七年级上册数学教案万能模板最新
编写教案可以帮助教师更好地掌握教学目标和教学内容,从而提高教学质量和效果。下面是一些七年级上册数学教案万能模板最新免费阅读下载,希望对大家写七年级上册数学教案万能模板最新有用。
七年级上册数学教案万能模板最新篇1
一、课题名称:
3.3解一元一次方程(二)——去括号与去分母
二、教学目的和要求:
1、知识目标
(1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2、能力目标
(1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;
(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3、情感目标
(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;
(2)培养学生严谨的思维品质;
(3)通过学生间的相互交流、沟通,培养他们的协作意识。
三、教学重难点:
重点:去分母解方程。
难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。
四、教学方法与手段:
运用引导发现法,引进竞争机制,调动课堂气氛
五、教学过程:
1、创设情境,提出问题
问题1:我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。
学生思考,根据自己对一元一次方程的理解程度自由编题。
问题2:解方程5(x-2)=8
解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
2、探索新知
(1)情境解决
问题1:设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。
问题2:教室引导学生寻找相等关系,列方程。
根据全年用电15万度,列方程,得6x+6(x-2000)=150000.
问题3:怎样使这个方程向x=a的形式转化呢?
6x+6(x-2000)=150000
↓去括号
6x+6x-12000=150000
↓移项
6x+6x=150000+12000
↓合并同类项
12x=162000
↓系数化为1
x=13500
问题4:本题还有其他列方程的方法吗?
用其他方法列出的方程应怎样解?
设下半年每月平均用电x度,则6x+6(x+2000)=150000.
(学生自己进行解决)
归纳结论:方程中有带括号的式子时,根据乘法分配率和去括号法则化简。(见“+”不变,见“—”全变)
去括号时要注意:
(1)不要漏乘括号内的任何一项;
(2)若括号前面是“—”号,记住去括号后括号内各项都变号。
(2)解一元一次方程——去括号
例题、解方程:3x—7(x—1)=3—2(x+3)。
解:去括号,得3x—7x+7=3—2x—6
移项,得3x—7x+2x=3—6—7
合并同类项,得—2x=—10
系数化为1,得x=5
3、变式训练,熟练技能
(1)解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
(2)3(2-3x)-3[3(2x-3)+3]=5;
(3)2(x+1)+3(x+2)-3=-4(x+3).
(2)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
(3)学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?
4、总结反思,情意发展
(1)本节课你学习了什么?
(2)本节课你有哪些收获?
(3)通过今天的学习,你想进一步探究的问题是什么?
可以归纳为如下几点:
①本节主要学习用去括号的方法解一元一次方程。
②主要用到的思想方法是转化思想。
③注意的问题:括号前是“—”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项;在实际问题中,要会找等量关系。
5、布置作业
(1)必做题:课本第98页习题3.3第
1、2题。
(2)选做题:
①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。
②杭州新西湖建成后,某班40名同学划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?
六、课后小结:
本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开
思考、讨论,进行学习。
强调学生主体意识的体现,在设计中,教师始终把学生放在主体的地位,让学生通过尝试得到解决,归纳出去括号解方程的特点,让学生通过合作与交流,得出问题的不同解答方法。
从设计上体现学生思维的层次性。教师首先引导学生尝试列出含未知数的式子,寻找相等关系列出方程。
七年级上册数学教案万能模板最新篇2
教学目的
使学生灵活应用解方程的一般步骤,提高综合解题能力。
重点、难点
1、重点:灵活应用解题步骤。
2、难点:在“灵活”二字上下功夫。
教学过程:
一、一、复习
1、一元一次方程的解题步骤。
2、分数的基本性质。
二、新授
例1.解方程(见课本)
分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。
例2.解方程(见课本)
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)
分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。
三、巩固练习。
根据公式V=V0+at,填写下列表中的空格。
VV0at
028
48314
1554
76137
四、小结。
若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。
五、作业。
教科书第13页第3题
七年级上册数学教案万能模板最新篇3
教学目的:
理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。
重点、难点
1、重点:弄清应用题题意列出方程。
2、难点:弄清应用题题意列出方程。
教学过程
一、复习
1、什么叫一元一次方程?
2、解一元一次方程的理论根据是什么?
二、新授。
例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?
分析:等量关系;A盘现有盐=B盘现有盐
检验所求出的解是否合理。培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。
例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了1400块,问初一同学有多少人参加了搬砖?
1.题目中有哪些已知量?
