教案吧 > 初中教案 > 七年级教案 >

七年级数学教案设计

时间: 新华 七年级教案

教案是指教学活动的计划和组织安排,包括教学目标、教学内容、教学方法、教学资源、评价方式等方面的设计。这里给大家分享七年级数学教案设计,方便大家写七年级数学教案设计时参考。

七年级数学教案设计篇1

一、教学内容:

人教版教材五年级上册第五单元多边形的面积整理与复习

二、教学目标:

1、使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。

2、使学生感受数学方法和思想的重要性及其应用的广泛性。体会数学的价值,培养对数学学习的热爱

三、教学重、难点

重点:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。

难点:引导学生整理多边形面积的推导过程,掌握转化的数学思想方法,建构知识网络。

四、教学准备

多媒体课件,多边形纸模

五、教学步骤与过程

(一)导入复习

师:同学们,我们学过哪些平面图形的面积计算公式?(正方形、长方形、平行四边形、三角形、梯形)

师:这节课我们就来重点整理和复习有关这些多边形的面积的知识。

板书课题:多边形面积计算复习课

(二)回顾整理,建构网络

1.复习了平行四边形、三角形、梯形面积公式的推导过程。

⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。

⑵根据学生的回答,出示每个公式的推导过程。

六、课堂练习

学生独立计算。指名学生板演,集体订正七、说一说,你学会了什么?从整理图中能看出各种图形之间的关系吗?

七、作业布置

练习十九

七年级数学教案设计篇2

本学期是初中学习的关键时期,进入初三,学生成绩差距较大。教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。努力把今学期的任务圆满完成。本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。

一.完成九年级下册的内容

1.掌握二次函数的概念,五种基本函数关系式,会建立数学模型来解决实际问题。

2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的性质定理。

3.加强学生对数学知识的认识方法,培养他们正确的学习方法。

4.通过关於图形和证明的教学,进一步培学生的逻辑思维能力.与空间观念。

二.本学期在提高教学质量上采取的措施。

1.改进教学方法,采用启发式教学。

2.注意教科书的系统性,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。

3.注意发展学生探索知识的能力,提高学生分析问题的能力。

4.开放性问题、探究性问题教学,培养学生创新意识、探究能力。

5.鼓励合作学习,加强个别辅导,提高差生成绩。

七年级数学教案设计篇3

教学目标:

1、知识与技能:

(1)借助数轴理解相反数的概念,会求一个数的相反数。

(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。

2、过程与方法:

在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。

重点、难点

1、重点:理解相反数的意义,会求一个数的相反数。

2、难点:对相反数意义的理解。

教学过程:

一、创设情景,导入新课

1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。

二、合作交流,解读探究

1、(出示小黑板)

教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?

学生活动:分小组讨论,与同伴交流。

教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。

2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。

0的相反数是0。

3、学生活动:

在数轴上,表示互为相反数的两个点有什么关系?

学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

4、练习填空:

3的相反数是;-6的相反数是;-(-3)=;-(-0.8)=;

学生活动:在练习本上解答,并与同伴交流,师生共同订正。

归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。

三、应用迁移,巩固提高

1、课本P10第1题。

2、填空:

(1)__的相反数是;(2)__的相反数是;(3)__的相反数是2/3。

3、如果一个数的相反数是它本身,则这个数是。

4、若α、β互为相反数,则α+β=。

5、-(-4)是的相反数,-(-2)的相反数是。

6、化简下列各数的符号

-(-9)=;+(-3.5)=;

-=;-{-[+(-7)]}=。

7、若-x=10,则x的相反数在原点的侧。

8、若x的&39;相反数是-3,则;若x的相反数是-5.7,则。

四、总结反思

本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

五、课后作业

课本P13习题1.2A组第3、4题。

七年级数学教案设计篇4

一、有理数的意义

1.有理数的分类

知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3, ,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。

