教案吧 > 初中教案 > 七年级教案 >

免费初一数学教案

时间: 新华 七年级教案

好的教案应该有及时的教学反思,对本次教学过程中的优缺点进行总结和反思,为今后的教学提供经验和启示。如何写出优秀的免费初一数学教案?下面给大家分享一些免费初一数学教案,希望对大家有所帮助。

免费初一数学教案篇1

【学习目标】

1、理解什么是一元一次方程。

2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

【重点难点】能验证一个数是否是一个方程的解。

1.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,如果设上半年每月平均用电x度,那么所列方程正确的是()

A.6x+6(x-2000)=150000

B.6x+6(x+2000)=150000

C.6x+6(x-2000)=15

D.6x+6(x+2000)=15

2.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x元,根据题意,列出方程为________.

3.一个正方形花圃边长增加2m,所得新正方形花圃的`周长是28m,则原正方形花圃的边长是多少?(只列方程)

《3.1.等式的性质》同步四维训练含答案

知识点一:等式的性质1

1.下列变形错误的是(D)

A.若a=b,则a+c=b+c

B.若a+2=b+2,则a=b

C.若4=x-1,则x=4+1

D.若2+x=3,则x=3+2

2.已知m+a=n+b,根据等式的性质变形为m=n,那么a,b必须符合的条件是(C)

A.a=-b

B.-a=b

C.a=b

D.a,b可以是任意有理

《3.1从算式到方程》同步练习含解析

7.解:把x=3代入方程,得:15-a=3,

解得:a=12.

故选B.

根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.

本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.

8.解:A、7x-4=3x是方程;

B、4x-6不是等式,不是方程;

C、4+3=7没有未知数,不是方程;

D、2x<5不是等式,不是方程;

故选:A.

根据方程的定义:含有未知数的等式叫方程解答即可.数或整式

免费初一数学教案篇2

教学目标

在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。

在推导法则的过程中,培养观察、概括与抽象的能力。

通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点难点

重点

同底数幂相乘的法则的推理过程及运用

难点

同底数幂相乘的运算法则的推理过程

教学过程

一、温故知新

1.表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的&39;结果)

2.下列四个式子①,②,③④中,运算结果是的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)

3.光的传播速度是每秒米,若一年以秒计算,那么光走一年的路程是多少米呢?

学生列出式子。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。

二、新课讲解

探究新知

你能计算出吗?

学生解答,教师板书

那么等于多少呢?更一般的,等于多少呢?

学生回答,教师板书

你发现运算的方法了吗?

师生共同概括归纳出同底数幂乘法的法则:

同底数幂相乘,底数不变,指数相加。

用公式表示是:(、n都是正整数)

动脑筋

当3个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?

学生思考并讨论解答,最后教师总结:(,n,p都是正整数)

三、典例剖析

例1计算:(1);(2)

分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。

例2计算:(1);(2)

让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。

例3计算:(1);(2)

学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的数,提高学生的运算能力。

四、课堂练习

基础训练:

1.计算:

(1);(2);(3);(4)

2.计算:

(1);(2);(3);(4)

(学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)

提高训练

3.计算;(2)

4.制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作.随着不断地对折,面条根数不断增加.若一碗面约有64根面条,则面团需要对折多少次?若一个拉面店一天能卖出2048碗拉面,用底数为2的幂表示拉面的总根数。

(用以提升学生运算的灵活性,提高学习兴趣。)

五、小结

师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)

六、布置作业

教材P40第1题,P41第12题

免费初一数学教案篇3

(一)知识点目标:

1.了解正数和负数是怎样产生的。2.知道什么是正数和负数。3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:

知道什么是正数和负数,理解数0表示的量的意义。

教学难点:

理解负数,数0表示的量的意义。

教学方法:

师生互动与教师讲解相结合。

教具准备:

地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好?内容:老师说出指令:向前两步,向后两步;

向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±、-9的意义。

3、正数、负数的定义:我们把以前学过的`0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、

31等是正数(也可加上“十”)-3、-2、

-31等是负数。4、数0既不是正,也不是负数,0是正数和负数的分界。0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图)让学生观察地形图上的标注和记录支出、存入信息的

巩固提高:练习:课本P5练习课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题的第1、2、4、5题。活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

课后反思:

免费初一数学教案篇4

教学目标

1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)

2.能将用科学记数法表示的数还原为原数.(重点)

教学过程

一、情境导入

在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.

如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.

