初一数学教案大全
作为一名教师,时常要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。这里分享一些初一数学教案大全下载,供大家写初一数学教案大全参考。
初一数学教案大全篇1
教材分析
方程是应用广泛的数学工具,是代数学的核心内容,在义务教育阶段的数学课程中占有重要地位。本节课选自人教版数学七年级上册第三章第一节的内容,是一节引入课,对于激发学生学习方程的兴趣,获得解决实际问题的基本方法具有十分重要的作用。本节课是结合学生已有学习经验,从算式到方程,继而对一元一次方程及方程的解进行了探究,让学生体验未知数参与运算的好处,用方程分析问题、解决问题(即培养学生建模的思想),体会学习方程的意义和作用。本节课是在承接小学学习的简易方程和刚刚学习的整式的加减的基础上进行学习的,同时又是后续学习二元一次方程、一元二次方程的重要基础。因此,这节课在教材中起到了承上启下的作用。
学情分析
学生前面已经学习了简单的方程及整式的内容,为本节课的学习做好了铺垫。
七年级的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,因而在教学素材的选取与呈现方式以及学习活动的安排上力求设置学生感兴趣的并且具有挑战性的内容,让学生感受到数学来源于生活又回归生活实际,无形中产生浓厚的学习兴趣和探索热情。
七年级学生对于方程已经具备了一定的知识基础,但是对方程的理解还比较肤浅、模糊,还处于感性层面,缺乏理性的认识和把握,而且学生正处于感性认识向理性认识过渡的时期,抽象思维能力有待提高,对于一元一次方程的概念教学要选取具体的问题情境,逐步抽象。
七年级的学生很想利用所学的知识解决问题,通过对几个问题的分析、探讨、相互交流,逐步培养学生的观察、探索、归纳等能力,提高对课本知识的运用能力,从而认识归纳一元一次方程的相关概念,在练习中巩固和熟悉一元一次方程。
教学目标
1.知识与技能目标
(1)掌握方程、一元一次方程的定义,知道什么是方程的解。
(2)体会字母表示数的好处,会根据实际问题的条件列方程,能检验出一个数值是否是方程的解。
2.过程与方法目标
(1)通过将实际问题抽象成数学问题,分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透数学建模的思想,认识到从算式到方程是数学的&39;一种进步。
(2)通过具体情境贴近学生生活,在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化,会利用一元一次方程的知识解决一些实际问题。
3.情感态度与价值观目标
(1)通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考的意识。
(2)激发学生的求知欲和学习数学的热情,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
(3)经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,增强用数学的意识,体会数学的应用价值。
教学重点、难点
教学重点:1.方程、一元一次方程、方程的解的概念。
2.根据实际问题的条件列出方程。
教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学过程
一、创设情境导入新课
二、探究新知形成概念
三、应用新知巩固提高
四、感悟反思
五、名题欣赏
六、布置作业
板书设计
初一数学教案大全篇2
教学目的
让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。
重点、难点
1.重点:通过分析图形问题中的数量关系,建立方程解决问题。
2.难点:找出“等量关系”列出方程。
教学过程
一、复习提问
1.列一元一次方程解应用题的步骤是什么?
2.长方形的周长公式、面积公式。
二、新授
问题3.用一根长60厘米的铁丝围成一个长方形。
(1)使长方形的宽是长的专,求这个长方形的长和宽。
(2)使长方形的宽比长少4厘米,求这个长方形的面积。
(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?