2.数轴

知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数

3. 相反数

知识点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

4. 绝对值

知识点: 一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a. 若a=0,则∣a∣=0. 若a<0,则∣a∣=﹣a ;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。

二、有理数的运算

1. 有理数的加法

知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。

加法交换律:a+b=b+a; 加法结合律:a+b+c=a+(b+c)

多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。

2. 有理数的减法

知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即 a-b=a+(-b)。

注意:运算符号“+”加号、“-”减号与性质符号“+”正号、“-”负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。

3. 有理数的加减混合运算

知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把“+”号省略,使算式变得更加简洁。

4. 有理数的乘法

知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。

几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个数相乘,有一个因数为0,积就为0。

乘法交换律:ab=ba 乘法结合律:abc=a(bc) 乘法分配律:a(b+c)=ab+bc

5. 有理数的除法

知识点:除法法则1:除以一个数等于乘上这数的倒数,即a÷b= =a• (b≠0即0不能做除数)。

除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

倒数:乘积是1的两数互为倒数,即a• =1(a≠0),0没有倒数。

注意:倒数与相反数的区别

6. 有理数的乘方

知识点:乘方:求n个相同因数的积的运算。乘方的结果叫幂,an中,a叫做底数,n叫做指数。

乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。

7. 有理数的混合运算

知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。

技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。

【巩固练习1】一.选择题

1. 关于数“0”,以下各种说法中,错误的是 ( )

A. 0是整数 B. 0是偶数 C. 0是自然数 D. 0既不是正数也不是负数

2. –3.782: ( )

A. 是负数,不是分数 B. 不是分数,是有理数 C. 是分数,不是有理数 D. 是分数,也是负数

二、将下列各数填入相应的集合中。 ,-1,12,0,-3.01,0.62,-15,- ,180,-42,-45%,π,1。

整数:______________________ 自然数:___________________________

正数:______________________ 负数: ___________________________

偶数:______________________ 奇数: ___________________________

分数:______________________ 非负数:___________________________

非负整数: _________________ 非正分数:_________________________

非负有理数:________________ 有理数: __________________________

三、 填空题

1、一个数的绝对值是 6 ,这个数是   。 2、绝对值小于3的整数有   个。

3、 的相反数的倒数是   。 4、计算:    。

5、如果 ,那么 a=   。 6、如果规定上升8米记作8米,那么-7米表示 ______________。

7、最小的正整数是____,的负整数是_____,绝对值最小的有理数是_______

8、 河道中的水位比正常水位低0.2m记作-0.2m,那么比正常水位高0.1m记作________。

9、一潜艇所在深度是-80米,一条鲨鱼在艇上30m处,鲨鱼所在的深度是________。

【巩固练习2】一.填空题

1. 数轴上与表示﹣2点相距3个单位的点所表示的数是________。

2. 数轴表示+3和﹣3的点离开原点的距离是______个单位,这两个点的位置分别在_______点右边和左边。

3. 在有理数中的负整数是________, 最小的正整数是________, 的非正数是________, 最小的非负数是________.

4. 用“>”或“<”号填空:

1)3.5 ____ 0 ; 2) ﹣2.8 ____ 0 ; 3) ﹣1.95 ____ 1.59 ; 4) ____ ;

5) ____ ﹣0.3 ; 6) ﹣0.67 ____ ; 7) ____ ;

8) ﹣π ____ ﹣3.14 ; 9) ﹣1.6 ____ ﹣1.6 ; 10) ﹣( ) ____ ﹣(﹣∣ ∣) .

【巩固练习3】一.填空题

1. 如果一个数的相反数是它本身, 则这个数是________.

2. 如果一个数的相反数是最小的正整数, 则这个数是________.

3. 若 , 则a与b________; 若 , 则a与b________; 若a+b=0, 则a与b________.