(1)参加搬砖的初一同学和其他年级同学共65名。
(2)初一同学每人搬6块,其他年级同学每人搬8块。
(3)初一和其他年级同学一共搬了1400块。
2.求什么?
初一同学有多少人参加搬砖?
3.等量关系是什么?
初一同学搬砖的块数十其他年级同学的搬砖数=1400
三、巩固练习
教科书第12页练习1、2、3
四、小结
列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。
五、作业
七年级上册数学教案万能模板最新篇4
一、学生起点分析
八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.
二、教学任务分析
本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时.勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.
为此本节课的教学目标是:
1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.
3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.
三、教学过程设计
本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.
第一环节:创设情境,引入新课
内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:
会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)
意图:紧扣课题,自然引入,同时渗透爱国主义教育.
效果:激发起学生的求知欲和爱国热情.
第二环节:探索发现勾股定理
1.探究活动一
内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:
问:你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.
效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.
2.探究活动二
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:
(2)填表:
A的面积
(单位面积)B的面积
(单位面积)C的面积
(单位面积)
左图
右图
(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
学生的方法可能有:
方法一:
如图1,将正方形C分割为四个全等的直角三角形和一个小正方形,.
方法二:
如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.
方法三:
如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.
(4)分析填表的数据,你发现了什么?
学生通过分析数据,归纳出:
结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.
效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.
3.议一议
内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?
勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.
数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)
意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.
效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.
第三环节:勾股定理的简单应用
内容:
例题如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处.大树在折断之前高多少?
(教师板演解题过程)
练习:
1.基础巩固练习:
求下列图形中未知正方形的面积或未知边的长度(口答):
2.生活中的应用:
小明妈妈买了一部29in(74cm)的电视机.小明量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?
意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.
效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.
第四环节:课堂小结
内容:
教师提问:
1.这一节课我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?与同伴进行交流.
在学生自由发言的基础上,师生共同总结:
1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.
2.方法:(1)观察—探索—猜想—验证—归纳—应用;
(2)“割、补、拼、接”法.
3.思想:(1)特殊—一般—特殊;
(2)数形结合思想.
意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.
效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.
第五环节:布置作业
内容:布置作业:1.教科书习题1.1.
2.观察下图,探究图中三角形的三边长是否满足?
七年级上册数学教案万能模板最新篇5
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3.让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4;-7和4;7和-4;-7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数
老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值.
课堂练习:
1.计算(口答)
(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;
2.计算
(1)5+(-22);(2)(-1.3)+(-8)
(3)(-0.9)+1.5;(4)2.7+(-3.5)
3.用“>”或“<”填空:
(1)如果a>0,b>0,那么a+b____0;
(2)如果a<0,b<0,那么a+b____0;
(3)如果a>0,b<0,a>b,那么a+b____0;
(4)如果a<0,b>0,a<b,那么a+b____0;
【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(a+b)
(2)如果a<0,b<0,那么a+b=-(a-b)
(3)如果a>0,b<0,a>b,那么a+b=+(a-b)
(4)如果a<0,b>0,a<b,那么a+b=-(b-a)
(5)a+0=a.
【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;
2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。
3.通过法则的符号化,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
七年级上册数学教案万能模板最新篇6
一、教学目标:
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果=9,则=;如果2=9,则=
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是()
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为、互为相反数则)
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为倒数,如:
(5)如果,则()
A、,互为倒数B、,互为相反数C、,都是0D、,至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程()
A、B、C、D、00
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()
A、+25=310B、+(+25)=310C、2[+(+25)]=310D、[+(+25)]2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?
解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是()
A、B、C、D、
(2)下列方程中,属于一元一次方程的是()
A、B、C、D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?
解:设甲队胜了场,则平了场,依题意可列得方程:
解得=
答:甲队胜了场,平了场。
(4)根据条件“一个数比它的一半大2”可列得方程为
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为
四、课外作业
P151习题5.1
七年级上册数学教案万能模板最新篇7
《1.1正数和负数》教学设计
教学目标
1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量(规定了向指定方向变化的量);
2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;
3.激发学生学习数学的兴趣.
[教学重点与难点]
重点:深化对正负数概念的理解.
难点:正确理解和表示向指定方向变化的量
《1.1正数和负数》同步练习
1、下列说法正确的是()
A、零是正数不是负数B、零既不是正数也不是负数
C、零既是正数也是负数D、不是正数的数一定是负数,不是负数的数一定是正数
2、向东行进-30米表示的意义是()
A、向东行进30米B、向东行进-30米
C、向西行进30米D、向西行进-30米
3、零上13℃记作+13℃,零下2℃可记作()
A、2B、-2C、2℃D、-2℃
4、某市2015年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()
A、-10℃B、-6℃C、6℃D、10℃
5、中,正数有,负数有.