生活中,我们还常会遇到一些比较大的数.例如:

1.据报载,20__年我国将发展固定宽带接入新用户25000000户.

2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.

3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.

像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?

二、合作探究

探究点一:用科学记数法表示大数

例1我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()

A.167×103B.16.7×104

C.1.67×105D.1.6710×106

解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选C.

方法总结:科学记数法的表示形式为a×10n,其中1≤a<10,n为整数,表示时关键要正确确定a的值以及n的值.

例220__年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元()

A.9.34×102B.0.934×103

C.9.34×109D.9.34×1010

解析:934千万=9340000000=9.34×109.故选C.

方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.

探究点二:将用科学记数法表示的数转换为原数

例3已知下列用科学记数法表示的数,写出原来的数:

(1)2.01×104;(2)6.070×105;(3)-3×103.

解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.

解:(1)2.01×104=20100;

(2)6.070×105=607000;

(3)-3×103=-3000.

方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的.数.

三、板书设计

科学记数法:

(1)把大于10的数表示成a×10n的形式.

(2)a的范围是1≤a<10,n是正整数.

(3)n比原数的整数位数少1.

教学反思

本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.

免费初一数学教案篇5

教  学  设  计

教学后记

课 题

数据的收集(2)

知识与技能

让学生经历调查与收集数据的过程,从中体会到数据在解决现实世界的问题中是有用的,学会收集数据,掌握收集数据的方法,利用数据解决问题。

过程和方法

组织学生开展调查,收集自己感兴趣的数据,课堂上集体讨论,在合作探究活动中获取知识,感受知识。

情感、态度与价值观

感兴趣于探究活动,愿意和他人交流,学会表达,学会质疑,逐步养成用数据说话的习惯。

重点、难点

重点:认识数据的重要性,掌握数据收集的方法。

难点:如何收集数据,利用数据来解决问题。

教法选择

教师以主持人的身份,开展课堂活动,引导学生独立思考、合作探索、参与交流,发表意见。

学法引导

通过详细阅读课文,联系生活实际,亲身实践、自主探索,了解收集数据的过程、方法和用途并收集数据。

课堂组织形式

课堂活动课:教师引导,学生分组讨论,代表发言学生参与辩论,课堂展开调查,师生共同小结。

一、课堂导入  

寓言小故事:通过寓言小故事引入教学,使学生的注意力进入到课堂的活动中,调动同学们的学习积极性,认识到数据的收集在生活中是有用的。

二、分组讨论

分小组讨论:把学生分成六个讨论小组,每位同学把自己经历调查所收集到的数据,和小组同学一起讨论,在小组中阐述自己的想法,介绍收集数据的过程和方法,选出有代表性的数据,进行修改认证。

三、集体分享

选派代表发言:每一个讨论小组派一至三位代表把本组有代表性的数据收集公布,阐述调查的问题,数据收集的对象、方法和过程,和同学们一起探讨数据的作用,分享调查的成果。学生或老师提出质疑,共同评价,达成共识。

四、课堂调查

课堂开展调查研究:在分享学生数据收集的基础上,师生合作交流,通过课堂调查,用唱票的方法,了解学生对老师的评价,用数据说话。

五、反思提高

活动过程 小结:对整个数据收集的过程做一个小结,学生发表自己的见解,总结数据收集的方法,了解到实验次数增多对结果产生的影响,明白数据在解决现实生活问题是有用的这个道理。

六、课后作业 

1、把收集的数据加以整理,写出一份报告。

2、课本第188页习题5.1第1、2题,可以到其它班级收集数据。

3、阅读课本第189~192页

备注:

免费初一数学教案篇6

学习目标

1.知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;

2.了解数形结合的数学思想。

3.进一步理解有理数与数轴上的点的对应关系;巩固在数轴上由数找点、由点读数的方法;

4.会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。

重点是掌握数轴的概念和画法,明确其三要素缺一不可;利用数轴比较有理数的大小,并归纳出一般规律。

难点数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。

教学过程

一、自主学习(一)、自学课文P(二)、导学练习

1.有理数包括哪些数?0是正数还是负数?

2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?

3.思考:

①零上25℃用正数_____表示。0℃用数____表示;零下10℃用负数_____表示。

②什么叫数轴?数轴要具备哪三个要素?

③原点表示什么数?原点右方表示什么数?原点左方表示什么数?

④表示+2的点在什么位置?表示-3的点在什么位置?

⑤原点向右0.5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数

4.数轴的画法,有哪几个步骤?

