教案吧 > 初中教案 > 七年级教案 >

2024年初一数学教案

时间: 新华 七年级教案

编写教案可以使课堂教学活动称为一种有计划、有目的、有条不紊、有效率的教学活动,从而提高教学效果。什么样的2024年初一数学教案才算是优秀的呢?这里整理一些2024年初一数学教案,方便大家学习。

2024年初一数学教案篇1

学习目标:

1、会进行包括小数或分数的有理数的加减混合运算。

2、熟练地进行有理数加减混合运算,并利用运算律简化运算。

3、会比较“加减法统一为加法”与“省略加号的代数和”两种计算形式。

学习重难点:

1、准确迅速地进行有理数的加减混合运算,加减运算法则和加法运算律。

2、减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。

学习过程:

任务一:温故知新

1、完成课本44页习题2、7的第1、2题,写在作业本上。

2、6有理数的加减混合运算》课时练习

一、选择题(共10题)

1、下列关于有理数的加法说法错误的是()

A、同号两数相加,取相同的符号,并把绝对值相加

B、异号两数相加,绝对值相等时和为0

C、互为相反数的两数相加得0

D、绝对值不等时,取绝对值较小的数的符号作为和的符号

答案:D

解析:解答:D选项应该是有理数相加时,如果绝对值不等时,取绝对值较小的数的&39;符号作为和的符号

分析:考查有理数的的加法法则

《2、6有理数的加减混合运算》同步练习

2、有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?

3、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5

这10名学生的总体重为多少?10名学生的平均体重为多少?

2024年初一数学教案篇2

我上的“三角形”这节课,研究三角形按边的特征认识三角形并进行分类。整堂课的设计体现以教师为主导,学生为主体,使学生在教师的引导下动手操作,积极思考,与同学之间交流,展示自我的过程,是让学生用内心创造与体验学习数学。

教学三角形这节课,探究新知阶段我认为处理得比较好。我主要采用“实验操作法”。为使学生学会有目的、有规律地探究,采用“引——扶——放”教学手段,让学生在师生互动,生生互动,合作探究中体验感悟三角形围成的过程,并感受到学会用科学的数学思维进行有规律地探究,能围出尽可能多的不同种类的三角形,大大激发了学生的学习兴趣,培养了学生思维的有序性和探究能力。再通过小组讨论、交流、归纳出三角形按边分类及三角形按边特征命名,真正让学生动眼、动手、动口、动脑参与获取知识的过程,学生从中感受、体验到一个探索者的成功乐趣,从而增强学习动力与信心。

最后让学生在猜想中探究、生成。本节课中学生用三根小棒围出了尽可能多的不同种类的三角形,为防止知识的负迁移,我提出了猜想的话题:任意三根小棒都能围成三角形吗?然后让学生带着对问题结论的不同猜想和对正确结果的渴望,再次实验操作,得出不是任意三条边都能围成三角形的,催发学生生成了对三角形三边长度之间关系正确而又具有个性的认识,使学生意识到三角形中还藏着好多知识,正等待我们去探究。

存在的问题:交流的时间不充分,忽略未成功的学生及弱势群体学生按边分时,交流的时间少,特别是三种三角形之间的关系没有上学生先说一说,教师再作补充完善。

通过这节课的公开教学,加深了我对“教学有法,教无定法,贵在得法”这句话的理解:作为教师,应倾心于每一节课,每一篇教案,每一个教学环节…...

2024年初一数学教案篇3

一、教学目标。

1、知识与技能:理解单项式,单项式的系数,单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数。

2、过程与方法:初步学会观察,对比,归纳的方法;发展学生的观察能力,思维能力及分析能力。

3、情感与价值观:培养学生合作交流意识,渗透数学知识源于生活,又为生活而服务的辩证思想。

二、教学设想。

本节属于概念教学课,力图体现概念形成的过程。本节课从生活中的实际问题引入,让学生经历由数字到用字母表示数家的过程,再提出问题,让学生列出相应关系式,学生探究式子的特点,从而引出单项式的概念。因此,课堂教学中,可以采用教师引导与学生参与相结合的方式,这样就可以促进师生互动,活跃课堂气氛,达到良好的教学效果。