6、如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作m,
水位不升不降时水位变化记作m.
7、在同一个问题中,分别用正数与负数表示的量具有的意义.
8、甲、乙两人同时从A地出发,如果向南走48m,记作+48m,则乙向北走32m,记为,
这时甲乙两人相距m..
9、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在℃~℃范围内保存才合适.
10、20__年我国全年平均降水量比上年减少24㎜,20__年比上年增长8㎜,20__年比上年减少20㎜。用正数和负数表示这三年我国全年平均降水量比上年的增长量.
11、如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?
12、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?
13、某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?
《1.1正数和负数》同步练习含答案
19.体育课上,对初三(1)班的学生进行了仰卧起坐的测试,以能做28个为标准,超过的次数用正数来表示,不足的次数用负数来表示,其中10名女学生成绩如下:1、4、0、8、6、8、0、6、-5、-1.
(1)这10名女生的达标率为多少?
(2)没达标的同学做了几个仰卧起坐?
解:(1)这10名女生的达标率为8÷10×100%=80%.
(2)没达标的同学做仰卧起坐的个数分别是23个和27个.
七年级上册数学教案万能模板最新篇8
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的&39;喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
给定的数字将被填入它所属的集合中
教学方法:
问题导向法
学习方法:
自主探究法
教学过程:
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
七年级上册数学教案万能模板最新篇9
通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程,接下来这一节课,我们要重点讨论是:
(1)解方程中的“去分母”。
(2)根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。
由一道的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它,求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我们发现存在这样的一些问题:
(1)部分学生不会找各分母的最小公倍数,这点要适当指导。
(2)用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项。
(3)当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x-x+2=2,其中x+2没有加括号,弄错了符号。
七年级上册数学教案万能模板最新篇10
学习目标
1、了解负数是从实际需要中产生的;
2、能判断一个数是正数还是负数,理解数0表示的量的意义;
3、会用正负数表示实际问题中具有相反意义的量.
重点难点
重点:正、负数的概念,具有相反意义的量
难点:理解负数的概念和数0表示的量的意义
教学流程
师生活动时间复备标注
一、导入新课
我先向同学们做个自我介绍,我姓,大家可以叫我老师,身高米,体重千克,今年岁,教龄是年龄的,我将和同学们一起度过三年的初中学习生活.
老师刚才的介绍中出现了一些数,它们是些什么数呢?
[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数.所以,数产生于人们实际生产和生活的需要.
在生活中,仅有整数和分数够用了吗?
二、新授
1、自学章前图、第2页,回答下列问题
数-3,3,2,-2,0,1.8%,-2.7%,这些数中,哪些数与以前学习的数不同?
什么是正数,什么是负数?
归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+1/3,…,就是2、0.5、1/3,….
这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.
如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.
2、自学第23页,回答下列问题
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?
0有什么意义?
归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.
3、用正负数表示具有相反意义的量:自学课本34页
有哪些相反意义的量?
请举出你所知道的相反意义的量?
“相反意义的量”有什么特征?
归纳小结:一是意义相反,二是有数量,而且是同类量.
完成3页练习
4、例题
自学例题,完成归纳。寻找问题。
完成4页练习
三、课堂达标练习
课本第5页练习1、2、3、4、7、8.
四、课堂小结
1、到目前为止,我们学习的数有哪几种?
2、什么是正数、负数?零仅仅表示“没有”吗?
3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用.明确目标
七年级上册数学教案万能模板最新篇11
一.知识与技能
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.
二.过程与方法
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.
三.情感态度与价值观
鼓励学生积极思考,激发学生学习的兴趣.
教学重、难点与关键
1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量.
2.难点:正数、负数概念的综合运用.
3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量.
教具准备
投影仪
教学过程
四、复习提问课堂引入
1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?
2.如果用正数表示盈利5万元,那么-8千元表示什么?
五、新授
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.
2.20__年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.
写出这些国家20__年商品进出口总额的增长率.
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.
解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
2.六个国家20__年商品进出口总额的增长率分别为:
美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.
归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义.
六、巩固练习
1.课本第5页的第8题.
点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多.
2.补充练习.
若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?
解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处.
七、课堂小结
通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量.
八、作业布置
课本第5页习题1.1第4、5、6、7题.
