教案吧 > 初中教案 > 七年级教案 >

数学七年级教案反思

时间: 新华 七年级教案

教案是教师根据教学目标和教学要求,预先设计师生活动和教学资源,制定实施教学的具体方案。数学七年级教案反思怎么写,这里给大家分享数学七年级教案反思,供大家参考。

数学七年级教案反思篇1

5.1相交线

[教学目标]

1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

[教学重点与难点]

重点:邻补角与对顶角的概念.对顶角性质与应用

难点:理解对顶角相等的性质的探索

[教学设计]

一.创设情境 激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角                

在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题

教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

二.认识邻补角和对顶角,探索对顶角性质

1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配

共能组成几对角?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

几何语言准确表达

有公共的顶点O,而且的两边分别是两边的反向延长线

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

3学生根据观察和度量完成下表:

两条直线相交所形成的角分类位置关系数量关系

教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?

4.概括形成邻补角、对顶角概念和对顶角的性质

三.初步应用

练习:

下列说法对不对

(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角

(2)邻补角是互补的两个角,互补的两个角是邻补角

(3)对顶角相等,相等的两个角是对顶角

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

四.巩固运用例题:如图,直线a,b相交,,求的度数。

[巩固练习](教科书5页练习)已知,如图,,求:的度数

[小结]

邻补角、对顶角.

[作业]课本P9-1,2P10-7,8

[备选题]

一判断题:

如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )

两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )

二填空题

1如图,直线AB、CD、EF相交于点O,的对顶角是   ,的邻补角是 

若:=2:3,,则=  

2如图,直线AB、CD相交于点O

则  

5.1.2   垂线

[教学目标]

1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

2.掌握点到直线的距离的概念,并会度量点到直线的距离。

3.掌握垂线的性质,并会利用所学知识进行简单的推理。

[教学重点与难点]

1.教学重点:垂线的定义及性质。

2.教学难点:垂线的画法。

[教学过程设计]

一. 复习提问:

1、叙述邻补角及对顶角的定义。

2、对顶角有怎样的性质。

二.新课:

引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

(一)垂线的定义

当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线AB、CD互相垂直,记作,垂足为O。 

请同学举出日常生活中,两条直线互相垂直的实例。

注意:

1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图)

反之,

(二)垂线的画法

探究:

1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?

3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?

画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

(三)垂线的性质

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

性质1  过一点有且只有一条直线与已知直线垂直。

练习:教材第7页

探究:

如图,连接直线l外一点P与直线l上各点O,

A,B,C,……,其中(我们称PO为点P到直线

l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?

性质2   连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成: 垂线段最短。

(四)点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如上图,PO的长度叫做点P到直线l的距离。

例1 

(1)AB与AC互相垂直;

(2)AD与AC互相垂直;

(3)点C到AB的垂线段是线段AB;

(4)点A到BC的距离是线段AD;

(5)线段AB的长度是点B到AC的距离;

(6)线段AB是点B到AC的距离。

其中正确的有(   )

A. 1个      B. 2个

C. 3个      D. 4个

解:A

例2如图,直线AB,CD相交于点O,

解:略

例3如图,一辆汽车在直线形公路AB上由A

向B行驶,M,N分别是位于公路两侧的村庄,

设汽车行驶到点P位置时,距离村庄M最近,

行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

练习:

1. 

2.教材第9页3、4

教材第10页9、10、11、12

小结:

1.要掌握好垂线、垂线段、点到直线的距离这几个概念;

2.要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;

3.垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。

作业:教材第9页5、6.

数学七年级教案反思篇2

教学目标:

1、使学生结合现实情境,用平移的方法探索并发现把图形分别沿两个方向进行平移后被该图形覆盖的次数的规律,会根据平移次数推算把图形分别沿两个方向进行平移后被该图形覆盖的总次数,解决相应的实际问题。

2、使学生主动经历自主探究和合作交流的过程,体会有序列举和思考是解决问题的基本策略之一,进一步培养发现和概括规律的能力,初步形成回顾与反思探索规律过程的意识。

教学重、难点:探索把图形分别沿两个方向进行平移后被该图形覆盖的次数的规律

教学过程:

一、探索规律

1、 拓展延伸 出示例2,理解图意指名说说(1)浴室的一面墙长有8格,宽有6格;(2)理解问题

2、你准备怎样来贴瓷砖,才能做到既不重复,又不遗漏?