5.我们还可以更简便的得出数轴的定义:规定了、和的直线叫做数轴。

、和是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。

6.温度计里的大小:观察温度计的刻度,发现上边的温度总比下边的高。类似地,在数轴上表示的两个数,的数总比的数大。

进一步观察数轴,发现所有的负数都在“0”的,所有的正数都在“0”的,这说明什么?

正数都0;负数都0;正数一切负数。

(三)自学疑难摘要:

组长检查等级:

二合作探究

1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?

2.把下面各小题的数分别表示在三条数轴上:

(1)2,-1,0,+3.5

(2)-5,0,+5,15,20;

(3)-1500,-500,0,500,1000。

想想看,第(3)小题数据比较大,那怎样表示呢?

3.把下列各组数用“<”号连接起来.

(1)–10,2,–14;

(2)–100,0,0.01;

(3),–4.75,3.75。

三、展示提升

1、每个同学自主完成二中的练习后先在小组内交流讨论。

2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。

3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

四、反馈与检测

1.判断下图中所画的数轴是否正确?

(1)

2.下面数轴上的点A、B、C、D、E分别表示什么数?

(2)

3.将-3、1.5、、-6、2.25、、-5、1各数用数轴上的点表示出来。

4.画一条数轴,并在上面标出下列的点。

±100±200±300

免费初一数学教案篇7

教案

第一章有理数

(1)本周小张一共用掉了多少钱?存进了多少钱?

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

夯实基础

(1)序号为几的零件最接近标准?

④-(-)0.025.

第2课时加法运算律

教学目标:

1.能运用加法运算律简化加法运算.

2.理解加法运算律在加法运算中的作用,适当进行推理训练.

教学重点:如何运用加法运算律简化运算.

教学难点:灵活运用加法运算律.

教与学互动设计:

(一)情境创设,导入新课

思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.

(二)合作交流,解读探究

计算:20+(-30)与(-30)+20两次得到的和相同吗?

得出结论:20+(-30)=(-30)+20

换几组数去试:得到加法交换律:a+b=(学生填).

其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)

计算:(1)[8+(-5)]+(-4);

(2)8+[(-5)+(-4)].

得出结论:加法结合律:(a+b)+c=.

【例1】计算:

16+(-25)+24+(-35)

【例2】课本P20例3

说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.

总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的&39;数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.

(三)应用迁移,巩固提高

【例3】利用有理数的加法运算律计算,使运算简便.

(1)(+9)+(-7)+(+10)+(-3)+(-9)

(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)

(3)(+1)+(-2)+(+3)+(-4)+…+(+20__)+(-20__)

【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.

(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?

(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?

(四)总结反思,拓展升华

本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.

(五)课堂跟踪反馈

夯实基础

1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是()

A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]

B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]

C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]

D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]

2.计算:(-2)+4+(-6)+8+…+(-98)+100.

提升能力

3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?

4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.

(1)问收工时距A地多远?

(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?

第3课时有理数的减法

教学目标:

1.经历探索有理数减法法则的过程,理解有理数减法法则.

2.会熟练进行有理数减法运算.

教学重点:有理数减法法则和运算.

教学难点:有理数减法法则的推导.

教与学互动设计

(一)创设情景,导入新课

观察温度计:

你能从温度计看出4℃比-3℃高出多少度吗?

学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?

按照刚才观察到的结果,可知4-(-3)=7①,而4+(+3)=7②,∴由①②可知:4-(-3)=4+(+3)③,上述结论的获得应放手让学生回答.

(二)动手实践,发现新知

观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?

结论:减去-3等于加上-3的相反数+3.

(三)类比探究,总结提高

如果将4换成-1,还有类似于上述的结论吗?

先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.

计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2①,

又因为(-1)+(+3)=2②,

由①②有(-1)-(-3)=-1+(+3)③,

即上述结论依然成立.

试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?

让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.

再试:把减数-3换成正数,结果又如何呢?

计算9-8与9+(-8);15-7与15+(-7)

从中又能有新发现吗?

让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.

归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.

减法法则:减去一个数,等于加上这个数的相反数.

用字母表示:a-b=a+(-b).

(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)

(四)例题分析,运用法则

【例】计算:

(1)(-3)-(-5);(2)0-7;

(3)7.2-(-4.8);(4)-3-5.

(五)总结巩固,初步应用

总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?

教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.

免费初一数学教案篇8

初一上册数学教案,欢迎各位老师和学生参考!