4. 在数轴上与-3距离4个单位的点表示的数是

5.写出大于-4且小于3的所有整数为______________;

二、 求下列各数的相反数

0.26 ; ;π-3 ;﹣a ;﹣x+1 ; m+1 ;2xy ;a-b 。

三、 在数轴上表示出下列各数的相反数的点,并比较大小。

,4,﹣1.5, ,0,1,8,﹣2,﹣(﹣4.5),∣ ∣

【巩固练习4】一.选择题

1. ﹣∣﹣3∣是 ( ) A. 正数 B. 负数 C. 正数或0 D. 负数或0

2. 绝对值最小的整数是 ( ) A. 0 B. 1 C. –1 D. 1和-1

二、填空题 1.若a= , 则∣a∣=________; 若∣a∣=3, 则a=________.

2.﹣∣﹣ ∣=______; ∣﹣ ∣-∣﹣ ∣=______; ∣﹣0.77∣÷∣+ ∣=_______;

3.绝对值小于4的负整数有    个,正整数有     个,整数有    个

三、解答题

1. 已知∣x+y+3∣=0,求∣x+y∣的值。

2. 已知 A,B是数轴上两点,A点表示﹣1,B点表示3.5,求A,B两点间的距离。

3. 已知:∣a+2∣+∣b-3∣=0,求2a2-b+1的值。

【巩固练习5】计算:1) ﹣ - + -( ); 2) 1-2+3-4+5-6+…+99-100;

3) ﹣(﹣8)-∣﹣6∣-∣+8∣-(+7); 4) 。

【巩固练习6】计算:1)( )× ; 2) × ÷( ); 3) ×(-5);

4)( )÷ ; 5) ÷( ) ; 6) ÷(-5);

【巩固练习7】1.计算:(-5)3; -53; ; ;(-1)2001; 3。

2. 若∣x+1∣+(2x-y+4)2= 0 ,求代数式x5y+xy5的值。

【巩固练习8】计算:(1)3 ; (2) (3) (4)

(5) (6) (7) (8)

(9) (10)–32-∣(-5)3∣× -18÷∣-(-3)2∣;

(11) -3- × -6÷∣ ∣3; (12)(-1)5×[ ÷(-4)+ ×(-0.4)]÷ ;

(13)如果 ,求 的值.

一、 选择题(10小题,每小题3分,共30分,答案填入表格中)

1. 在下列各数中,-3.8,+5,0,- 1 2 , 3 5 ,-4,中,属于负数的个数为(  )

A.2个 B.3个 C.4个 D.5个

2. 计算:-6+4的结果是(  )

A.2 B.10 C.-2 D.-10

3. 一个数的倒数等于它本身的数是(  )

A.1 B. C.±1 D.0

4. 下列判断错误的是(  )

A.任何数的绝对值一定是非负数; B.一个负数的绝对值一定是正数;

C.一个正数的绝对值一定是正数; D.一个数不是正数就是负数;

5. 有理数a、b、c在数轴上的位置如图所示则下列结论正确的是(  )

A.a>b>0>c B.b>0>a>c

C.b

6.两个有理数的和是正数,积是负数,则这两个有理数( )

A.都是正数; B.都是负数;

C.一正一负,且正数的绝对值较大; D.一正一负,且负数的绝对值较大。

7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )

A.3或13 B.13或-13 C.3或-3 D.-3或-13

8. 大于-1999而小于2000的所有整数的和是(  )

A.-1999 B.-1998 C.1999 D.2000

9. 当n为正整数时, 的值是(  )

A.0 B.2 C.     D.2或

10. 补充下列表格:

31 32 33 34 35 36 37

3 9 27 81 243 … …

根据表格中个位数的规律可知,325的个位数是( )

A.1 B.3 C.7 D.9

二、填空题(8小题,每小题2分,共16分)

11. 的相反数是 .

12.若水位上升20cm记作+20cm,则-15cm表示__________________.

13.4个-3相乘写成乘方的形式是__________________.