不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。
(3)当长方形的长为18厘米,宽为12厘米时
长方形的面积=18×12=216(平方厘米)
当长方形的长为17厘米,宽为13厘米时
长方形的面积=221(平方厘米)
∴(1)中的长方形面积比(2)中的长方形面积小。
问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积呢?并加以验证。
实际上,如果两个正数的和不变,当这两个数相等时,它们的积,通过以后的学习,我们就会知道其中的道理。
三、巩固练习
教科书第14页练习1、2。
第l题等量关系是:圆柱的体积=长方体的体积。
第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。
四、小结
运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。
五、作业
教科书第16页,习题6.3.1第1、2、3。
初一数学教案大全篇3
教学目标
(一)知识认知要求
1、回顾收集数据的方式。
2、回顾收集数据时,如何保证样本的代表性。
3、回顾频率。频数的概念及计算方法。
4、回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式。
5、能利用计算器或计算机求一组数据的算术平均数。
(二)能力训练要求
1、熟练掌握本章的知识网络结构。
2、经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力。
3、经历调查。统计等活动,在活动中发展学生解决问题的能力。
(三)情感与价值观要求
1、通过对本章内容的回顾与思考,发展学生用数学的意识。
2、在活动中培养学生团队精神。
教学重点
1、建立本章的知识框架图。
2、体会收集数据的方式,保证样本的代表性,频率。频数及刻画数据离散程度的统计量在实际情境中的意义和应用。
教学难点
收集数据的方式。抽样时保证样本的代表性。频率。频数。刻画数据离散程度的统计量在不同情境中的应用。
教学过程
一、导入新课
本章的内容已全部学完。现在如何让你调查一个情况。并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数。
例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?
先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要。
同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?
二、讲授新课
1、举例说明收集数据的'方式主要有哪几种类型。
2、抽样调查时,如何保证样本的代表性?举例说明。
3、举出与频数。频率有关的几个生活实例?
4、刻画数据波动的统计量有哪些?它们有什么作用?举例说明。
针对上面的几个问题,同学们先独立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答。
(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)。
收集数据的方式有两种类型:普查和抽样调查。
例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式。
在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间。
用普查的方式可以直接获得总体情况。但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查。
例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数。中位数。众数。极差。方差等。
上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性。
例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商。
刻画数据波动的统计量有极差。方差。标准差。它们是用来描述一组数据的稳定性的。一般而言,一组数据的极差。方差或标准差越小,这组数据就越稳定。
三、建立知识框架图
通过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图。
四、随堂练习
例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%。由此在广告中宣传,他们的产品在国内同类产品的销售量占40%。请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________。
分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断,同时运用统计原理给予准确的解释。因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性。
例2在举国上下众志成城抗击“非典”的斗争中,疫情变化牵动着全国人民的心。请根据下面的疫情统计图表回答问题:
(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:
①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;
②在本题的统计中,新增确诊病例的人数的中位数是___________;
③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________。
(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表。(按人数分组)
①100人以下的分组组距是________;
②填写本统计表中未完成的空格;
③在统计的这段时期中,每天新增确诊
病例人数在80人以下的天数共有_________天。
初一数学教案大全篇4
一、教学目标
1、知识与技能
(1)理解圆与圆的位置的种类;
(2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;
(3)会用连心线长判断两圆的位置关系.
2、过程与方法
设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:
(1)当时,圆与圆相离;
(2)当时,圆与圆外切;
(3)当时,圆与圆相交;
(4)当时,圆与圆内切;
(5)当时,圆与圆内含;
3、情态与价值观
让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想.
二、教学重点、难点:
重点与难点:用坐标法判断圆与圆的位置关系.
问题设计意图师生活动
1.初中学过的平面几何中,圆与圆的位置关系有几类?结合学生已有知识以验,启发学生思考,激发学生学习兴趣.教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流.
2.判断两圆的位置关系,你有什么好的方法吗?
引导学生明确两圆的位置关系,并发现判断和解决两圆的位置教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法.