学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1.会用绝对值比较两个负数的大小。

2.会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:

一、创设情境

根据绝对值与相反数的意义填空:

1、

2、

-5的相反数是______,-10.5的相反数是______,的&39;相反数是______;

3、0=______,0的相反数是______。

二、探索感悟

1、议一议

(1)任意说出一个数,说出它的绝对值、它的相反数。

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

2、想一想

(1)2与3哪个大?这两个数的绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?

三.例题精讲

例1.求下列各数的绝对值:

+9,-16,-0.2,0.

求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?

(2)数轴上的点的大小是如何排列的?

例2比较-10.12与-5.2的大小。

例3.求6、-6、14、-14的绝对值。

小节与思考:

这节课你有何收获?

四.练习

1.填空:

⑴的符号是,绝对值是;

⑵10.5的符号是,绝对值是

⑶符号是+号,绝对值是的数是

⑷符号是-号,绝对值是9的数是;

⑸符号是-号,绝对值是0.37的数是.

2.正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).

请指出哪个足球质量最好,为什么?

第1个第2个第3个第4个第5个第6个

-25-10+20+30+15-40

3.比较下面有理数的大小

(1)-0.7与-1.7(2)(3)(4)-5与0

五、布置作业:

P25习题2.35

家庭作业:《评价手册》《补充习题》

六、学后记/教后记

这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助!

免费初一数学教案篇9

教学目的

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

重点、难点

1.重点:解含有括号的一元一次方程的解法。

2.难点:括号前面是负号时,去括号时忘记变号。

教学过程

一、复习提问

1.解下列方程:

(1)5x-2=8(2)5+2x=4x

2.去括号法则是什么?“移项”要注意什么?

二、新授

一元一次方程的概念

如44x+64=3283+x=(45+x)y-5=2y+l问:它们有什么共同特征?

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程

x=3x-2x-=-l

5x2-3x+1=02x+y=l-3y=5

例2.解方程(1)-2(x-1)=4

(2)3(x-2)+1=x-(2x-1)

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习

教科书第9页,练习,l、2、3。

四、小结

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业

1.教科书第12页习题6.2,2第l题。

免费初一数学教案篇10

教学目标:

1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。

重点难点:

重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加

教学过程

一激情引趣,导入新课

1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想

2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。

,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。

二合作交流,探究新知

以原点为起点,规定向东的方向为正方向,向西的方向为负方向,一个单位代表1千米

1同号两数相加

小亮从O点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点O出发向_____走了_______千米,用式子表示为_______________.

从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。

同号两数相加,取__________的符号,并把它们的_____________相加。

2异号两数相加

(1)小明先从点O出发,先向东走4千米,发现口袋里的钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点O出发向___走了____千米,用式子表示为_________________________.

(2)小李先从点O出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点O出发,向___走了

_____千米。用式子表达为_______________________.

从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。

异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值

减去_______________的绝对值。

3一个数和零相加,以及互为相反数相加

(1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?

(2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?

从上问题,你发现了什么?把你的结论写在下框中,

互为相反数的两个相加得_______,一个数和零相加,任得____________________.

三应用迁移,拓展提高

例1计算(1)(-8)+(-12)(2)(-3.75)+(-0.25)

(3)(-5)+9(4)(–10)+7

例2计算(1)(-3)+(2)(-)+(-)

例3填空

(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=

四课堂练习,巩固提高

P21

五反思小结巩固提高

有理数的加法法则有哪些?请你把它们写在下面:

1

2

3

4

六作业p24-25A组1-4B1

免费初一数学教案篇11

学习目标

1.掌握多项式、多项式的项及其次数,常数项的概念。

2.确定一个多项式的项、项数和次数。

3.由单项式与多项式归纳出整式概念。

4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

难点:多项式的次数。

学法指导

从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。

《2.1.3多项式》同步四维训练含答案

新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:

(1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);

(2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度.

《2.1.2多项式》课时练习含答案

1.下列说法中正确的是()

A.多项式ax2+bx+c是二次多项式

B.四次多项式是指多项式中各项均为四次单项式

C.-ab2,-x都是单项式,也都是整式

D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项

2.如果一个多项式是五次多项式,那么它任何一项的次数()

A.都小于5B.都等于5

C.都不小于5D.都不大于5

3.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是()

A.a10+b19B.a10-b19

C.a10-b17D.a10-b21

4.若xn-2+x3+1是五次多项式,则n的值是()

A.3B.5C.7D.0

5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有.(填序号)

6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.