三、教材分析。

本章属于《全日制义务教育数学课程标准(实验稿)》中的"数与代数"领域。整式是在以前已经学习了有理数运算的基础上引进的,本节内容由本章引言中的问题引出,在实际问题中逐步归纳单项式,单项式系数和单项式次数的概念,在了解概念的基础上准确指出一个单项式的系数及次数,内容衔接上循序浙进,让学生乐于接受。

四、重点,难点。

1、教学重点:单项式,单项式系数及单项式次数概念。

2、教学难点:区别单项式的系数和次数。

五、教学方法。

通过实际问题架设学习探索平台,教师采用点拨,引导的方法,启发学生经历主动思考,自主探索及合作交流的过程来达到对知识的"发现"和接受,进而完成知识内化,使书本知识成为自己的知识。

六、教学过程。

(一)创设情境,激趣导入。

问题1:举世瞩目的青藏铁路于2006年7月1日建成通车,是世界上海拨最高,路线最长的高原铁路。今天我们就来探讨这条铁路上有关路程的问题:

青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的速度是100千米/时,在非冻土地段的速度可以达到120千米/时,问:列车在冻土地段的行驶时,2小时能行驶多少千米3小时能行使多少千米t小时呢?

根据速度,时间和路程的关系:路程=速度__时间则

它2小时行驶的路程:100__2=200(千米),

它3小时行驶的路程:100__3=300(千米),

它t小时行驶的路程:100__t=100t(千米),

字母t表示时间,用含有字母t的式子100t表示路程。

问题2:用含有字母的式子填空。解答教科书第54面思考题。

(1)6a2,a3(2)2。5x(3)vt(4)-n由此引和新课。

(二)合作交流,探索新知。

1、单项式概念的探索。

(1)以上几个式子有什么共同特征:

6a2是6×a×a的乘积。

a3是a×a×a的乘积。

2.5x是2.5×x的乘积。

vt是v×t的乘积。

-n是-1×n的乘积。

归纳:都表示数与字母的积。

(2)引出单项式的概念:

①教学活动:

倾听、思考、分析、思考。

②师生互动:

列式解答、倾听、理解、思考、归纳。

倾听、理解概念、举例集体评议。

③学生活动:

从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用,由浅入深,对新知识的掌握起着循序渐进的作用。

培养学生的分析能力及表达,及时强调让学生对新知识掌握得更加完整。

培养学生的分析,思考及归纳能力,加深对概念的了解.

培养学生的评价能力,为概念的引出.

(3)让学生举出单项式的例子。

2、单项式系数和次数的探索。

问题1:以上单项式有什么结构特点。

由数字因数和字母因数两部分组成。

问题2:分别说出它们的数字因数和各字母的指数。

单项式中的数字因数,叫做单项式的系数。

一个单项式中,所有字母的指数的和,叫做这个单项式的次数。

交流练习:同桌之间一人举出单项式,另一人指出单项式的系数及次数。

教师巡视指导,请各别学生展示交流成果。

3,例题教学

教科书55页例1

学生独立解决后互相交流,最后教师归纳并在黑板上加以规范。

(三)练习巩固,熟练技能。

1、教科书第56页练习第1,2题。

2、下列各式:-x+3,6x,其中是单项式的是。

(四)总结反思,拓展延伸。

1、让学生谈谈本节课的收获。

2、通过今天的学习,你想进一步探究的问题是什么

七、板书设计。

2.1整式

一、青藏铁路问题(略)。

二、单项式的概念。

单项式系数及次数的概念。

三、例题讲解

八、点评。

本教案的设计,符合学生的年龄特点,有利于学生探索重在让学生参与知识产生,发展,应用的全过程。让学生充分感知多项式及相关概念的形成过程,很发地发挥了学生的主体地位,但学生独立提出问题较少。

2024年初一数学教案篇4

教学目标:

1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

教学重点:深化对正负数概念的理解.

教学难点:正确理解和表示向指定方向变化的量.

教与学互动设计:

(一)知识回顾和理解

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

[问题1]:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明.

参考例子:用正数、负数和零表示零上温度、零下温度和零度.

思考 “0”在实际问题中有什么意义?

归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

如:水位不升不降时的水位变化,记作:0 m.

[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

(二)深化理解,解决问题

[问题3]:(课本P3例题)

【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家这一年商品进出口总额的增长率.

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

巩固练习

1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

2.让学生再举出一些常见的具有相反意义的量.

3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

中国减少866,印度增长72,

韩国减少130,新西兰增长434,

泰国减少3247, 孟加拉减少88.