14.比较大小: .

15. 在数轴上距2.5有3.5个单位长度的点所表示的数是     .

16. 用“偶数”或“奇数”填:当 为_________时,

17. 一根2米长的小棒,小明第一次截去一半,第二次截去剩下的一半,如此截下去,

第五次后剩下的长度为______米.

18. 观察下列图形:

它们是按一定规律排列的,依照此规律,第10个图形共有 个★.

三、解答题(6小题,每小题5分,共30分)

19. (+4.3) -(-4) + (-2.3) -(+4) 20. (-48)÷6- ×(-4)

21. (- + - )×(-12) 22. 16÷(-2)3-(- )×(-4)2

23. (用简便方法) 24. - -[-5 + (0.2× -1)÷(-1 )]

25. 若│a│=2,b=-3,c是的负整数,求a + b-c的值.(6分)

26.某牛奶厂在一条南北走向的大街上设有O,A,B,C四家特约经销店. A店位于O店的南面3千米

处;B店位于O店的北面1千米处,C店在O店的北面2千米处.

(1)请以O为原点,向北的方向为正方向,1个单位长度表示1千米,画一条数轴.

在数轴上分别表示出O,A,B,C的位置吗?(4分)

(2)牛奶厂的送货车从O店出发,要把一车牛奶分别送到A,B,C三家经销店,最后回到O店,

那么走的最短路程是多少千米?(4分)

27.股民小杨上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:

星期 一 二 三 四 五

每股涨跌 +2.20 +1.42 -0.80 -2.52 +1.30

(1)星期三收盘时,该股票涨或跌了多少元?(4分)

(2)本周内该股票的价是每股多少元?最底价是每股多少元?(2分)

(3)已知小杨买进股票时付了1.5‰的手续费,卖出时还需要付成交额的1.5‰的手续费和1‰的交易税,

如果小杨在星期五收盘前将全部股票卖出,则他的收益情况如何? (4分)

七年级数学教案设计篇5

教学目标

1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

教学重点与难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

教学准备

多媒体课件

教学过程

一、创设问题情境

1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作__________,B处记作__________。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

2、这两只小狗在跑的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征(从形和数两个角度去感受绝对值)。

3、在数轴上找到-5和5的点,它们到原点的距离分别是多少表示和的点呢

小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。

二、建立数学模型

1、绝对值的概念

(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记-5=5;5的绝对值是5,记做5=5。

注意:①与原点的关系②是个距离的概念

2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]

(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

三、应用深化知识

1、例题求解

例1、求下列各数的绝对值

-1.6,0,-10,+10

2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

特点:

1、一个正数的绝对值是它本身

2、一个负数的绝对值是它的相反数

3、零的绝对值是零

4、互为相反数的两个数的绝对值相等

3.出示题目

(1)-3的符号是______X,绝对值是______;

(2)+3的符号是______X,绝对值是______;

(3)-6.5的符号是______X,绝对值是______;

(4)+6.5的符号是______X,绝对值是______;

学生口答。

师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗

5、练习3:回答下列问题

①一个数的绝对值是它本身,这个数是什么数

②一个数的绝对值是它的相反数,这个数是什么数

③一个数的绝对值一定是正数吗

④一个数的绝对值不可能是负数,对吗

⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗

(由学生口答完成,进一步巩固绝对值的概念)

6、例2.求绝对值等于4的数

(让学生考虑这样的数有几个,是怎样得出这个结果的呢对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

分析:

①从数字上分析

∵+4=4,-4=4∴绝对值等于4的数是+4和-4画一个数轴

②从几何意义上分析,画一个数轴

因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

所以绝对值等于4的数是+4和-4.