初一数学教案大全篇5
本节课的主要任务是引导学生完成由立体图形到视图,再由视图想到立体图形的复杂过程。这对于刚刚接触几何的初一学生而言,无疑是一次较大的挑战,顺利地完成教学,对今后学习兴趣、信心的培养都是至关重要的,因此,我针对学生的心理特点及接受能力对教材做如下设计:
首先我用苏轼的《题西林壁》巧妙地唤起学生的生活感受,让他们认识到视图的知识在生活中我们早有亲身体验,只是还没有形成概念,然后我再用“粉笔”这一简单的教具,让学生再次体会,加深认识,这样,教学与生活紧密相连,既有自然地导入课题,又消除学生对新知识的恐惧,同时还激发了学生浓厚的学习兴趣。
然后,我不适时地出示“三视图”这一概念,通过实验,让学生认识到视图就是由立体图形转化成的平面图形,并不断地训练、讨论、总结,得出画三视图的正确方法。这时教师要巧妙点拨,学生如何从正面、上面、侧面三个角度来观察,既体现了学生的主体地位,又突出了教师的主导作用,锻炼了学生的动手操能力。
由视图到立体图形与上面的过程恰恰相反,需要学生根据视图进行想象,在大脑中构建一个立体形象。我引导学生利用直观形象与生活中的实物进行联系,通过归纳、总结、对比的方法,有效的突破这一难点。为了进一步地激发学生的学习兴趣,培养学生的想象能力和思维能力,可以让学生用一些小立方体随意摆出几种组合并描绘出它的视图,再由视图到立体图形的课堂训练。最后,让学生归纳所学知识,进一步锻炼学生的概括能力,使知识系统化。以上设计如有不妥之处,望老师们不吝赐教,我不胜感激。
评课记录
开发区李玉:于坤老师这节课有几个突出特点:
1、给学生创设了生动的问题情境。
本节课用宋朝文学家苏轼的一首的诗《题西林壁》。“横看成岭侧成峰,远近高低各不同……”来引入课题,从横、侧、远、近、高、低等不同角度来观察庐山,引出如何观察生活中的立体图形,这个切入点非常好,一下子就能抓住学生的心,吸引学生的注意力。在平日的教学中,我们也应该多找这样的例子。如在教七年级《代数式》时,有的老师这样引入“童年是美好而幸福的,大家还记得那首“唱不完的儿歌吧”,然后同学们一起念“一只青蛙一张嘴,两只眼睛四条腿,扑腾一声跳下水;两只青蛙两张嘴,四只眼睛八条腿,扑腾两声跳下水;三只青蛙三张嘴,六只眼睛12条腿,扑腾三声跳下水……”,然后问:你能不能用一句话来唱完这首儿歌?引发学生思考的兴趣,有的学生通过思考得出:n只青蛙n张嘴,2n只眼睛4n条腿,扑腾n声跳下水,将字母表示数的优点一下子表现出来,令学生顿觉耳目一新。
2、注重过程教学和学法指导
在教学画圆柱体、长方体、球体和圆锥体的三视图时,老师不是直接给学生讲解它们的三视图是什么,然后让学生记忆、变式练习,而是引导学生通过看书、观察老师手中的教具、学生自己的学具或学生自制的模型,再找学生回答、小组讨论,然后教师和学生一起确定答案。这种教学模式:提出问题,创设问题情境———观察实物或学生看书、计算、画图、独立思考、猜想———小组讨论交流———让一个小组代表发言,其它小组补充说明———师生交流总结———拓展应用的模式,比较符合学生的认知规律,能让学生经历探索知识的发生发展过程及在合作学习中学会与他人交流,不仅学会了知识,而且能锻炼学生的各种能力。
3、体现学生主体地位,注重学法指导
教师在本节课上处处关注学生学习的主观能动性,学生自始至终处于被肯定、被激励之中,时时感受到自己是学习的主人,教师给学生留有较大的学习的空间:如观察、讨论、动手摆放学具等,提出问题后让学生充分思考并给予适时的点拨。教科院李洪光老师:
1、周六研究课的定位:本学期的周六研究课不再是一节公开课,而是为解决我们在平日教学中存在的问题而开设的研究、研讨课。
2、在平日的教学中,不少学校和老师存在这样的现象:课堂上老师讲的多,学生学的少;学生听明白的多,学会的少。究其原因,是我们只注重了终端的结果,而忽视了学习知识的过程。因此在今后的课堂教学中,我们应该让学生掌握知识的发生、发展的过程,让教师和学生充分暴露思维的过程,另外让学生学会学习数学的方法,这也是我们的任务之一。这两节课在这些方面都做了有益的探索。如王长山老师给学生提供了丰富的材料让学生思考、探索,在教学过程中渗透数学思想和方法。于坤老师抓住本节课的核心问题,处处让学生参与到学习探究活动中,教学生观察事物的方法,寻找数学与生活的联系等作法,就很好地体现了新课改的理念。当然并不是所有的课型都让学生探究、讨论,如果讲解能引发学生思维的就用讲解法,讨论交流能引发思维的就用讨论法,总之,在教学中要充分调动学生思维的积极主动性。另外一定要突出数学自身的特点,在我们的老师的课上,多数老师在一节课的结尾都让学生谈谈本节课学会了哪些知识、方法,有什么体会,对本节的内容进行概括性总结,这样做就让学生对本节课有了整体认识。另外不少老师强调严密的逻辑思维、严格的解题步骤等作法都值得发扬。
初一数学教案大全篇6
各位领导、老师:
大家好!