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

阅读与思考

(课本P6)用正数和负数表示加工允许误差.

问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

(三)应用迁移,巩固提高

1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是    .

2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

星期 一 二 三 四

增减 -5 +7 -3 +4

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

类比例题,要求学生注意书写格式,体会正负数的应用.

(四)课时小结(师生共同完成)

2024年初一数学教案篇5

【学习目标】

1、理解什么是一元一次方程。

2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

【重点难点】能验证一个数是否是一个方程的解。

1.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,如果设上半年每月平均用电x度,那么所列方程正确的是()

A.6x+6(x-2000)=150000

B.6x+6(x+2000)=150000

C.6x+6(x-2000)=15

D.6x+6(x+2000)=15

2.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x元,根据题意,列出方程为________.

3.一个正方形花圃边长增加2m,所得新正方形花圃的`周长是28m,则原正方形花圃的边长是多少?(只列方程)

《3.1.等式的性质》同步四维训练含答案

知识点一:等式的性质1

1.下列变形错误的是(D)

A.若a=b,则a+c=b+c

B.若a+2=b+2,则a=b

C.若4=x-1,则x=4+1

D.若2+x=3,则x=3+2

2.已知m+a=n+b,根据等式的性质变形为m=n,那么a,b必须符合的条件是(C)

A.a=-b

B.-a=b

C.a=b

D.a,b可以是任意有理

《3.1从算式到方程》同步练习含解析

7.解:把x=3代入方程,得:15-a=3,

解得:a=12.

故选B.

根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.

本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.

8.解:A、7x-4=3x是方程;

B、4x-6不是等式,不是方程;

C、4+3=7没有未知数,不是方程;

D、2x<5不是等式,不是方程;

故选:A.

根据方程的定义:含有未知数的等式叫方程解答即可.数或整式

2024年初一数学教案篇6

尊敬的各位领导、老师:

大家好!

今天我说课的课题是有理数的加法。本节课选自湖南教育出版社出版的数学七年级(上)第一章第四节第一课时的内容。下面我就从教材分析、教法学法、教学程序和教学反思四个方面向大家介绍我对本节课的理解与设计。

教材分析

(一)地位和作用

有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础、有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。

就本章而言,有理数的加法是本章的重点。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习。

(二)教学目标

1、知识与能力目标:

(1)了解有理数加法的意义。

(2)理解并掌握的有理数加法的法则,并会运用法则进行准确运算,提高学生的运算能力。

2、过程与方法目标:

(1)经历法则探索的过程,培养学生归纳总结知识的能力。

(2)体验初步的算法思想。(转化)

(3)在探索过程中感受数形结合和分类讨论的数学思想。

(4)渗透由特殊到一般的唯物辩证法思想。

3、情感与态度目标:

(1)让学生体会到数学知识来源于生活,服务于生活,培养学生对数学的热爱。

(2)培养学生协作意识,体验成功,树立学习自信心。

(三)教学重点、难点:

重点:理解和运用有理数的加法法则。

难点:异号两数相加的法则。

教法与学法

我在本节课主要采用“引导——发现教学法”,并借助多媒体课件来展开教学。学生主要采用“合作探究学习法”来学习本节内容。

教学程序:

我采用的教学模式分为“引——探——结——用”四个环节。

(一)、引出课题(2分钟)

例如,足球比赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。

如果,红队进4个球,失2个球;蓝队进1个球,失1个球。则红队的净胜球数为4+(-2),

蓝队的净胜球数为1+(-1)。

这里用到正数和负数的加法。

那么,怎样计算4+(-2)呢?

此环节大约2分钟。

(二)、探索规律、得出法则。(15分钟)

现规定正能量为正,负能量为负。

(1)若两个好人携带正能量分别为+20、+30,

则相加的结果是()。

写成算式:(+20)+(+30)=()

(2)若两个坏人携带负能量分别为—20、—30,

则相加的结果是()。

写成算式:(—20)+(—30)=()

这两个算式,运算有什么特点呢?

同号两数相加,好比作同伙人:正数+正数,正能量增大;

负数+负数,负能量增大。

最后概括为①定符号;②把绝对值相加。

(3)若一个好人携带正能量+30一个坏人携带负能量—10。

则两人较量的结果是()赢,还剩()能量。

写成算式:(+30)+(—10)=()。

(4)若一个好人携带正能量+20一个坏人携带负能量—40。

则两人较量的结果是()赢,还剩()能量。

写成算式:(+20)+(—40)=()。

这组算式,运算有什么特点呢?