同桌讨论后全班交流,明确方法:可以从左上角开始有次序地进行平移,可以向右平移,也可以向左平移。

3、学生动手操作,操作完后思考:你是沿着什么方向贴的?平移了几次?有几种贴法?

4、交流汇报,引导思考:

(1)沿着这面墙的长贴一行有多少种贴法?(平移6次,可以有7种贴法)沿着这面墙的宽贴一列有多少种贴法?(平移4次,可以有5种贴法)

(2)一共有多少种贴法呢?(5×7=35种)

联系刚才的操作过程想一想:一共有多少种贴法与沿这面墙的长和宽贴各有多少种贴法是什么关系?你是怎么想的?(就是求5个7或7个5是多少)

5、小结:我们发现沿着长贴有7种贴法,沿着宽贴有5种贴法,所以一共有7×5=35种贴法。

二、运用规律

1、完成“试一试”

(1)你能用我们发现的规律来完成这道题吗?出示“试一试”这个图形你会把它平移吗?小组讨论,明确可以把“凸”字形看作长方形。

(2)想一想,有多少种不同的贴法?独立思考后和小组里的同学说说。

(3)交流,引导学生有条理的表达思考过程。(沿着长有6种贴法,沿着长有5种贴法,所以一共有6×5=30种贴法)

2、完成练一练

小军打算在阳台上的一面墙上贴花砖,请你算一算,有多少种不同的贴法?

学生独立完成后交流思考的过程。

3、完成P59第3题

(1)仔细审题后,动手框一框,并算一算5个数的和。

(2)任意框几次,看看每次框出的5个数的和与中间的数有什么关系?

小结:每次框出的5个数的和就等于中间的数乘5。

(3)如果框出的5个数的和是180,应该怎样框?能框出和是100的5个数吗?为什么?

独立思考后解答。

(4)一共可以框出多少个不同的和?独立思考后同桌说说,学生解答后再组织交流思考过程。

4、完成练习册上的相关习题。

三、全课总结

1、通过这节课的学习,你有哪些收获呢?

2、 学生质疑。

数学七年级教案反思篇3

教学目标

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例

公式

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

数学七年级教案反思篇4

教学目标

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2.初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1?用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;(-7)

(4)乙数比x大16%?((1+16%)x)

(应用引导的方法启发学生解答本题)

2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?

二、讲授新课

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?

解:设甲数为x,则乙数的代数式为

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x?

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积?

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?

解:设甲数为a,乙数为b,则

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数?

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2?

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和?

分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个;(2)(m)m个?

三、课堂练习

1?设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?

2?用代数式表示:

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?

3?用代数式表示:

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕

四、师生共同小结

首先,请学生回答:

1?怎样列代数式?2?列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?

五、作业

1?用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2?已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:

=99a+b(cm)

数学七年级教案反思篇5

一:教材分析:(说教材)

1:教材所处的地位和作用:

本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣

以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

2:教育教学目标:

(1)知识目标:

(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

(B)

通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。

(2)能力目标:

通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

(3)思想目标:

通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:

根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

二:学情分析:(说学法)

1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

2:学生在列方程解应用题时,可能存在三个方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

3:

学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4:

学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

三:教学策略:(说教法)

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1:“读(看)——议——讲”结合法

2:图表分析法

3:教学过程中坚持启发式教学的原则

教学的理论依据是:

1:必须先明确根据应用题题意列方程是重点,同时也是

难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相

等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让

学生大致了解列出一元一次方程解应用题的方法。

2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表

示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例

1中,不能把“设原来有X千克面粉”写成“设原来有X”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“X

”“—15%X”“42500

”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例

1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。

数学七年级教案反思篇6

第一章勾股定理

1.探索勾股定理(第1课时)

一、学生起点分析

八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.

二、教学任务分析

本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时.勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.

为此本节课的教学目标是:

1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.

2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.

3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.

4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.

三、教学过程设计

本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.

第一环节:创设情境,引入新课

内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:

会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)

意图:紧扣课题,自然引入,同时渗透爱国主义教育.

效果:激发起学生的求知欲和爱国热情.

第二环节:探索发现勾股定理

1.探究活动一

内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:

问:你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.

效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.

