七年级教案数学教案
教案可以帮助教师根据学生的实际情况,面向大多数学生,并调动学生学习的积极性。下面小编给大家提供一些七年级教案数学教案参考,希望对大家写七年级教案数学教案有帮助。
七年级教案数学教案篇1
一、教学目标
1.了解推理、证明的格式,理解判定定理的证法.
2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.
3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.
4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.
二、学法引导
1.教师教法:启发式引导发现法.
2.学生学法:积极参与、主动发现、发展思维.
三、重点·难点及解决办法
(一)重点
判定定理的推导和例题的解答.
(二)难点
使用符号语言进行推理.
(三)解决办法
1.通过教师正确引导,学生积极思维,发现定理,解决重点.
2.通过教师指导,学生自行完成推理过程,解决难点及疑点.
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片.
六、师生互动活动设计
1.通过设计练习,复习基础,创造情境,引入新课.
2.通过教师指导,学生探索新知,练习巩固,完成新授.
3.通过学生自己总结完成小结.
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.
(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.
(三)教学过程
创设情境,复习引入
师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).
学生活动:学生口答第1、2题.
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.
教师将第3题图形画在黑板上.
学生活动:学生口答理由,同角的补角相等.
师:要求学生写出符号推理过程,并板书.
【教法说明】
本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.
师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角.
师:它们有什么关系.
学生活动:互补.
师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.
七年级教案数学教案篇2
教材分析
1、本节课首先从最简单的正比例函数入手、从正比例函数的定义、函数关系式、引入次函数的概念。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
学情分析
1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。
3、学生认知障碍点:根据问题信息写出一次函数的表达式。
教学目标
1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。
2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。
3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
教学重点和难点
1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
七年级教案数学教案篇3
一、教学内容分析:
在学完4.1…4.3这三小节的学习,学生意识到立体图形是由平面图形围成的.因此此时学生的心中有一种意犹未尽的感觉,他们希望有对所学知识作进一步探究及讨论的机会,因此平面图形这一节课由此而产生.平面图形是建立在学生具有一定空间观念基础上,对有关图形知识的一个再知过程。它是对学生空间观念,基本图形知识以及动手操作能力的一种综合培养。首先课本p140页图4.4.1给出了5幅形状各异的物体照片,向学生提问是否能画出它们的表面形状。并让学生举出类似的例子,由此引起学生的好奇心,激发学生的学习兴趣。其次,由学生动手得出的5个图形,引出多边形的定义以及多边形的分类。然后,让学生通过观察7个图形,思考当中那些是四边形,由四边形巩固并加深多边形,接着让学生展开充分的讨论与交流完成多边形的分割。最后的试一试以实际生活中的一些优美图案结尾,让学生找出其中的的平面图形,刚好与刚上课时的图4.4.1遥向对应,再次激起学生的探究学习的兴趣。
二、目标的设定与重难点的确立:
根据新课程标准的目标之一:“要使学生具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。”在教学设计上,通过创设的丰富背景,激发学生的学习兴趣和探究欲,引导学生积极参与和主动探索,并在实践中积累教学活动经验,发展有条理的思考。
由于在平面图形这节课中,除了要学习多边形的相关内容是重点外,还要经常识别图形或画图,因此观察并分析出图形的基本构成是平面图形这节课的关键,也是本课的难点所在,也是本节课学生所要达到的能力目标。
课程目标:
1、通过平面图形的学习,巩固有关图形知识,进一步建立空间观念。
2、掌握多边形的相关内容。
能力目标:
1、在探索和实践的过程中,培养学生观察图形、分析图形和初步的几何语言表达能力。
2、发展学生动手实践,自主探索的思考及想象、欣赏能力。
情感目标:培养学生勇于探索和积极参与的精神。
重点:多边形的识别及分类,并了解多边形分割为三角形的规律。
难点:在设计过程中,对图形基本构成进行有条理的分析,并能用自己的语言表达出来。
三、教法选择
1、 教学结构和教学基本思路
针对七年级学生的年龄特点和心理特征,以及他们的认知水平,采用诱导式教学方法,师生互动,鼓励学生团结协作、大胆猜想并动手操作,以观察、实验、整理、分析、归纳、猜想为主,形象的背景下进行教学设计。生活是多姿多彩的,数学又来源于生活,首先以各种实际生活中的精美平面图形为背景,吸引学生的注意力,引发他们的学习热情。通过三角形,长方形这些熟悉的图形,向学生介绍了多边形的定义及特征.通过四边形的识别,进一步使学生了解空间中的图形。而由所由多边形可分割为三角形这一内容,了解三角形的特殊地位,为将来以后的三角形学习埋下伏笔。最后一部分的试一试,通过学生对图形构成的分析,再次激起学生的探究学习的兴趣,培养学生的观察能力,是引导学生探索平面图形的一个感性认识过程。
2、 重难点突破法
书中是以实物图形的表面形状引出多边形的定义及分类,多边形的有关内容是本节课的重点。教学时首先要求学生要自己动手画出图形。其次,在引出多边形时,应加强多边形的识别及分类,从而让学生更容易掌握。而在多边形的分割时,通过多个图形的实验,使学生获得感性认识,再猜想分割的规律,从而突出了重点。
分析平面图形构成是能否找出或画出其中所包含多边形的关键,也是本节课的深化。因此在突出重点的基础上,还要鼓励学生多观察,多动脑,多分析,充分展开合作与交流。必要时再加以适当的引导。特别是试一试中的图案,应给让学生足够的时间分析出图案的基本构成,在明确了基本构成后,应让学生按一定的顺序(由外到内或有大到小等)说出所含的图形,就能找出所有所含的图形,从而使难点消化,最终突破难点!