九、板书设计
正数和负数
七年级上册数学教案万能模板最新篇12
教学目标和要求:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、列代数式
(1)若正方形的边长为a,则正方形的面积是()
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为()
(3)若x表示正方形棱长,则正方形的体积是()
(4)若m表示一个有理数,则它的相反数是()
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款()元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)
2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
概念:
单项式的系数:单项式中的数字因数。
单项式的次数:在单项式中,所有字母的指数之和。
4.例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1;②;③πr2;④-ab。
答:①不是,因为原代数式中出现了加法运算;
②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;
④是,它的系数是-1,次数是3。
例2:下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是。
通过其中的反例练习及例题,强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的`学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)
6.课堂练习:课本p56:1,2。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
四、作业布置:
课本p59:1,2。
2.1第2课时整式
教学内容
1、多项式、整式的有关概念
2、正确区分单项式和多项式
教学目标
1、知识与技能
(1)学生理解多项式的概念.
(2)使学生能准确地确定一个多项式的次数和项数.
(3)能正确区分单项式和多项式.
2、过程与方法
通过区别单项式与多项式,培养学生发散思维.
3、情感、态度与价值观
在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想.
教学重、难点
1.重点:多项式的概念及单项式的联系与区别.
2.难点及关键:多项式的次数的确定,多项式中各项的符号问题,以及多项式与单项式的联系与区别.
教学过程
一、创设情境,导入新课
师:上节课我们学习了单项式的有关概念,同学们看下面一些问题.
1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数.
,,,2,,,
2.圆的半径为,则半圆的面积为_____________,半圆的总长为_____________.
学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励.
【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为很自然地引出本节内容.
师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?
学生活动:同座进行讨论,然后选代表回答.
师:谁能把1题中不是单项式的式子读出来?(师做相应板书)
学生活动:小组讨论,、,,对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充.
二、探索新知
师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式.
学生活动:讨论归纳什么叫多项式.可让学生互相补充.
教师概括并板书
多项式:几个单项式的和叫多项式.
师:强调每个单项式的符号问题,使学生引起注意.
练习:下列代数式,,,,,,,,中,是多项式的有:
___________________________________________________________.
学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论.
【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正.
师:提出问题,多项式、,,各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正.
师:在中,是两个单项式相加得到,就叫做二项式,两个单项式中,次数是1,次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式.
学生活动:同桌讨论,,,,应怎样称谓,然后找学生回答.
师:给予归纳,并做适当板书:
学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答.
根据学生回答,师归纳:
在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如这一项不是.多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项.
【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力.
师:提出问题:对于多项式是几次几项式呢?多项式的项数,各单项式的次数以及各项字母的指数各是多少呢?
学生活动:讨论(学生应都能准确回答)
师归纳:各项字母的指数,发现多项式的排列是按照字母b的升幂来排列。指出多项式的表达必须按照某个字母的升幂或降幂来排列的。
则还可以表示为,还有吗?
学生活动:小组讨论并展示各组的成果。
三、应用新知,解决问题
1、填表:
2、填空:
(1)是___次___项式;是___次____项式;的常数项是___________.
(2)是____次____项式,最高次数是_______,最高次项的系数是______,常数项是_______.
3、将下列多项式按照某个字母的升幂,降幂来排列。
学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正.
【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言.
归纳:单项式和多项式统称为整式.
说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做板书,使所学知识纳入知识系统.
四、应用拓展
1、下列各代数式:0,,,,,,中,单项式有__________,多项式有____________,整式有_____________.
学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏
【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系.
2、单项式,,的和_________,它是____次_____项式.
3、是_____次____项式,是____次____项式,它的常数项_________.
4、是_____次_____项式,最高次项是_______,最高次项的系数是_______,常数项是________.
5、的2倍与的平方的的和,用代数式表示__________,它是__________(填单项式或多项式).
学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言.
师:做肯定或否定,强调3题中最高次项的系数是,是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的.
【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对这个数字要有一个明确的认识.
6、自编题目练习:
每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确.
【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力.
师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式.
学生活动:学生边回答师边板书,然后学生讨论是否符合要求.
【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力.
五、归纳小结
学生归纳,教师点评
“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数.
第二课时作业设计
1.判断题
(1)-5不是多项式()
(2)是二次二项式()
(3)是二次三项式()
(4)是一次三项式()
(5)的最高次项系数是3()
2.填空题
(1)把上列代数式分别填在相应的括号里
,,,0,,,
;;
;;
.
(2)如果代数式是关于的三次二项式则,.