2.探究活动二

内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

(1)观察下面两幅图:

(2)填表:

A的面积

(单位面积)B的面积

(单位面积)C的面积

(单位面积)

左图

右图

(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)

学生的方法可能有:

方法一:

如图1,将正方形C分割为四个全等的直角三角形和一个小正方形,.

方法二:

如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.

方法三:

如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.

(4)分析填表的数据,你发现了什么?

学生通过分析数据,归纳出:

结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.

效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.

3.议一议

内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗?

(2)你能发现直角三角形三边长度之间存在什么关系吗?

(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?

勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.

数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)

意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.

效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.

第三环节:勾股定理的简单应用

内容:

例题如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处.大树在折断之前高多少?

(教师板演解题过程)

练习:

1.基础巩固练习:

求下列图形中未知正方形的面积或未知边的长度(口答):

2.生活中的应用:

小明妈妈买了一部29in(74cm)的电视机.小明量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?

意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.

效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.

第四环节:课堂小结

内容:

教师提问:

1.这一节课我们一起学习了哪些知识和思想方法?

2.对这些内容你有什么体会?与同伴进行交流.

在学生自由发言的基础上,师生共同总结:

1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.

2.方法:(1)观察—探索—猜想—验证—归纳—应用;

(2)“割、补、拼、接”法.

3.思想:(1)特殊—一般—特殊;

(2)数形结合思想.

意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.

效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.

第五环节:布置作业

内容:布置作业:1.教科书习题1.1.

2.观察下图,探究图中三角形的三边长是否满足?

数学七年级教案反思篇7

教学目标1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3,体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类

知识重点正确理解有理数的概念

教学过程(师生活动)设计理念

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业1,必做题:教科书第18页习题1.2第1题

2,教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概

念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进

行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分

类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

课题:1.2.2数轴

教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

教学难点数轴的概念和用数轴上的点表示有理数

知识重点

教学过程(师生活动)设计理念

设置情境

引入课题教师通过实例、课件演示得到温度计读数.

问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

(多媒体出示3幅图,三个温度分别为零上、零度和零下)

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学

点表示数的感性认识。

点表示数的理性认识。

合作交流

探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解

寻找规律

归纳结论问题3:

1,你能举出一些在现实生活中用直线表示数的实际例子吗?

2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4,每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)

归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

巩固练习

教科书第12页练习

小结与作业

课堂小结请学生总结:

1,数轴的三个要素;

2,数轴的作以及数与点的转化方法。

本课作业1,必做题:教科书第18页习题1.2第2题

2,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

数学七年级教案反思篇8

教学设计思路

以小组讨论的形式在教师的指导下通过回顾与反思前三章所学内容,领悟新旧知识之间的内在联系,总结知识结构及主要知识点,侧重对重点知识内容、数学思想和方法、思维策略的总结与反思,再通过练习巩固这些知识点。

教学目标

知识与技能

对前三章所学知识作一次系统整理,系统地把握这三章的知识要点;

通过回顾与反思这三章所学内容,领悟新旧知识之间的内在联系;

通过练习,对所学知识的认识深化一步,以有利于掌握;

发展观察问题、分析问题、解决问题的能力;

提高对所学知识的概括整理能力;

进一步发展有条理地思考和表达的能力。

过程与方法

在老师的引导下逐张复习每张的知识要点,通过练习来巩固这些知识点。

情感态度价值观

进一步体会知识点之间的联系;

进一步感受数形结合的思想。

教学重点和难点

重点是这三章的重点内容;

难点是能灵活利用这三章的知识来解决问题。

教学方法

引导、小组讨论

课时安排

3课时

教具学具准备

多媒体

教学过程设计

通过每一章的知识结构及一些相关问题引导学生总结出每一章的知识点。

数学七年级教案反思篇9

【教学目标】

1、了解必然事件、不可能事件、不确定事件(随机事件)的概念;

2、会用枚举、列表、画树状图等方法,统计简单事件发生的各种可能的结果。

3、感受数学与现实生活的联系

【教学重点、难点】

重点是不确定事件(随机事件)的特点和统计简单事件发生的各种可能的结果,难点是统计简单事件发生的各种可能的结果。

【教学准备】

三只纸盒和红、黄、白、三种颜色乒乓球若干只。

【教学过程】

一、创设情景、激发兴趣

老师拿出一枚一元的硬币,说明写有1元字样的是正面,往上一抛,让学生猜一猜,硬币落地后正面朝上还是反面朝上?然后让每一组上来一位同学抛掷。引导学生:硬币没有落地之前,猜测有几种可能?(正面,也可能是反面即正面、反面都有可能)。