6、练习:做书上12页课内练习1、2两题。

四、归纳小结

1、本节课我们学习了什么知识

2、你觉得本节课有什么收获

3、由学生自行总结在自主探究,合作学习中的体会。

五、课后作业

1、让学生去寻找一些生活中只考虑绝对值的实际例子。

2、课本15页的作业题。

七年级数学教案设计篇6

一:教材分析:

1:教材所处的地位和作用:

本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣

以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

2:教育教学目标:

(1)知识目标:

(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

(3)思想目标:

通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:

根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

二:学情分析:(说学法)

1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

2:学生在列方程解应用题时,可能存在三个方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

三:教学策略:(说教法)

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1:“读(看)——议——讲”结合法

2:图表分析法

3:教学过程中坚持启发式教学的原则

教学的理论依据是:

1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。

2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有_千克面粉”写成“设原来有_”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“_字串7”“—15%_”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。

3:针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。

4:通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。

5:在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。

四:教学程序:

(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。

(二):教学简要过程:

1:复习提问:

(1):什么叫做等式?

(2):等式与方程之间有哪些关系?

(3):求_的15%的代数式。

(4):叙述代数式与方程的区别。

(理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)

2:导入讲授新课:

(1):教具:

一块小黑板,抄212例1题目及相对应的空表格。

左边右边

(2):新课引述:

(3):讲述课文212例1:

(目的是:要求学生认真读懂题目,寻找反映题目的全部含义的相等关系,必须根据题目关系,切勿盲目性)通过理解启发学生寻找出以下关系:原来重量—运出重量=剩余重量(A)(在指导学生分析寻找题意相等关系时,可能存在学生分析问题思路不同,会找出如下关系:原来重量=运出重量+剩余重量,原来重量—剩余重量=运出重量的相等关系来,这主要由于学生思路不同,得出的关系表面不同,但思路是正确的,应加以鼓励培养学生这种发散思维能力。)

指导学生设原来重量为_千克。这里分析等式左边:原来重量为_千克,运出重量为15%_千克,把以上填入表格左边。字串7分析等式右边:剩余重量为42500千克,填入表格右边。

(目的是:通过分析使学生易看出,先弄懂题意,找出相等关系,再按照相等关系来设未知数和列代数式,有利于降低列方程解应用题的难度)

把以上左边和右边的代数式分别代入(A)中,同时要求学生注意方程的左边和右边的单位要一致,就可以列出方程。

同时要求学生在解答过程中勿漏写“答”和“设”,且都不要漏写单位。

结合解题过程向学生介绍一元一次应用题解法的一般步骤:

课本215黑体字

3:课堂练习:

课文216练习1,2题

(目的是:让学生通过适当的模仿例题的解题思想方法从而加深对本课的内容的理解掌握。)

4:新课巩固:

学生对本节内容进行要小结:

列方程解应用题着重于分析,抓住寻找相等关系。解一元一次应用题的一般步骤及注意事项。

(目的:让学生加深对应用题的解法的认识和该注意事项的重视。)

5:作业布置:

课文221习题4-4(1)A组1,2,3题

(目的:在于检验学生对本节内容的理解和运用程度,以及实际接受情况,并促使学生进一步巩固和掌握所学的内容。)

五:板书设计:

4_4一元一次方程的应用:

例题:小黑板出示例1题目解:设原来有_千克面粉,那么运

相等关系:原来重量—运出重量=剩余重量出了15%_千克,依题意,得

等式左边:等式右边:_—15%_=42500

原来重量为_千克,剩余重量为42500千克。解这个方程:

运出重量为15%_千克。85/100__=42500

解一元一次方程的一般步骤:_=50000(千克)

小黑板出示课文215黑体字内容提要答:原来有50000千克面粉。

七年级数学教案设计篇7

教材简析:

本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量系列出求吃1/2个、1/3个、1/4个,可以分给几人的算式,然后通过观察、操作探索出一个数的几分之一就等于这个数乘以几分之一的倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷2/3的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的.5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。

教学目标:

1、使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的式题。

2、使学生在探索整数除以分数计算方法的过程中,进一步体会猜想——验证的数学思想方法。

3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增强学好数学的自信心。

教具准备:

课件

教学过程:

一、谈话导入

同学们,吃是为了汲取生理上的营养,学是为了汲取精神上的养份。今天,我们采用“边品边学”的方式,学习“整数除以分数”。

揭题:整数除以分数

二、提出猜想

1、谈话:老师带来了同样大小的4个橙子(媒体呈现)

如果每人吃2个,可以分给几人怎么列式?