3、把下列各整式填入相应的圈里:
2m,xy3+1,2ab+6,ax2+bx+c,a,
单项式多项式
4、下列多项式分别有几项?每项的系数和次数分别是多少?
(1)(2)
5、多项式是次项式,最高次项是,常数项是,按字母y的降幂排列为。
6、下列运算中,错误的是()。
A.B.
C.D.
7、是次项式,其中最高次项的系数是。多项式2x2-3x+1是次项式。
8、多项式1-x3+x2是()
A.二次三项式B.三次三项式C.三次二项式D.五次三项式
9、多项式x3-2x2y-xy2-1的最高次项是()
A.x3B.2x2yC.-xy2D.x3,-2x2y,-xy2
10、52x2-x是()
A.一次二项式B.二次二项式
C.四次二项式D.五次二项式
11、多项式3xy2-2x2y+x3y3中,按x的指数从大到小各项依次是,按y的指数从小到大各项依次是________
12、当a=,b=时,是关于x、y的三次二项式
13、若x+y=3,则4-2x-2y=。
14、一个关于字母x、y的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?你能写出符合要求的一个多项式吗?
七年级上册数学教案万能模板最新篇13
教学目的
掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。
重点、难点
1、重点:掌握去分母解方程的方法。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
教学过程
一、复习提问
1.去括号和添括号法则。
2.求几个数的最小公倍数的方法。
二、新授
例1:解方程(见课本)
解一元一次方程有哪些步骤?
一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例:解方程(x+15)=-(x-7)
三、巩固练习
教科书第10页,练习1、2。
四、小结
1.解一元一次方程有哪些步骤?
2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
五、作业
教科书第13页习题6.2,2第2题。
七年级上册数学教案万能模板最新篇14
【教学目标】
1.进一步理解有理数加法的实际意义;
2.经历探索有理数加法法则的过程,理解有理数加法法则;
3.感受数学模型的思想;
4.养成认真计算的习惯.
【对话探索设计】
〖探索1
1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?
2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?
3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?
假设原点为运动起点,用数轴检验你的答案.
〖法则理解
有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.
这条法则包括两种情况:
(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;
(2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5)=-(3+5)=-8.答案-8之所以取-号,是因为______________,8是由_____的绝对值和______的绝对值相______而得.
〖练习
1.上午6时的气温是-5℃,下午5时的气温比上午6时下降3℃,下午5时的气温是多少?
2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1,两场比赛黄队净胜几个球?
3.第一天向北走-30km,第二天又向北走-40km,两天一共向北走多少km?
4.仿照(-3)+(-5)=-(3+5)=-8的格式解答:
(1)-10+(-30)=
(2)(-100)+(-200)=
(3)(-188)+(-309)=
〖探索2
1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?
2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?
3.正数和负数相加,结果是正数还是负数?
〖法则理解
有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.
例如(+6)+(-2)=+(6-2)=+4.答案+4之所以取+号,是因为两个加数(+6与-2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.
又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3)=-(8-3)=-5.
〖议一议
有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算.他说的对不对?
〖练习
1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1,两场比赛黄队净胜几个球?
2.如果物体先向右运动5米,再向右运动-8米,那么两次运动后总的结果是什么?
3.检查3包洗衣粉的重量(单位:克),把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:
-3.5,+1.2,-2.7.
这3包洗衣粉的重量一共超过标准重量多少?
4.仿照(-8)+(+3)=-(8-3)=-5的格式解题:
(1)(-3)+(+8)=
(2)-5+(+4)=
(3)(-100)+(+30)=
(4)(-100)+(+109)=
〖法则理解
有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.
例如(+3)+(-3)=______,(-108)+(+108)=______.
〖例题学习
P21.例1,例2
P22.练习2(按例1格式算.)
〖作业
P29.习题1,P32.习题8,9,10
【备选素材】
用一个□表示+1,用一个■表示-1.显然□+■=0,
(1)■■+□□□=(■+□)+(■+□)+□=_____.
这表明-2+3=+(3-2)=1.
想一想:答案为什么是正的?为什么转化为减法运算?
(2)计算■■■■■+□□□□□=_____.
(3)计算■■■■■+□□=(■■+□□)+■■■=______.
这说明-5+(+2)=-(___-___)=_______.
(4)计算■■■+□□□□□=?
七年级上册数学教案万能模板最新篇15
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的`信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
给定的数字将被填入它所属的集合中
教学方法:
问题导向法
学习方法:
自主探究法
教学过程:
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题