(说明:由游戏引入,激发学生的兴趣,充分让学生参与数学教学中,让学生体会数学来源于生活,生活中处处有数学。)

二、猜想、实践、验证、探索新知

在讲台上置放三只放有乒乓球的纸盒,1号盒(放白球),2号盒(放黄球),3号盒(放黄球和白球)。放什么颜色球学生事先不知道。

对于1号盒:摸到一个红球。(不可能)

对于2号盒:摸到一个黄球。(必然)

对于3号盒:摸到一个白球。(不确定或随机)

每只盒子都让四位同学去摸,(对于1号盒4个人摸到的都是白球,对于2号盒4个人摸到的都是黄球,对于3号盒,直到摸到两种球为止)再叫三位同学分别打开三只盒子,引导学生解析:对于三只盒子出现不同结果的原因,然后讲出每个问题的可能性,老师板书每种可能性的关键词(见以上题后的括号)。从而直接给出必然事件、不可能事件、不确定事件(随机事件)的概念。

(说明:通过简单的试验、猜测、验证,充分地调动学生的积极性,让学生在感性上接受“必然事件”、“不可能事件”、“不确定事件”的概念。)

练习1:教科书72页,合作学习部分及73页做一做。

三、应用与思考

问题1:对照上面的练习1解释:为什么三个概念都有“在一定条件下”?请举例说明。

问题2:你能举出生活中必然事件、不可能事件、不确定事件的例子吗?

问题3:你能改变条件对于1号盒:“摸到红球”由不可能事件变为随机事件吗?

对于2号盒:“摸到黄球”由必然事件变为不可能事件吗?

(说明:强调概念的条件,随着条件的改变事件是可转化的)

数学七年级教案反思篇10

教学内容:

教材第75~76页。

教学目标:

1、认识弧、圆心角以及他们间的对应关系,在此基础上认识扇形,并能准确判断圆心角和扇形。

2、理解扇形概念知道扇形有一条对称轴以及圆心角的大小决定扇形面积。

重点难点:

认识弧、圆心角、扇形,能准确判断扇形。

教学设计:

一、导入。

请将手中的两个圆一个平均分成4份剪下其中的一份,另一个平均分成2份剪下其中的一份,观察手中的图形,他们像什么?(像扇子)

今天我们就一起认识扇形。(板书课题:认识扇形)

二、新授。

1、认识弧:出示一个圆,在上面任意点两个点A、B。

(1)A、B两点在什么位置?(圆上)

(2)师:圆上A、B两点间的部分叫弧。课件演示。

(3)追问:圆上A、B两点间的部分叫什么?什么叫弧?

(板书:弧:圆上A、B两点间的部分)读作:弧AB。

(4)请在圆上用彩笔画一条弧。你是怎样画的?(边用手指描弧边说弧AB)

2、认识圆心角:课件演示连接OA和OB。

(1)线段OA、OB是圆的什么?(半径)

半径OA、OB所夹的部分叫什么?(角)

这个角的顶点在圆的什么位置?(圆心)

师:顶点在圆心的角叫圆心角。什么叫圆心角?

(板书圆心角:顶点在圆心的角)

(2)请学生在圆上标出圆心角。谁是圆心角?(∠AOB是圆心角)

(3)练习:教材76页1题(略)

3、认识扇形。

(1)画出扇形一圈,我们把围成的图形叫扇形,什么叫扇形?交流

由圆心角的两条半径和圆心角所对的弧围成的图形叫扇形。(板书:扇形)

(2)同学之间用手描一下自己手中的圆,互说哪一部分是扇形。

(3)观察桌上剪好的图形,请你选择其中的一个图形说一说,它是扇形吗,为什么?

(4)师课件演示:黄色部分是什么图形?(扇形)为什么?

4、说一说。

(1)演示:活动的扇形。圆心角一条半径不动,另一条半径不断转动,呈现不同的扇形。当两条半径重合时,形成一个圆。

通过观察,你发现了什么?(扇形是圆的一部分)

(2)在生活中,你见到哪些物体的外形是扇形?