异号两数相加,好比两人在打仗,谁的力量强大,谁就赢。如果正能量大,符号就定为正;如果负能量大,符号就定为负,又让学生理解两人打仗,彼此力量会彼此抵消,彼此消损。那么赢的一方还剩多少能量呢?故而把绝对值做减法。强调用大的绝对值减去小的绝对值。

最后概括为①定符号;②把绝对值相减。

再看两种特殊情形:

(5)若一个好人携带正能量+30,一个坏人携带负能量—30。则两人较量的结果是(),还剩()能量。

写成算式:(—30)+(+30)=()。

(6)20+0=()0+(—15)=()

新课程倡导让学生从“要我学”向“我会学”转变,而教师是学生学习的组织者、引导者和合作者。由于教材上利用数轴和绝对值来探究法则过于抽象,不易引起学生的兴趣。借鉴之下,我选用了学生感兴趣的卡通动画人物,激发学生的学习兴趣,营造一种轻松愉快的学习氛围;我让学生来当裁判,学生必须把6次的情况都完成后,才能得到结果,这样每个学生的注意力一直会很集中。若学生有困难,则小组内探讨交流、补充,让学生能逐步引导概括出有理数的加法法则。上述过程,大约20分钟的时间,将突出重点,突破难点。

(三)小结(3分钟)

有理数的加法法则

1、同号两数相加:

取加数的符号,并把绝对值相加。

2、异号两数相加:

取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得0。

4、一个数同零相加:仍得这个数

(四)、用

1、加深理解,巩固法则。(5分钟)

(1)填表

(2)思考:在进行有理数加法运算时,应分几步完成?

此题的设计是为了学生更好地理解、掌握有理数加法法则。同时,让学生知道,凡是有理数运算都要首先确定结果的符号。学生独立完成表格后,我将解题步骤,分步板书在黑板上,让学生对解题格式引起重视。

2、变式训练,应用法则。(15分钟)

数学家皮亚杰认为:“不断的训练才能够逐渐的发展出一个合理的数学模型”。练习和科学的重复练习始终是数学学习的有效办法。为了让学生熟练应用法则准确计算,我设计了2个例题、例1是同号两数相加;例2是异号两数相加。这两种最典型的类型,以起到巩固法则和规范格式的&39;作用。我让学生尝试独立完成,让基础组的学生板演后,并让别的学生找错误,这样充分调动了学生的积极性,活跃了课堂气氛。同时,通过学生纠错的过程,让学生对错误加深记忆,将知识转化为技能。

3、小组闯关,检测目标。(5分钟)

在新课程下,教学的本质是学习活动,学生是否有效的学习,教学目标是否落实到位,检测目标成为一节课的一个重要环节。

我设计了两个闯关小游戏。一个是学生口答抢答,另一个是男生出题女生抢答,反之女生出题男生抢答,通过男女同学竞争中巩固、应用法则。

2024年初一数学教案篇7

教学内容:

正数和负数的初步认识,数轴的相关知识,相反数的相关知识,绝对值的相关知识。

教学目的:

1、教学正数和负数的意义,会判断一个数是正数还是负数,会初步运用正数和负数表示相反意义的量。

2、能将学过的整数在数轴上表示出来,能说出数轴上已知点所表示的数。

3、了解相反数的概念,掌握相反数的表示法,能正确地求出一个数的相反数。

4、掌握绝对值的表示法,给一个数,会求它的绝对值。

教材分析:

本单元教材是为进一步学习正数和负数加减法打下基础,为初中数学学习做准备,是衔接小学数学和初中数学的重要环节.教学的重点是相反数和绝对值,难点是正数和负数及数轴概念的理解。

教学课时:

约6课时。

教学准备:

小黑板、投影片。

教学内容:

完成例题,“试一试”及练习一a组的1-7题,b组的1-3题。

教学目的:

1、认识正数和负数,会用正数和负数表示一些常见的数量。

2、培养学生对相对的理解,培养创新的思维品质。

教学重点:

负数的认识是本课的重点。

教学过程:

一、创设情景:

师:我们已经学过哪些数?