今天我将要为大家讲的课题是有理数的加法,首先,我对本节教材进行一些分析。
本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节第一课时的内容。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分——有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
3、数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:
(1)渗透由特殊到一般的辩证唯物主义思想
(2)培养学生严谨的思维品质。
二、教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
1、基础知识目标:
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则;
(3)应用有理数加法法则进行准确运算;
(4)渗透数形结合的思想。
2、能力目标是:
(1)培养学生准确运算的能力;
(2)培养学生归纳总结知识的能力;
3、德育目标是:渗透由特殊到一般的辩证唯物主义思想
4、个性品质目标:培养学生严谨的思维品质。
三、教学重点、难点、关键
有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难点是:有理数加法法则的理解。
四、教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习,不断克服学生学习中的被动情况,使其在教学过程中在掌握知识的同时发展智力、受到教育。
五、学法
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力,而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我都在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
六、教学过程的设计
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全身心的投入到思考问题中去,让学生亲身参加了探索发现及获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。同时针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。说课对我仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。
初一数学教案大全篇7
回顾与反思
师生共同讨论得出结论,教师指出注意的问题
沙场练兵
一、比一比看谁最快、最棒:
1、-0.4ab3的系数是次数是。
2、多项式3x2+2x-3x-4的最高次项是,同类项是,常数项是。
3、去括号3a-(2ab-3b2+4)=
4、与2a-1的和为7a2-4a+1的多项式是
二、应用知识,提高能力,你一定行:
已知小明的年龄是岁,小红的年龄比小明的2倍少4岁,小华的年龄比小红的年龄的一半多一岁,求三个人的年龄和。
学生抢答
学生独立思考,然后在本上做,找一名同学板书。
培养学生运算能力和分析问题解决问题的能力。
回顾与反思
本节课的学习你有哪些收获?
应注意什么问题?(出示本章的知识结构图:)
师生互动梳理知识。弄清本章所学的概念、法则和有关的知识内容以及它们之间的联系与区别,并写出知识结构图。
布置
作业P1926、8、11
板书设计:
回顾与反思
一、知识结构
二、1、整式有关概念注:单次
三、整式加减(注:同类项的确定,去括号的应注意问题)
教学反思:
本节课在学生充分思考的基础上,开展小组交流和全班交流。使学生在反思交流的过程中,师生共同建立知识体系得出本章知识结构图,在整个过程中不仅注重对知识的总结,更注重对知识形成过程的反思归纳。留给了学生充足的时间和空间,反思知识的发生发展过程。但由于留给学生时间较长,课时感到很紧张,今后要注意改进。
初一数学教案大全篇8
一、教学目标
1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。
2.掌握“两角对应相等,两个三角形相似”的判定方法。
3.能够运用三角形相似的条件解决简单的问题。
二、重点、难点
1.重点:三角形相似的判定方法3--“两角对应相等,两个三角形相似”
2.难点:三角形相似的判定方法3的运用。
3.难点的突破方法
(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法。
(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据。
(3)如果两个三角形是直角三角形,则只要再找到一对锐角相等即可说明这两个三角形相似。
三、例题的意图
本节课安排了两个例题,例1是教材P48的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程。并让学生掌握遇到等积式,应先将其化为比例式的方法。
例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课学习“27.2.2相似三角形的应用举例”打基础。
四、课堂引入
1.复习提问:
(1)我们已学习过哪些判定三角形相似的方法?