(如:扇子外形、贝壳外形、树叶外形等)

(3)老师也搜集了一些扇形的图片,请大家欣赏一下。

5、第三次用剪好的扇形:请将桌上的每一个扇形对折,你有什么发现?

(扇形是轴对称图形,有一条对称轴。)

数学七年级教案反思篇11

第五章相交线与平行线

一、知识结构

邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:有一个公共端点一个角的两边是另一个角两边的反向延长线线。

对顶角性质:对顶角相等。

垂线:1.当两直线相交,有一个夹角为90°时这两条直线垂直.a⊥b读做a垂直于b垂足为O

2.两直线相交构成四个夹角相等,两直线互相垂直。其中一条直线叫做另一条直线的垂线。垂直性质1:过一点有且仅有一条直线,与以已知直线垂直。

垂直性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

平行线定义:在同一平面内永不相交的两条直线。记作a∥b读作:a平行于b

平行线公理:

1.经过直线外一点,有且只有一条直线于已知直线平行。

2.如果两条直线都与第三条直线平行,那么这两条直线也互相平行

平行判定方法:

1.同位角相等,两直线平行。如果∠1=∠2那么a∥b

2.内错角相等,两直线平行如果∠2=∠3那么a∥b

3.同旁内角互补,两直线平行。∠A+∠B=180°那么两直线平行。

平行线的性质:

1.两直线平行,同位角相等。∵a∥b∴∠1=∠2

2.两直线平行,内错角相等。∵a∥b∴∠3=∠4

3.两直线平行,同位角互补∵a∥b∴∠3+∠4=180°

命题:判断一件事情的语句。

1.命题的结构,命题由题设(已知事项或条件)推出的结论(由已知事项推出的事项)

2.任何命题都可以改写成如果那么的形式,如果后面引导题设,那么后面引导结论。

真命题:题设成立,结论成立

假命题:题设成立,结论不成立

两点之间的距离:连接两点的线段的长度叫做两点间的距离。

两条平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的垂线段,叫做这两条平行线的距离。平行线间的距离,处处相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

1.平移不改变物体的大小○2.平移前后对应点的直线相等:且互相平行。○

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

数学七年级教案反思篇12

教学目标:

1、理解平行线之间的距离的概念。

2、能够测量两条平行线之间的距离,会画到已知直线已知距离的平行线。

3、通过平行线之间的距离转化为点到直线的距离,使学生初步体验转化的数学思想。

教学重点:理解平行线之间的距离的概念,掌握它与点到直线的距离的关系。

教学难点:画到已知直线已知距离的平行线。

教学过程:

一、 准备知识

1、点到直线距离。

2、直线外一点与直线上各点连结的所有线段中,垂线段最短。

3、三条直线的平行关系。

二、探究新知

1、做一做。

测量自己的数学课本的宽度。要注意什么问题?刻度尺要与课本两边互相垂直。

2、公垂线、公垂线段的概念

与两条平行直线都垂直的直线,叫做这两条平行直线的公垂线。如图形中的直线AB与CD都是公垂线,这时连结两个垂足的线段,叫做这两条平行直线的公垂线段。图中的线段AB和CD。两平行线的公垂线段也可以看成是两平行直线中一条上的一点到另一条的垂线段。

3、公垂线段定理:两平行线的所有公垂线段都相等。

4、两平行线上各取一点连结而成的所有线段中,公垂线段最短。

如图m∥n,直线m、n上各取一点A、B,连结AB。再过A作n线段的垂线段AC,垂足为C,则有AC从而得到上述定理。

5、两平行间的距离:两平行线的公垂线段的长度。

6、范例分析

P76例 如图设直线a、b、c是三条平行直线。已知a与b的距离为5厘米,b与c的距离为2厘米,求a与c的距离。

引导学生分析,然后按教材写出解题过程:

解:在直线a上任取一点A,过A作AC⊥a,分别交b、c于B、C两点,则AB、BC、AC分别表示a与b,b与c,a与c的公垂线段。AC=AB+BC=5+2=7,因此a与c的距离为7厘米。

三、小结练习

1、练习P76 P77的A组2题

2、课堂小结

四、布置作业    

P77的A组第1、3题

后记:

数学七年级教案反思篇13

教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题

教学重点:平行四边形的判定方法及应用

教学难点:平行四边形的判定定理与性质定理的灵活应用

小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

二.探

阅读教材P44至P45

利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形?