学生口头列式。

提问:为什么用4÷2计算呢?

学生回答后,师小结:也就是说把4个橙子,按2个一份平均分,可以用除法计算。

问:如果每人吃一个呢?

学生口头列式。

2、出示:如果“每人吃1/2个,可以分给几人”又怎么列式?

学生口头列式,教师板书:4÷1/2

追问:为什么用除法计算?

学生回答后,师小结:就是把4个橙子,按个一份平均分,因此也是用除法计算(课件出示)

3、谈话:请看屏幕,从图中你数出4÷1/2得多少?(教师随学生回答板书4÷1/2=8)

提问:从这幅图中,你还能想到什么?

(一个橙子分给2个人,4个橙子就能分给8个人。)

学生回答,教师恰当评价。

教师针对学生的回答,继续提问:如果这样想又怎样列式?(教师板书4×2=8)

4、思考:仔细对比这两个式子,你有什么发现?

学生先独立思考,再在小组里交流自己的想法。

反馈时恰当评价。(教师板书4÷1/2=4×2)

三、进行验证

(一)验证一

过渡:是不是所有的整数除以分数都能用以上几个同学说的方法做呢?这只是我们的猜想,还需进一步验证。(板书猜想、验证)

1、出示:如果每人吃1/41/4个,可以分给几人?

学生口头列式

提问:按刚才的方法,可以怎么计算?结果是多少?

(学生回答,教师板书4÷1/4=4×4=16)

谈话:结果是否正确,我们来验证一下

请每个同学拿出4个同样大小的圆片代表橙子,用笔分一分。

学生操作,教师巡视指导。

反馈:你是怎么分的,分得结果是多少?(随学生利用实物投影仪演示)

小结:操作的结果和刚才计算的结果是一样的。

2、出示:如果每人吃1/31/3个呢?

请学生先列式计算,用圆纸片分一分的方法求证结果是否正确。

反馈交流(辅以电脑演示)

小结:通过验证,再次证明了刚才的猜想是正确的。

(二)验证二

过渡:刚才研究的都是整数除以几分之一的题目,整数除以几分之几的题目,有没有类似的规律,我们继续探索。

1、出示例3(电脑出现图示)

提问:怎么理解2/3米?

2、让学生独立列式算一算。

3、学生做好后追问:这个结果是否正确,请同学们打开书57也在例3的图中动笔分一分进行验证。

4、学生独立思考后在小组里交流,全班反馈时指名学生在投影仪下演示。

四、获得结论

1、观察比较

学生观察黑板上的一些算式:

4÷1/2=4×2=8

4÷1/3=4×3=12

4÷1/4=4×4=16

4÷2/3=4×3/2=6

说说这些乘式中的第二个因数与除式中的除数有什么关系?

3、思考概括

通过以上操作活动你认为整数除以分数可以怎样计算?小组里交流回报。

五、巩固练习

过渡:今天的知识大餐你品出了哪些滋味,不妨来回味一番。

1、填一填12÷2/3=12×(3/2)=189÷6/7=9×(7/6)=21/2

2、找朋友

3、练习十一第5题

先出示前一部分要求,学生想一想后再让学生算一算,体会计算方法的正确性。

4、算一算10÷2/58÷2/33÷6/712÷8/7

说明:转化成乘法后,能约分的要先约分。

5、算一算、比一比

(1)逐一出示第一组题,师:老师这儿有一组题,比一比谁算得又快又对。准备笔和草稿纸,算出答案马上举手。

提问:做这组题要注意什么?