(2)如图,△ABC中,点D在AB上,如果AC2=AD?AB,
初一数学教案大全篇9
教学目标:
教学内容分析:
本节课的教学内容是《整式的加减》(第1课时),是在学习了整式的有关概念之后的一节课。整式的加减是整式的运算、因式分解、解一元二次方程及函数的基础,是“数”向“式”的正式过渡,它具有十分重要的地位,而整式加减的知识基础则是同类项的概念及同类项的合并,整式的加减主要是通过合并同类项从而把整式化简,所以本节课在中学数学中的地位不言而喻。
教学重点和难点:
同类项的概念及合并同类项的方法
教学设计思路:
长期以来,学生主动学习的意识淡薄,对教师的依赖性很大,学生长期处于被动接受的学习状态,使学生变得内向、被动、缺少自信、恭顺……窒息了学生的创造性。新课程要求“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流合作的能力”。为此要求我们教师努力变“知识给予”为“教育交往”,变“教程”为“学程”,在课堂上向学生提供从事数学活动的机会,帮助学生改变旧的学习模式,引导学生在学习活动中自主探究问题和解决问题,使每一个学生在数学课堂中各有所得。为了突出教学的重点、突破教学的难点,本节课拟采用探究式教学法:通过观察生活实例,从学生已有的生活经验出发,采取合作探究的学习方式,通过小组合作讨论等方式开展学习活动,让学生独立自主地发现问题、分析问题并独立地解决问题,在探究的过程中,获得成功的体验,增强学习数学的信心,发展学生学习数学的积极性,并通过探究活动,使学生体验探究的过程,培养思维的变通性和严密性,培养学生的探索精神和创新能力。
教学主要过程设计:
教后反思:
这节课的教学设计是基于以学生探究为主的学习方式,目的是让学生在自主探索、亲身实践、合作交流的氛围中认识数学、理解和掌握基本数学知识、基本数学技能和基本数学方法,充分体现了新课程的理念。
一、成功之处
本节课突出了三个“注重”:
(一)注重创设问题情境。上课伊始即以实物进行分类,激发学生的学习兴趣,把学生注意力和思维活动迅速调节到积极状态,接着,让学生通过观察把认为同类型的单项式进行分类,从而引出同类项概念,又通过“游戏”等方式对同类项概念进行辨析,这样可充分揭示同类项概念的内涵,同时为学生提供了充分从事数学活动的机会。特别是[活动8]先是提出“3个人再加5个人得多少个人?”这一通俗易懂的问题,而后进一步提出“3个人再加5张桌子得8个人?还是8张桌子?”这一看似有些荒唐的问题,实际上却突破了合并同类项这一重点难点即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;合并同类项时,只能把同类项合并成一项,不是同类项不能合并。
(二)注重学生之间的合作交流。学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程,动手实践、自主探索与合作交流是学生学习数学的重要方法。本节课设计过程中非常注重这方面的活动设计,从实物分类、引出概念到概念辨析以及课堂小结无处不体现学生是学习的主人这一新课程理念。
(三)注重能力的培养。本节课教学设计中注重让学生动手、动口、动脑,发展了学生学习的积极性,既训练了学生的语言表达能力,又培养了学生自主探索、自主学习、合作交流、协作学习和归纳概括的能力,发展了学生发散性思维,培养了学生思维的变通性和严密性,培养了学生的探索精神和创新个性,提高了学生对信息的处理能力,锻炼了学生的实践能力。
二、需要完善之处
视学生实际情况,如能再给学生练习课本165页例1,然后教师再点评的话,那么就是锦上添花了。因为学生在掌握同类项的概念和合并同类项的方法后,再通过解决像例1这样生活中的实际问题,就更能使学生理解“数学来源于生活,而又服务于生活”,体现了“学数学、用数学”、“学有所用”的基本理念,使学生体会到数学是解决实际问题的.有力武器,增强应用数学的意识。
初一数学教案大全篇10
学习目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角
重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用.
