初一的数学的教案
教案是教师为每节课制定的教学方案,其中包括每节课的重点、难点、教学内容、教学方法和教学目标等内容。小编给大家分享初一的数学的教案参考,方便大家参考初一的数学的教案怎么写。
初一的数学的教案篇1
教学目标:
教学内容分析:
本节课的教学内容是《整式的加减》(第1课时),是在学习了整式的有关概念之后的一节课。整式的加减是整式的运算、因式分解、解一元二次方程及函数的基础,是“数”向“式”的正式过渡,它具有十分重要的地位,而整式加减的知识基础则是同类项的概念及同类项的合并,整式的加减主要是通过合并同类项从而把整式化简,所以本节课在中学数学中的地位不言而喻。
教学重点和难点:
同类项的概念及合并同类项的方法
教学设计思路:
长期以来,学生主动学习的意识淡薄,对教师的依赖性很大,学生长期处于被动接受的学习状态,使学生变得内向、被动、缺少自信、恭顺……窒息了学生的创造性。新课程要求“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流合作的能力”。为此要求我们教师努力变“知识给予”为“教育交往”,变“教程”为“学程”,在课堂上向学生提供从事数学活动的机会,帮助学生改变旧的学习模式,引导学生在学习活动中自主探究问题和解决问题,使每一个学生在数学课堂中各有所得。为了突出教学的重点、突破教学的难点,本节课拟采用探究式教学法:通过观察生活实例,从学生已有的生活经验出发,采取合作探究的学习方式,通过小组合作讨论等方式开展学习活动,让学生独立自主地发现问题、分析问题并独立地解决问题,在探究的过程中,获得成功的体验,增强学习数学的信心,发展学生学习数学的积极性,并通过探究活动,使学生体验探究的过程,培养思维的变通性和严密性,培养学生的探索精神和创新能力。
教学主要过程设计:
教后反思:
这节课的教学设计是基于以学生探究为主的学习方式,目的是让学生在自主探索、亲身实践、合作交流的氛围中认识数学、理解和掌握基本数学知识、基本数学技能和基本数学方法,充分体现了新课程的理念。
一、成功之处
本节课突出了三个“注重”:
(一)注重创设问题情境。上课伊始即以实物进行分类,激发学生的学习兴趣,把学生注意力和思维活动迅速调节到积极状态,接着,让学生通过观察把认为同类型的单项式进行分类,从而引出同类项概念,又通过“游戏”等方式对同类项概念进行辨析,这样可充分揭示同类项概念的内涵,同时为学生提供了充分从事数学活动的机会。特别是[活动8]先是提出“3个人再加5个人得多少个人?”这一通俗易懂的问题,而后进一步提出“3个人再加5张桌子得8个人?还是8张桌子?”这一看似有些荒唐的问题,实际上却突破了合并同类项这一重点难点即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;合并同类项时,只能把同类项合并成一项,不是同类项不能合并。
(二)注重学生之间的合作交流。学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程,动手实践、自主探索与合作交流是学生学习数学的重要方法。本节课设计过程中非常注重这方面的活动设计,从实物分类、引出概念到概念辨析以及课堂小结无处不体现学生是学习的主人这一新课程理念。
(三)注重能力的培养。本节课教学设计中注重让学生动手、动口、动脑,发展了学生学习的积极性,既训练了学生的语言表达能力,又培养了学生自主探索、自主学习、合作交流、协作学习和归纳概括的能力,发展了学生发散性思维,培养了学生思维的变通性和严密性,培养了学生的探索精神和创新个性,提高了学生对信息的处理能力,锻炼了学生的实践能力。
二、需要完善之处
视学生实际情况,如能再给学生练习课本165页例1,然后教师再点评的话,那么就是锦上添花了。因为学生在掌握同类项的概念和合并同类项的方法后,再通过解决像例1这样生活中的实际问题,就更能使学生理解“数学来源于生活,而又服务于生活”,体现了“学数学、用数学”、“学有所用”的基本理念,使学生体会到数学是解决实际问题的.有力武器,增强应用数学的意识。
初一的数学的教案篇2
教学内容:
正数和负数的初步认识,数轴的相关知识,相反数的相关知识,绝对值的相关知识。
教学目的:
1、教学正数和负数的意义,会判断一个数是正数还是负数,会初步运用正数和负数表示相反意义的量。
2、能将学过的整数在数轴上表示出来,能说出数轴上已知点所表示的数。
3、了解相反数的概念,掌握相反数的表示法,能正确地求出一个数的相反数。
4、掌握绝对值的表示法,给一个数,会求它的绝对值。
教材分析:
本单元教材是为进一步学习正数和负数加减法打下基础,为初中数学学习做准备,是衔接小学数学和初中数学的重要环节.教学的重点是相反数和绝对值,难点是正数和负数及数轴概念的理解。
教学课时:
约6课时。
教学准备:
小黑板、投影片。
教学内容:
完成例题,“试一试”及练习一a组的1-7题,b组的1-3题。
教学目的:
1、认识正数和负数,会用正数和负数表示一些常见的数量。
2、培养学生对相对的理解,培养创新的思维品质。
教学重点:
负数的认识是本课的重点。
教学过程:
一、创设情景:
师:我们已经学过哪些数?
出示气温图,说一说各数字表示的意思,找一找哪些是没有学过的?