7.多项式的二次项系数是.

8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的`话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?

9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.

10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.

(1)请把游戏最后丁所报出的答案用整式的形式描述出来;

(2)若甲取的数为19,则丁报出的答案是多少?

免费初一数学教案篇12

教学目标:

1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

教学重点:深化对正负数概念的理解.

教学难点:正确理解和表示向指定方向变化的量.

教与学互动设计:

(一)知识回顾和理解

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

[问题1]:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明.

参考例子:用正数、负数和零表示零上温度、零下温度和零度.

思考 “0”在实际问题中有什么意义?

归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

如:水位不升不降时的水位变化,记作:0 m.

[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

(二)深化理解,解决问题

[问题3]:(课本P3例题)

【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家这一年商品进出口总额的增长率.

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

巩固练习

1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

2.让学生再举出一些常见的具有相反意义的量.

3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

中国减少866,印度增长72,

韩国减少130,新西兰增长434,

泰国减少3247, 孟加拉减少88.

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

阅读与思考

(课本P6)用正数和负数表示加工允许误差.

问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

(三)应用迁移,巩固提高

1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是    .

2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

星期 一 二 三 四

增减 -5 +7 -3 +4

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

类比例题,要求学生注意书写格式,体会正负数的应用.

(四)课时小结(师生共同完成)

免费初一数学教案篇13

教学目的:

(一)知识点目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快?

内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。

2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、 等是正数(也可加上“十”)

-3、-2、-0.5、- 等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

巩固提高:练习:课本P5练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题1.1的第1、2、4、5题。

活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

课后反思

免费初一数学教案篇14

一、教学目标:

⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。

⑶体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

二、教学重点、难点:

余角与补角的性质

三、教学过程:

复习、引入:

⑴复习角的定义。你知道有哪些特殊的角?

⑵用量角器量一量图中每组两个角的.度数,并求出它们的和。

你有什么发现?

新课:

由学生的发现,给出余角和补角的定义(文字叙述)。

并且用数学符号语言进行理解。

问题1:如何求一个角的余角和补角。

①∠1的余角:90°-∠1

②∠α的补角:180°-∠α

练习:填表(求一个角的余角、补角)

拓广:观察表格,你发现α的余角和α的补角有什么关系?

如何进行理论推导?

结论:α的补角比α的余角大90°

α一定是锐角

钝角没有余角,但一定有补角。

免费初一数学教案篇15

教学内容:

正数和负数的初步认识,数轴的相关知识,相反数的相关知识,绝对值的相关知识。

教学目的:

1、教学正数和负数的意义,会判断一个数是正数还是负数,会初步运用正数和负数表示相反意义的量。

2、能将学过的整数在数轴上表示出来,能说出数轴上已知点所表示的数。

3、了解相反数的概念,掌握相反数的表示法,能正确地求出一个数的相反数。

4、掌握绝对值的表示法,给一个数,会求它的绝对值。

教材分析:

本单元教材是为进一步学习正数和负数加减法打下基础,为初中数学学习做准备,是衔接小学数学和初中数学的重要环节.教学的重点是相反数和绝对值,难点是正数和负数及数轴概念的理解。

教学课时:

约6课时。

教学准备:

小黑板、投影片。

教学内容:

完成例题,“试一试”及练习一a组的1-7题,b组的1-3题。

教学目的:

1、认识正数和负数,会用正数和负数表示一些常见的数量。

2、培养学生对相对的理解,培养创新的思维品质。

教学重点:

负数的认识是本课的重点。

教学过程:

一、创设情景:

师:我们已经学过哪些数?

出示气温图,说一说各数字表示的意思,找一找哪些是没有学过的?

二、探究新知:

1、师:你会读这些数字吗?试一试.

师:像-1、-4、-8……这样的数都是负数。

师:为了和负数相对应,我们把以前学过的除零以外的数叫作正数,并可在前面加上符号“+”,读作正。

2、自学课本第二页的内容。

师:你还能举出一些正、负数的例子吗?

3、教学例题

出示例题,读题后说一说自己的想法。

明确:海平面以上用正数表示,海平面以下用负数表示。

4、试一试

完成试一试的相关题目。

三、巩固拓展

1、完成练习一a组的1-7题。

第4题要重点订正。

2、完成练习一b组的第1、2、3题。

四、小结

师:本节课你有什么收获?

25529