出示气温图,说一说各数字表示的意思,找一找哪些是没有学过的?

二、探究新知:

1、师:你会读这些数字吗?试一试.

师:像-1、-4、-8……这样的数都是负数。

师:为了和负数相对应,我们把以前学过的除零以外的数叫作正数,并可在前面加上符号“+”,读作正。

2、自学课本第二页的内容。

师:你还能举出一些正、负数的例子吗?

3、教学例题

出示例题,读题后说一说自己的想法。

明确:海平面以上用正数表示,海平面以下用负数表示。

4、试一试

完成试一试的相关题目。

三、巩固拓展

1、完成练习一a组的1-7题。

第4题要重点订正。

2、完成练习一b组的第1、2、3题。

四、小结

师:本节课你有什么收获?

2024年初一数学教案篇8

回顾与反思

师生共同讨论得出结论,教师指出注意的问题

沙场练兵

一、比一比看谁最快、最棒:

1、-0.4ab3的系数是次数是。

2、多项式3x2+2x-3x-4的最高次项是,同类项是,常数项是。

3、去括号3a-(2ab-3b2+4)=

4、与2a-1的和为7a2-4a+1的多项式是

二、应用知识,提高能力,你一定行:

已知小明的年龄是岁,小红的年龄比小明的2倍少4岁,小华的年龄比小红的年龄的一半多一岁,求三个人的年龄和。

学生抢答

学生独立思考,然后在本上做,找一名同学板书。

培养学生运算能力和分析问题解决问题的能力。

回顾与反思

本节课的学习你有哪些收获?

应注意什么问题?(出示本章的知识结构图:)

师生互动梳理知识。弄清本章所学的概念、法则和有关的知识内容以及它们之间的联系与区别,并写出知识结构图。

布置

作业P1926、8、11

板书设计:

回顾与反思

一、知识结构

二、1、整式有关概念注:单次

三、整式加减(注:同类项的确定,去括号的应注意问题)

教学反思:

本节课在学生充分思考的基础上,开展小组交流和全班交流。使学生在反思交流的过程中,师生共同建立知识体系得出本章知识结构图,在整个过程中不仅注重对知识的总结,更注重对知识形成过程的反思归纳。留给了学生充足的时间和空间,反思知识的发生发展过程。但由于留给学生时间较长,课时感到很紧张,今后要注意改进。

2024年初一数学教案篇9

【学习过程】

一、阅读教材

二、独立完成下列预习作业:

1、单项式和多项式统称整式.

2、表示÷的商,可以表示为.

3、长方形的面积为10,长为7cm,宽应为cm;长方形的面积为S,长为a,宽应为.

4、把体积为20的水倒入底面积为33的圆柱形容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为.

一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.

◆◆分式和整式统称有理式◆◆

三、合作交流,解决问题:

分式的分母表示除数,由于除数不能为0,故分式的分母不能为0,即当B≠0时,分式才有意义.分子分母相等时分式的值为1、分子分母互为相反数时分式的值为-1.

1、当x时,分式有意义;

2、当x时,分式有意义;

3、当b时,分式有意义;

4、当x、y满足时,分式有意义;

四、课堂测控:

1、下列各式,,,,,,,,x+y,,,,,0中,

是分式的有;

是整式的有;

是有理式的有

3、下列各式中,无论x取何值,分式都有意义的是()

A.B.C.D.

4、当x时,分式的值为零

5、当x时,分式的值为1;当x时,分式的值为-1.

2024年初一数学教案篇10

一、教学目标:

⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。

⑶体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

二、教学重点、难点:

余角与补角的性质

三、教学过程:

复习、引入:

⑴复习角的定义。你知道有哪些特殊的角?

⑵用量角器量一量图中每组两个角的.度数,并求出它们的和。

你有什么发现?

新课:

由学生的发现,给出余角和补角的定义(文字叙述)。

并且用数学符号语言进行理解。

问题1:如何求一个角的余角和补角。

①∠1的余角:90°-∠1

②∠α的补角:180°-∠α

练习:填表(求一个角的余角、补角)

拓广:观察表格,你发现α的余角和α的补角有什么关系?

如何进行理论推导?