6、实际问题

谈话:现在,人们出行都有便利的交通工具,下面是自行车、小轿车、摩托车行使30千米所用时间表,你能求出它们各自的速度吗?

提示:单位用千米/时

六、课堂小结

今天学习了整数除以分数的内容,你有什么收获?

明天将要学习分数除以分数,你有什么想法呢?

七、布置作业

书60页第6题。

七年级数学教案设计篇8

一、教学目的

1.使学生进一步理解自变量的取值范围和函数值的意义.

2.使学生会用描点法画出简单函数的图象.

二、教学重点、难点

重点:1.理解与认识函数图象的意义.

2.培养学生的看图、识图能力.

难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.

三、教学过程

复习提问

1.函数有哪三种表示法?(答:解析法、列表法、图象法.)

2.结合函数y=x的图象,说明什么是函数的图象?

3.说出下列各点所在象限或坐标轴:

新课

1.画函数图象的方法是描点法.其步骤:

(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.

一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.

(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.

(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.

一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).

2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.

小结

本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.

练习

①选用课本练习(前一节已作:列表、描点,本节要求连线)

②补充题:画出函数y=5x-2的图象.

作业

选用课本习题.

四、教学注意问题

1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.

2.注意充分调动学生自己动手画图的积极性.

3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力。

七年级数学教案设计篇9

教学目标 1,掌握绝对值的概念,有理数大小比较法则.

2,学会绝对值的计算,会比较两个或多个有理数的大小.

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点 两个负数大小的比较

知识重点 绝对值的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.

因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

合作交流

探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

-3,5,0,+58,0.6

要求小组讨论,合作学习.

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习.

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.

学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

课堂练习 例2,比较下列各数的大小(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式

练习:第18页练习

小结与作业

课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学教案设计篇10

一、知识与能力

理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。

二、过程与方法

经历对有理数进行分类的探索过程,初步感受分类讨论的思想。

三、情感态度与价值观

通过对有理数的学习,体会到数学与现实世界的紧密联系。

教学重难点及突破

在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的.学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。

教学准备

用电脑制作动画体现有理数的分类过程。

教学过程

四、课堂引入

1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?

2.举例说明现实中具有相反意义的量。

3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?

4.举两个例子说明+5与-5的区别。

七年级数学教案设计篇11

【知识与技能】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

【过程与方法】通过练习,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。

【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

【教学难点】能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续学习打下基础。

【教具准备】小黑板科学计算器

【教学过程】

一、复习导入

1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)(,)

2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位)

3、0.36的平方根是()

4、(-5)2的算术平方根是()

二、练习内容

(一)填空

1、若=1.732,那么=()2、(-)2=()

3、=()4、若_=6,则=()

5、若=0,则_=()6、当_()时,有意义。

(二)选择

1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是()

A.B.C.D.;2、4_2-49=0;3、(25/81)_2=1;

4、求8+(-1/6)2的算术平方根;

5、求b2-2b+1的算术平方根;(b<1)

6、

7、;(用四舍五入方法取到小数点后面第三位)

8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。

三、小结与巩固

七年级数学教案设计篇12

教学目标:

1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

教学重点:

初步认识正数和负数以及读法和写法。

教学难点:

理解0既不是正数,也不是负数。

教学具准备:

多媒体课件、温度计、练习纸、卡片等。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)

②向前走200米(向后走200米)

③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。

②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。

④零上10摄氏度(零下10摄氏度)。

说明什么是相反意义的量(意义正好相反)

3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例1

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

负号能不能省略不写?为什么?

②北京的气温比0℃低,是零下4摄氏度。我们可以用—4℃来表示零下4摄氏度(板书—4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用—4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844。43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844。43米或8844。43米。

吐鲁番盆地的海拔可以记作:—155米。(板书)

(2)小结:以海平面为界线,+8844。43米或8844。43米这样的数可以表示海平面以上的高度,—155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

2、学生交流、讨论。

3、指出:因为+8844。43也可以写成8844。43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

4、小结:什么是正数、负数?