二、探究新知:
1、师:你会读这些数字吗?试一试.
师:像-1、-4、-8……这样的数都是负数。
师:为了和负数相对应,我们把以前学过的除零以外的数叫作正数,并可在前面加上符号“+”,读作正。
2、自学课本第二页的内容。
师:你还能举出一些正、负数的例子吗?
3、教学例题
出示例题,读题后说一说自己的想法。
明确:海平面以上用正数表示,海平面以下用负数表示。
4、试一试
完成试一试的相关题目。
三、巩固拓展
1、完成练习一a组的1-7题。
第4题要重点订正。
2、完成练习一b组的第1、2、3题。
四、小结
师:本节课你有什么收获?
初一的数学的教案篇3
●教学内容
七年级上册课本11----12页1.2.4绝对值
●教学目标
1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备
多媒体课件
●教学过程
一、创设问题情境
1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?
小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型
1、绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
注意:①与原点的关系 ②是个距离的概念
2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用 +5表示的话,那么下降了5度,就用-5 表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)
三、应用深化知识
1、例题求解
例1、求下列各数的绝对值
-1.6 , , 0, -10, +10
2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)
特点:1、一个正数的绝对值是它本身
2、一个负数的绝对值是它的相反数
3、零的绝对值是零
4、互为相反数的两个数的绝对值相等
3.出示题目
(1) -3的符号是_______,绝对值是______;
(2) +3的符号是_______,绝对值是______;
(3) -6.5的符号是_______,绝对值是______;
(4) +6.5的符号是_______,绝对值是______;
学生口答。
师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?
5、练习3:回答下列问题
①一个数的绝对值是它本身,这个数是什么数?
②一个数的绝对值是它的相反数,这个数是什么数?
③一个数的绝对值一定是正数吗?
④一个数的绝对值不可能是负数,对吗?
⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?
(由学生口答完成,进一步巩固绝对值的概念)
6、例2.求绝对值等于4的数
(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)
分析:
①从数字上分析
∵|+4|=4, |-4|=4 ∴绝对值等于4的数是+4和-4画一个数轴(如下图)
②从几何意义上分析,画一个数轴(如下图)
因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M
所以绝对值等于4的数是+4和-4.
6、练习:做书上12页课内练习1、2两题。
四、归纳小结
1、本节课我们学习了什么知识?
2、你觉得本节课有什么收获?
3、由学生自行总结在自主探究,合作学习中的体会。
五、课后作业
1、让学生去寻找一些生活中只考虑绝对值的实际例子。
2、课本15页的作业题。
初一的数学的教案篇4
教学目标:
1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.
2、能用符号语言写出一个命题的题设和结论.
3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.
教学重点:证明的步骤与格式.
教学难点:将文字语言转化为几何符号语言.
教学过程:
一、复习提问
1、命题“两直线平行,内错角相等”的题设和结论各是什么?
2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)
3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)
二、例题分析
例1、 证明:两直线平行,内错角相等.
已知:a∥b,c是截线.
求证:∠1=∠2.
分析:要证∠1=∠2,
只要证∠3=∠2即可,因为
∠3与∠1是对顶角,根据平行线的性质,
易得出∠3=∠2.
证明:∵a∥b(已知),
∴∠3=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
例2、 证明:邻补角的平分线互相垂直.
已知:如图,∠AOB+∠BOC=180°,
OE平分∠AOB,OF平分∠BOC.
求证:OE⊥OF.
分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.
三、课堂练习:
1、平行于同一条直线的两条直线平行.
2、两条平行线被第三条直线所截,同位角的平分线互相平行.
四、归纳小结
主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.
五、布置作业
课本P143 5、(2),7.
六、课后思考:
1、垂直于同一条直线的两条直线的位置关系怎样?
2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?
3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?
初一的数学的教案篇5
教材分析
1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。
2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。
学情分析
去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:
(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;
(2)去括号的法则增加了解题长度,降低了学习效率;
(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;
(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。
教学目标
1.熟练掌握去括号时符号的变化规律;
2.能正确运用去括号进行合并同类项;
3.理解去括号的依据是乘法分配律。
教学重点和难点
重点
去括号时符号的变化规律。
难点
括号外的因数是负数时符号的变化规律。
教学过程
一、创设情景问题
青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。
请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?
解:这段铁路的全长为100t+120(t-0.5)(千米)
冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。
提出问题,如何化简上面的两个式子?引出本节课的学习内容。
二、探索新知
1.回顾:
1你记得乘法分配率吗?怎么用字母来表示呢?
a(b+c)=ab+ac
2-(-2)=(-1)__(-2)=2+(-3)=(+1)__(-3)=-3
2.探究
计算(试着把括号去掉)
(1)13+(7-5)(2)13-(7-5)
类比数的运算,去掉下面式子的括号
(3)a+(b-c)(4)a-(b-c)
3.解决问题
100t+120(t-0.5)=100t-120(t-0.5)=
思考:
去掉括号前,括号内有几项、是什么符号?去括号后呢?
去括号的依据是什么?
三、知识点归纳
去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
注意事项
(1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;
(2)括号内原有几项去掉括号后仍有几项.
四、例题精讲
例4化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
五、巩固练习
课本P68练习第一题.
六、课堂小结
1.今天你收获了什么?
2.你觉得去括号时,应特别注意什么?
七、布置作业
课本P71习题2.2第2题