难点:理解对顶角相等的性质的探索.
教学过程
一、复习导入
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.
学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.
二、自学指导
观察剪刀剪布的过程,引入两条相交直线所成的角
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
三、 问题导学
认识邻补角和对顶角,探索对顶角性质
(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.
( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等.
(3).概括形成邻补角、对顶角概念.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
四、典题训练
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
2.:判断下列图中是否存在对顶角.
小结
自我检测
一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )
二、填空题:
1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
(1) (2)
2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.
三、解答题:
1.如图,直线AB、CD相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.毛
2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?
初一数学教案大全篇11
教学目标
1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;
2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;
3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;
4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节教学的重点是依据法则熟练进行运算。难点是法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。
(二)知识结构
(三)教法建议
1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。
4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。
教学设计示例
(第一课时)
教学目的
1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算.
2.通过运算,培养学生的运算能力.
教学重点与难点
重点:熟练应用法则进行加法运算.
难点:法则的理解.
教学过程
(一)复习提问
1.有理数是怎么分类的?
2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?
3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?
-3与-2;|3|与|-3|;|-3|与0;
-2与|+1|;-|+4|与|-3|.
(二)引入新课
在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.
(三)进行新课 (板书课题)
例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?
两次行走后距原点0为8米,应该用加法.
为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:
1.同号两数相加
(1)某人向东走5米,再向东走3米,两次一共走了多少米?
这是求两次行走的路程的和.
5+3=8
用数轴表示如图
从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.
可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.
(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?
显然,两次一共向西走了8米
(-5)+(-3)=-8
用数轴表示如图
从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.
可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.
总之,同号两数相加,取相同的符号,并把绝对值相加.
例如,(-4)+(-5),……同号两数相加
(-4)+(-5)=-( ),…取相同的符号
4+5=9……把绝对值相加
∴ (-4)+(-5)=-9.
口答练习:
(1)举例说明算式7+9的实际意义?
(2)(-20)+(-13)=?
(3)
2.异号两数相加
(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.
5+(-5)=0
可知,互为相反数的两个数相加,和为零.
(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.
就是 5+(-3)=2.
(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.
就是 3+(-5)=-2.
请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?
最后归纳
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
例如(-8)+5……绝对值不相等的异号两数相加
8>5
(-8)+5=-( )……取绝对值较大的加数符号
8-5=3 ……用较大的绝对值减去较小的绝对值
∴(-8)+5=-3.
口答练习
用算式表示:温度由-4℃上升7℃,达到什么温度.
(-4)+7=3(℃)
3.一个数和零相加
(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?
显然,5+0=5.结果向东走了5米.
(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?
容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.
请同学们把(1)、(2)画出图来
由(1),(2)得出:一个数同0相加,仍得这个数.
总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.
有理数加法运算的三种情况:
特例:两个互为相反数相加;
(3)一个数和零相加.
每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.
(四)例题分析
例1 计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)
解:
解题时,先确定和的符号,后计算和的绝对值.
(五)巩固练习
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
探究活动
题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;
(2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;
(3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;
(4) 在解决这个问题的过程中,你能总结出一些什么数学规律?
参考答案 我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.
现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:
(1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①
(2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②
又如,在11,10,8,7,5这五个数的前面添加负号,得
12-11-10-9-8-7+6-5+4+3+2+1=-4,
我们就有多种调整的方法,如将-8与+6变号,有
12-11-10+9+8-7-6-5+4+3+2+1=0. ③
经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但
1+2+3+4+5+6+7+8+9+10+11+12=78
因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为
为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).
同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.