四、学法指导
本节课以学生的观察猜想为主,要求学生多观察,大胆猜想。这要求学生建立在有实物图形的基础上了解平面图形的相关内容.另外,在探索与实践过程中还要体现学生分析问题的能力和良好的口头表达能力。因此,在课堂上主要采取积极引导,主动参与,合作交流的方法来组织教学,使学生真正成为教学的主体,体会成功的喜悦,感知数学的奇妙。
五、教学辅助手段的使用
利用直观形象的图案模型来体现本节内容的知识性与趣味性,使得观察、猜想、讨论与分析一起进行。有利于吸引学生的注意力,激发学生学习与探索的热情。
六、作业设计
p143课后练习相对容易操作,让学生独立完成。但课后练习2,要说出理由,这对学生的语言表达能力有一定的要求,可以首先分成小组讨论。如果感到有难度,可以适当启发引导。
七年级教案数学教案篇4
教学目标 1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点 两个负数大小的比较
知识重点 绝对值的概念
教学过程(师生活动) 设计理念
设置情境
引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.
因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
合作交流
探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?
-3,5,0,+58,0.6
要求小组讨论,合作学习.
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).
巩固练习:教科书第15页练习.
其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.
学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.
结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:
把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?
应怎样比较两个数的大小呢?
学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:
在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.
在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.
要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。
课堂练习 例2,比较下列各数的大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
练习:第18页练习
小结与作业
课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?
本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10
2, 选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.
2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。 教学目标: (1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式; (2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。 教学重点:一元二次不等式的解法(图象法) 教学难点: (1)一元二次方程、一元二次不等式与二次函数的关系; (2)数形结合思想的渗透 教学方法与教学手段: 尝试探索教学法、归纳概括。 教学过程: 一、复习引入 1.复习一元一次方程、一元一次不等式与一次函数的关系 [师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗? 学生可能回答是代数方法,也可能说是利用直线图象。 [师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出y=2x-7 [师]请同学们画出图象,并回答问题。 一次函数y=2x-7的图象如下: 填表: 当x时,y=0,即2x-70; 当x时,y<0,即2x-70; 当x时,y>0,即2x-70; 注:(1)引导学生由图象得出结论(数形结合) (2)由学生填空(一边演示y<0,y>0部分图象) 从上例的特殊情形,你能得出什么结论? 注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b<0)的解集实质上就是使得函数的图象在x轴上方还是下方时x的取值范围。 2.新课导入 [师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢? 二、讲解新课 1、一元二次不等式解法的探索 [师]你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数y=x2-4x+3的图象如下: 填表:方程x2-4x+3=0(即y=0)的解是 不等式x2-4x+3>0(即y>0)的解集是 不等式x2-4x+3<0(即y<0)的解集是 注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y<0部分图象) [师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化? 注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由>0,=0,<0来确定的。 2、讲解例题 [师]接下来请同学们再来分析几个具体例子 (板书)例:解下列各不等式 (1)2x2-3x-2>0; (2)-3x2+6x>2; (3)4x2-4x+1>0; (4)-x2+2x-3>0. 注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。 解:(1)方程2x2-3x-2=0的两根为x1=-或x2=2,(画草图,结合图象) 所以原不等式的解集是{__<-x="">2} 四、课后作业:书P21/习题1.5/1.3.5.6 五、教学设计说明: 1、本节课教学设计力图体现以学生发展为本,遵循学生的认知规律,体现循序渐进的教学原则,通过对原有知识的复习,引导学生类比探索新的知识,激发学生的求知欲望,调动学生的积极性。 2、本节课采用在教师引导下启发学生探索发现,体会解题过程中形结合思想方法,使之获得内心感受。 3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,注重从特殊到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。 4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。 课型:新课:备课人:韩贺敏审核人:霍红超 学习目标:1.理解平行线的意义两条直线的两种位置关系; 2.理解并掌握平行公理及其推论的内容; 3.会根据几何语句画图,会用直尺和三角板画平行线; 学习重点:探索和掌握平行公理及其推论. 学习难点:对平行线本质属性的理解,用几何语言描述图形的性质 一、学习过程:预习提问 两条直线相交有几个交点? 平面内两条直线的位置关系除相交外,还有哪些呢? (一)画平行线 1、工具:直尺、三角板 2、方法:一"落";二"靠";三"移";四"画"。 3、请你根据此方法练习画平行线: 已知:直线a,点B,点C. (1)过点B画直线a的平行线,能画几条? (2)过点C画直线a的平行线,它与过点B的平行线平行吗? (二)平行公理及推论 1、思考:上图中,①过点B画直线a的平行线,能画条; ②过点C画直线a的平行线,能画条; ③你画的直线有什么位置关系?。 ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么? 