师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0。5、+8844。43等这样的数叫做正数;象—4、—155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

五、联系生活,巩固练习

1、练习一第2、3题

2、你知道吗:水沸腾时的温度是__。水结冰时的温度是__。地球表面的最低温度是。

3、讨论生活中的正数和负数

(1)存折:这里的—800表示什么意思?(以原来的钱为标准,取出了800元记作—800;存入了1200元记作1200元,还可以记作+1200元)

(2)电梯:这里的1和—1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,—1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

六、课堂小结

这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

七年级数学教案设计篇13

教学目的

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

教学过程

一、复习

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间 速度=路程 / 时间

二、新授

例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?

画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

三、巩固练习

教科书第17页练习1、2。

四、小结

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

四、作业

教科书习题6.3.2,第1至5题。

七年级数学教案设计篇14

教学目标

知识与能力:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

过程与方法:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

教学重点与难点

教学重点:绝对值的概念和求一个数的绝对值

教学难点:绝对值的几何意义及求绝对值等于某一个正数的有理数。

教学准备

多媒体课件

教学过程

一、创设问题情境

用多媒体动画显示:两只小狗从同一点O出发,在一条笔直的街上跑,

一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记做__________,B处记做__________。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(用生动有趣的图画吸引学生,即复习了数轴和相反数,又为下文作准备)。

2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两

又有什么特征?(从形和数两个角度去感受绝对值)。

3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?

小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。

二、建立数学模型

绝对值的概念

(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的&39;绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记-5=5;5的绝对值是5,记做5=5。

注意:①与原点的关系②是个距离的概念

练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。

(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

三、应用深化知识

1、例题求解

例1、求下列各数的绝对值

-1.6,,0,-10,+10

解:-1.6=1.6=0=0

-10=10+10=10

2、练习2:略

3、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

特点:1、一个正数的绝对值是它本身

2、一个负数的绝对值是它的相反数

3、零的绝对值是零

4、互为相反数的两个数的绝对值相等

4、练习3:回答下列问题

①一个数的绝对值是它本身,这个数是什么数?

②一个数的绝对值是它的相反数,这个数是什么数?

③一个数的绝对值一定是正数吗?

④一个数的绝对值不可能是负数,对吗?

⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

(由学生口答完成,进一步巩固绝对值的概念)

5、例2、求绝对值等于4的数。

(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

分析:

①从数字上分析

∵+4=4,-4=4∴绝对值等于4的数是+4和-4画一个数轴(如下图)

②从几何意义上分析,画一个数轴(如下图)

∵数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

∴绝对值等于4的数是+4和-4

注意:说明符号“∵”读作“因为”,“∴”读作“所以”

6、练习本:做书上16页课内练习3、4两题。

四、归纳小结

本节课我们学习了什么知识?

你觉得本节课有什么收获?

由学生自行总结在自主探究,合作学习中的体会。

五、课后作业

让学生去寻找一些生活中只考虑绝对值的实际例子。

七年级数学教案设计篇15

一、学习与导学目标:

知识与技能:借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;

过程与方法:经历概念的生成、应用,体会相反数的意义,简化数的符号,学习观察、归纳、概括的策略与方法;

情感态度:通过师生、生生合作学习,促进交流,激发兴趣。

二、学程与导程活动:

A、准备活动:

1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

B、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)

3、从上述意义上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

C、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

结合前面相反数意义的量的学习,还可赋予-(-5)怎样的意义,从而帮助自己理解-(-5)=5吗?

4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

三、笔记与板书提纲:

课题应用举例中的2

活动引例应用举例中的4(学生练习),5

概念

四、练习与拓展选题:

1、教科书P18/3;

2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

28490