。 例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。 为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。 上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling)。 师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。 学生小组合作、讨论,学生代表展示结果。 教师指导、评论。 师:除了问卷调查外,我们还有哪些方法收集到数据呢? 学生小组讨论、交流,学生代表回答。 师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适? (1)你班中的同学是如何安排周末时间的? (2)我国濒临灭绝的植物数量; (3)某种玉米种子的发芽率; (4)学校门口十字路口每天7:00~7:10时的车流量。 学生讨论,并举手回答。 师:采用何种方法一定要结合实际问题来定。在解决问题(1)的过程中,不但要同学们动手调查,并且对全班所有学生都要调查,像这样对全体对象进行的调查叫做全面调查(普查)。同学们还知道哪些数据的收集需要全面调查吗? 学生讨论,并回答。 生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等。 师:很好!下列问题也适合采用普查方式来收集数据吗? (1)了解某批次炮弹的杀伤半径; (2)某一天全国牛肉的平均价格; (3)一批罐头产品的质量检查; (4)对某条河的河水的污染情况的调查。 学生讨论、分析,并举手回答。 师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。 二、例题讲解 【例】(1)电视台准备在某市调查一电视节目的收视率,需要对所有看电视的人进行全面调查吗?对一所中学学生的调查结果能否作为该节目的收视率? (2)对本年级同学是否喜欢某电视节目调查的结果,能代表学校全体同学的意见吗?如果不适用,应如何改进调查方法? 解:(1)电视台不可能对每个看电视的人进行全面调查。对这?所中学学生的调查结果不能作为该节目的收视率,因为调查对象只有中学生,缺乏代表性; (2)对本年级同学是否喜欢某电视节目的调查结果不能代表 《6。2普查与抽样调查》课时练习 2。下列事件中最适合使用普查方式收集数据的是() A。为制作校服,了解某班同学的身高情况 B。了解全市初三学生的视力情况 C。了解一种节能灯的使用寿命 D。了解我省农民的年人均收入情况 答案:A 解析:解答:A。人数不多,适合使用普查方式,所以A正确; B。人数较多,结果的实际意义不大,因而不适用普查方式,所以B错误; C。是具有破坏性的调查,因而不适用普查方式,所以C错误; D。人数较多,结果的实际意义不大,因而不适用普查方式,所以D错误。 故选:A。 分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似。此题考查了抽样调查和全面调查,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查选用普查。 《6。2普查与抽样调查》基础巩固 1、(知识点1)要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是() A、选取该校一个班级的学生 B、选取该校50名男生 C、选取该校50名女生 D、随机选取该校50名九年级学生 2、(题型二)下列调查适合用抽样调查的是() A、了解义乌电视台“同年哥讲新闻”栏目的收视率 B、了解禽流感H7N9确诊病人同机乘客的健康状况 C、了解某班每个学生家庭电脑的数量 D、“神七”载人飞船发射前对重要零部件的检查 3、(题型三)为了了解某市八年级男生的身高,有关部门准备对200名八年级男生的身高做调查,以下调查方案中比较合理的是() A、查阅外地200名八年级男生的身高统计资料 B、测量该市一所中学200名八年级男生的身高 C、测量该市两所农村中学各100名八年级男生的身高 D、在该市市区任选两所中学,农村任选两所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高七年级数学活动教案大全篇7
七年级数学活动教案大全篇8
七年级数学活动教案大全篇9
七年级数学活动教案大全篇10
七年级数学活动教案大全篇11
七年级数学活动教案大全篇12
七年级数学活动教案大全篇13
七年级数学活动教案大全篇14
七年级数学活动教案大全篇15
七年级数学活动教案大全篇16
七年级数学活动教案大全篇17
七年级数学活动教案大全篇18
七年级数学活动教案大全篇19
七年级数学活动教案大全篇20