结论:α的补角比α的余角大90°

α一定是锐角

钝角没有余角,但一定有补角。

2024年初一数学教案篇11

教学目的

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

重点、难点

1.重点:解含有括号的一元一次方程的解法。

2.难点:括号前面是负号时,去括号时忘记变号。

教学过程

一、复习提问

1.解下列方程:

(1)5x-2=8(2)5+2x=4x

2.去括号法则是什么?“移项”要注意什么?

二、新授

一元一次方程的概念

如44x+64=3283+x=(45+x)y-5=2y+l问:它们有什么共同特征?

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程

x=3x-2x-=-l

5x2-3x+1=02x+y=l-3y=5

例2.解方程(1)-2(x-1)=4

(2)3(x-2)+1=x-(2x-1)

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习

教科书第9页,练习,l、2、3。

四、小结

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业

1.教科书第12页习题6.2,2第l题。

2024年初一数学教案篇12

初一上册数学教案,欢迎各位老师和学生参考!

学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1.会用绝对值比较两个负数的大小。

2.会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:

一、创设情境

根据绝对值与相反数的意义填空:

1、

2、

-5的相反数是______,-10.5的相反数是______,的&39;相反数是______;

3、0=______,0的相反数是______。

二、探索感悟

1、议一议

(1)任意说出一个数,说出它的绝对值、它的相反数。

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

2、想一想

(1)2与3哪个大?这两个数的绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?

三.例题精讲

例1.求下列各数的绝对值:

+9,-16,-0.2,0.

求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?

(2)数轴上的点的大小是如何排列的?

例2比较-10.12与-5.2的大小。

例3.求6、-6、14、-14的绝对值。

小节与思考:

这节课你有何收获?

四.练习

1.填空:

⑴的符号是,绝对值是;

⑵10.5的符号是,绝对值是

⑶符号是+号,绝对值是的数是

⑷符号是-号,绝对值是9的数是;

⑸符号是-号,绝对值是0.37的数是.

2.正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).

请指出哪个足球质量最好,为什么?

第1个第2个第3个第4个第5个第6个

-25-10+20+30+15-40

3.比较下面有理数的大小

(1)-0.7与-1.7(2)(3)(4)-5与0

五、布置作业:

P25习题2.35

家庭作业:《评价手册》《补充习题》

六、学后记/教后记

这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助!

2024年初一数学教案篇13

初一数学《数据的收集》教学设计

广州市华颖中学刘春荣

课型:分析研讨课

教  学  设  计

教学后记

课 题

数据的收集(2)

知识与技能

让学生经历调查与收集数据的过程,从中体会到数据在解决现实世界的问题中是有用的,学会收集数据,掌握收集数据的方法,利用数据解决问题。

过程和方法

组织学生开展调查,收集自己感兴趣的数据,课堂上集体讨论,在合作探究活动中获取知识,感受知识。

情感、态度与价值观

感兴趣于探究活动,愿意和他人交流,学会表达,学会质疑,逐步养成用数据说话的习惯。

重点、难点

重点:认识数据的重要性,掌握数据收集的方法。

难点:如何收集数据,利用数据来解决问题。

教法选择

教师以主持人的身份,开展课堂活动,引导学生独立思考、合作探索、参与交流,发表意见。

学法引导

通过详细阅读课文,联系生活实际,亲身实践、自主探索,了解收集数据的过程、方法和用途并收集数据。

课堂组织形式

课堂活动课:教师引导,学生分组讨论,代表发言学生参与辩论,课堂展开调查,师生共同小结。

一、课堂导入  

寓言小故事:通过寓言小故事引入教学,使学生的注意力进入到课堂的活动中,调动同学们的学习积极性,认识到数据的收集在生活中是有用的。

二、分组讨论

分小组讨论:把学生分成六个讨论小组,每位同学把自己经历调查所收集到的数据,和小组同学一起讨论,在小组中阐述自己的想法,介绍收集数据的过程和方法,选出有代表性的数据,进行修改认证。

三、集体分享

选派代表发言:每一个讨论小组派一至三位代表把本组有代表性的数据收集公布,阐述调查的问题,数据收集的对象、方法和过程,和同学们一起探讨数据的作用,分享调查的成果。学生或老师提出质疑,共同评价,达成共识。

四、课堂调查

课堂开展调查研究:在分享学生数据收集的基础上,师生合作交流,通过课堂调查,用唱票的方法,了解学生对老师的评价,用数据说话。

五、反思提高

活动过程 小结:对整个数据收集的过程做一个小结,学生发表自己的见解,总结数据收集的方法,了解到实验次数增多对结果产生的影响,明白数据在解决现实生活问题是有用的这个道理。