(3)你能说出你的做法及其道理吗?

(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

(5)你还能找出其他方法吗?

从探究中得到:

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2对角线互相平分的四边形是平行四边形。

证一证

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

证明:(画出图形)

平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。

证明:(画出图形)

三.结

两组对边分别相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

四.用

【例题】

例、已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF是平行四边形.

【练习】

1、已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,

需要增加条件.(只需填上一个你认为正确的即可).

2、如图所示,在ABCD中,E,F分别是对角线BD上的两点,

且BE=DF,要证明四边形AECF是平行四边形,最简单的方法

是根据来证明.

作业P46练习1、2题

板书设计

平行四边形的性质

定理:平行四边形的性质例题练习

教学反思

数学七年级教案反思篇14

教学目标

1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

2.培养学生动手操作的能力,启发思维,开阔思路;

3.渗透初步的辩证唯物主义思想。

教学重点和难点

圆面积公式的推导方法。

教学过程设计

(一)复习准备

我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

已知半径,圆周长的一半怎么求?

(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

这节课我们一起来学习圆的面积怎么计算。

(板书课题:圆的面积)

(二)学习新课

1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

展示曲变直的变化图。

2.动手操作学具,推导圆面积公式。

为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。

思考:

(1)你摆的是什么图形?

(2)所摆的图形面积与圆面积有什么关系?

(3)图形的各部分相当于圆的什么?

(4)你如何推导出圆的面积?

(学生开始动手摆,小组讨论。)

指名发言。(在幻灯前边说边摆。)

①拼出长方形,学生叙述,老师板书:

②还能不能拼出其它图形?

学生可以拼出:等等刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。

例1一个圆的半径是4厘米,它的面积是多少平方厘米?

S=r2=3.1442=3.1416=50.24(平方厘米)

答:它的面积是50.24平方厘米。

想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?

(三)巩固反馈

1.求下面各圆的面积。

r=2(单位:分米)d=6(单位:分米)

2.选择题。

用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?

(1)3.1422=12.56(米)

(2)3.1422=12.56(平方米)

(3)3.1432=28.26(平方米)

3.思考题:

已知正方形的面积是18平方米,求圆的面积。(如图)

课堂教学设计说明

1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。

2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。

3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

数学七年级教案反思篇15

教学目标:

1.掌握数轴三要素,能正确画出数轴.

2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.

教学重点:数轴的概念.

教学难点:从直观认识到理性认识,从而建立数轴概念.

教与学互动设计:

(一)创设情境,导入新课

课件展示课本P7的“问题”(学生画图)

(二)合作交流,解读探究

师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.

【点拨】(1)引导学生学会画数轴.

第一步:画直线,定原点.

第二步:规定从原点向右的方向为正(左边为负方向).

第三步:选择适当的长度为单位长度(据情况而定).

第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?

(2)有了以上基础,我们可以来试着定义数轴:

规定了原点、正方向和单位长度的直线叫数轴.

做一做学生自己练习画出数轴.

试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?

讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?

小结整数在数轴上都能找到点表示吗?分数呢?

可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.

(三)应用迁移,巩固提高

【例1】 下列所画数轴对不对?如果不对,指出错在哪里?

【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.

【例3】下列语句:

①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()

A.1个B.2个C.3个D.4个

【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.

【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有()

A.1998个或1999个B.1999个或2000个

C.2000个或20__个D.20__个或20__个

(四)总结反思,拓展升华

数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.

(五)课堂跟踪反馈

夯实基础

1.规定了、、的直线叫做数轴,所有的有理数都可从用上的点来表示.

2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是.

3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()

A.7 B.-3

C.7或-3D.不能确定

4.在数轴上,原点及原点左边的点所表示的数是()

A.正数B.负数

C.不是负数D.不是正数

5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.

提升能力

6.与原点距离为3.5个单位长度的点有2个,它们分别是和.

7.画出一条数轴,并把下列数表示在数轴上:

+2,-3,0.5,0,-4.5,4,3.

开放探究

8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.

9.下列四个数中,在-2到0之间的数是()

A.-1B.1 C.-3D.3

25827