此外我们还可发现,由于的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得:添加负号的数最多不超过八个.
掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.
初一数学教案大全篇12
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得。
44x+64=328 (1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业 。教科书第3页,习题6.1第1、3题。
初一数学教案大全篇13
学习目标:
1、会进行包括小数或分数的有理数的加减混合运算。
2、熟练地进行有理数加减混合运算,并利用运算律简化运算。
3、会比较“加减法统一为加法”与“省略加号的代数和”两种计算形式。
学习重难点:
1、准确迅速地进行有理数的加减混合运算,加减运算法则和加法运算律。
2、减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。
学习过程:
任务一:温故知新
1、完成课本44页习题2、7的第1、2题,写在作业本上。
2、6有理数的加减混合运算》课时练习
一、选择题(共10题)
1、下列关于有理数的加法说法错误的是()
A、同号两数相加,取相同的符号,并把绝对值相加
B、异号两数相加,绝对值相等时和为0
C、互为相反数的两数相加得0
D、绝对值不等时,取绝对值较小的数的符号作为和的符号
答案:D
解析:解答:D选项应该是有理数相加时,如果绝对值不等时,取绝对值较小的数的&39;符号作为和的符号
分析:考查有理数的的加法法则
《2、6有理数的加减混合运算》同步练习
2、有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?
3、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5
这10名学生的总体重为多少?10名学生的平均体重为多少?
初一数学教案大全篇14
教学目标:
1、 知道有理数加法的意义和法则
2、 会用有理数加法法则正确地进行有理数的加法运算
3、 经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法
教学重点: 有理数加法则的探索及运用
教学难点: 异号两数相加的法则的理解及运用
教学过程:
一、 创设情境
展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?
(学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)
二、 探求新知
1、甲、乙两队进行足球比赛,
(1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?
(2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?
足球比赛中赢球个数与输球个数是一对相反意义的量.若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?
(学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)
(3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?
(引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )
2、你能举出一些运用有理数加法的实际例子吗?
(学生列举实例并根据具体意义写出算式)
3、学生活动:
(1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?
(2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?
(3)、你还能再做一些类似的活动,并写出相应的算式吗?
(教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的是让学生从“形”的角度,直观感受有理数的加法法则。)
4、 归纳法则:
观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?
(由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)
5、 例题精讲:
例1 、计算
(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)
(4)、 5+(-5); (5)、 0+(-2); (学生口答计算结果,并对照法则说说是如何确定和的符号和绝对值的,教师板书解题过程,让学生体会“运算有据”。)
解:(1)、(-5)+(-3)
= -(5+3) (同号两数相加,取相同的符号,并把绝对值相减)
= -8
(2)、(-8)+(+2)
= -(8-2) (异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。)
= -6
(4)、5+(-5);
=0 (互为相反的两数之和为0)
6、 训练巩固:
1、 p33练一练2
(学生利用扑克完成本题,通过游戏进一步巩固有理数加法法则,体现“做中学”的新课程理念。)
7、 延伸拓展:
(1)、一个数是2的相反数,另一个数的绝对值是5,求这两个数的和
(2)、在小学里,计算两个数相加时,它们的和总是小于任何一个加数,学了有理数的加法法则后,你认为这个结论还成立吗?请你举例说明
(这两题都具有一定的挑战性,第(1)题可让学生进一步体会分类的数学思想方法。第(2)题具有开放性,可让学生在探索的过程中进一步理解法则。)
三、课堂小结:
学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。
四、布置作业:
1、 课本p41 第1题
2、 列举一些生活中运用有理数加法的实际例子,并相互交流。
初一数学教案大全篇15
课型:分析研讨课
教 学 设 计
教学后记
课 题
数据的收集(2)
教
学
目
标
知识与技能
过程和方法
重点、难点
教
学
策
略
教法选择
学法引导
课堂组织形式
教
学
过
程
一、课堂导入
二、分组讨论
三、集体分享
四、课堂调查
五、反思提高
六、课后作业
备注:
<p