六、课后作业 

1、把收集的数据加以整理,写出一份报告。

2、课本第188页习题5.1第1、2题,可以到其它班级收集数据。

3、阅读课本第189~192页

备注:

初一数学《数据的收集》教学设计

广州市华颖中学刘春荣

课型:分析研讨课

教  学  设  计

教学后记

课 题

数据的收集(2)

知识与技能

让学生经历调查与收集数据的过程,从中体会到数据在解决现实世界的问题中是有用的,学会收集数据,掌握收集数据的方法,利用数据解决问题。

过程和方法

组织学生开展调查,收集自己感兴趣的数据,课堂上集体讨论,在合作探究活动中获取知识,感受知识。

情感、态度与价值观

感兴趣于探究活动,愿意和他人交流,学会表达,学会质疑,逐步养成用数据说话的习惯。

重点、难点

重点:认识数据的重要性,掌握数据收集的方法。

难点:如何收集数据,利用数据来解决问题。

教法选择

教师以主持人的身份,开展课堂活动,引导学生独立思考、合作探索、参与交流,发表意见。

学法引导

通过详细阅读课文,联系生活实际,亲身实践、自主探索,了解收集数据的过程、方法和用途并收集数据。

课堂组织形式

课堂活动课:教师引导,学生分组讨论,代表发言学生参与辩论,课堂展开调查,师生共同小结。

一、课堂导入  

寓言小故事:通过寓言小故事引入教学,使学生的注意力进入到课堂的活动中,调动同学们的学习积极性,认识到数据的收集在生活中是有用的。

二、分组讨论

分小组讨论:把学生分成六个讨论小组,每位同学把自己经历调查所收集到的数据,和小组同学一起讨论,在小组中阐述自己的想法,介绍收集数据的过程和方法,选出有代表性的数据,进行修改认证。

三、集体分享

选派代表发言:每一个讨论小组派一至三位代表把本组有代表性的数据收集公布,阐述调查的问题,数据收集的对象、方法和过程,和同学们一起探讨数据的作用,分享调查的成果。学生或老师提出质疑,共同评价,达成共识。

四、课堂调查

课堂开展调查研究:在分享学生数据收集的基础上,师生合作交流,通过课堂调查,用唱票的方法,了解学生对老师的评价,用数据说话。

五、反思提高

活动过程 小结:对整个数据收集的过程做一个小结,学生发表自己的见解,总结数据收集的方法,了解到实验次数增多对结果产生的影响,明白数据在解决现实生活问题是有用的这个道理。

六、课后作业 

1、把收集的数据加以整理,写出一份报告。

2、课本第188页习题5.1第1、2题,可以到其它班级收集数据。

3、阅读课本第189~192页

备注:

2024年初一数学教案篇14

学习目标:

1.理解平行线的意义两条直线的两种位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

学习重点:探索和掌握平行公理及其推论.

学习难点:对平行线本质属性的理解,用几何语言描述图形的性质

一、学习过程:预习提问

两条直线相交有几个交点?

平面内两条直线的位置关系除相交外,还有哪些呢?

(一)画平行线

1、 工具:直尺、三角板

2、 方法:一"落";二"靠";三"移";四"画"。

3、请你根据此方法练习画平行线:

已知:直线a,点B,点C.

(1)过点B画直线a的平行线,能画几条?

(2)过点C画直线a的平行线,它与过点B的平行线平行吗?

(二)平行公理及推论

1、思考:上图中,①过点B画直线a的平行线,能画 条;

②过点C画直线a的平行线,能画 条;

③你画的直线有什么位置关系? 。

②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

二、自我检测:(一)选择题:

1、下列推理正确的是 ( )

A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

A.0个 B.1个 C.2个 D.3个

(二)填空题:

1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

(1)L1与L2 没有公共点,则 L1与L2 ;

(2)L1与L2有且只有一个公共点,则L1与L2 ;

(3)L1与L2有两个公共点,则L1与L2 。

3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

2024年初一数学教案篇15

教学目的:

(一)知识点目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快?

内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。

2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、 等是正数(也可加上“十”)

-3、-2、-0.5、- 等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

巩固提高:练习:课本P5练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题1.1的第1、2、4、5题。

活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

课后反思

27395