二、自我检测:(一)选择题: 1、下列推理正确的是() A、因为a//d,b//c,所以c//dB、因为a//c,b//d,所以c//d C、因为a//b,a//c,所以b//cD、因为a//b,d//c,所以a//c 2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为() A.0个B.1个C.2个D.3个 (二)填空题: 1、在同一平面内,与已知直线L平行的直线有条,而经过L外一点,与已知直线L平行的直线有且只有条。 2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系: (1)L1与L2没有公共点,则L1与L2; (2)L1与L2有且只有一个公共点,则L1与L2; (3)L1与L2有两个公共点,则L1与L2。 3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是。 4、平面内有a、b、c三条直线,则它们的交点个数可能是个。 三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°. 教学目标:1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。 2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质 过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。 3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系, 增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。 教学重点:同底数幂乘法的运算性质,并能解决一些实际问题。 教学过程: 一、复习回顾 活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识: 二、情境引入 活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。 三、讲授新课 1.利用乘方的意义,提问学生,引出法则:计算103×102. 解:103×102=(10×10×10)×(10×10)(幂的意义) =10×10×10×10×10(乘法的结合律)=105. 2.引导学生建立幂的运算法则: 将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2. 用字母m,n表示正整数,则有即am·an=am+n. 3.引导学生剖析法则 (1)等号左边是什么运算?(2)等号两边的底数有什么关系? (3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么 (5)当三个以上同底数幂相乘时,上述法则是否成立? 要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加. 三、应用提高 活动内容:1.完成课本“想一想”:a?a?a等于什么? 2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。 3.独立处理例2,从实际情境中学会处理问题的方法。 4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp 四、拓展延伸 活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73 (5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542 2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3 (11)-a·(-a)3(12)(-a)2·(-a)3·(-a) 五、课堂小结 活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。 六、布置作业 1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。 2.完成课本习题1.4中所有习题。 【教学目标】 知识与技能 了解并掌握数据收集的基本方法。 过程与方法 在调查的过程中,要有认真的态度,积极参与。 情感、态度与价值观 体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。 【教学重难点】 重点:掌握统计调查的基本方法。 难点:能根据实际情况合理地选择调查方法。 【教学过程】 一、讲授新课 像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。 调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式。 在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(individual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize)。 例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。 为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。 上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling)。 师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。 学生小组合作、讨论,学生代表展示结果。 教师指导、评论。 师:除了问卷调查外,我们还有哪些方法收集到数据呢? 学生小组讨论、交流,学生代表回答。 师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适? (1)你班中的同学是如何安排周末时间的? (2)我国濒临灭绝的植物数量; (3)某种玉米种子的发芽率; (4)学校门口十字路口每天7:00~7:10时的车流量。 学生讨论,并举手回答。 师:采用何种方法一定要结合实际问题来定。在解决问题(1)的过程中,不但要同学们动手调查,并且对全班所有学生都要调查,像这样对全体对象进行的调查叫做全面调查(普查)。同学们还知道哪些数据的收集需要全面调查吗? 学生讨论,并回答。 生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等。 师:很好!下列问题也适合采用普查方式来收集数据吗? (1)了解某批次炮弹的杀伤半径; (2)某一天全国牛肉的平均价格; (3)一批罐头产品的质量检查; (4)对某条河的河水的污染情况的调查。 学生讨论、分析,并举手回答。 师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。 二、例题讲解 【例】(1)电视台准备在某市调查一电视节目的收视率,需要对所有看电视的人进行全面调查吗?对一所中学学生的调查结果能否作为该节目的收视率? (2)对本年级同学是否喜欢某电视节目调查的结果,能代表学校全体同学的意见吗?如果不适用,应如何改进调查方法? 解:(1)电视台不可能对每个看电视的人进行全面调查。对这?所中学学生的调查结果不能作为该节目的收视率,因为调查对象只有中学生,缺乏代表性; (2)对本年级同学是否喜欢某电视节目的调查结果不能代表 《6。2普查与抽样调查》课时练习 2。下列事件中最适合使用普查方式收集数据的是() A。为制作校服,了解某班同学的身高情况 B。了解全市初三学生的视力情况 C。了解一种节能灯的使用寿命 D。了解我省农民的年人均收入情况 答案:A 解析:解答:A。人数不多,适合使用普查方式,所以A正确; B。人数较多,结果的实际意义不大,因而不适用普查方式,所以B错误; C。是具有破坏性的调查,因而不适用普查方式,所以C错误; D。人数较多,结果的实际意义不大,因而不适用普查方式,所以D错误。 故选:A。 分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似。此题考查了抽样调查和全面调查,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查选用普查。 《6。2普查与抽样调查》基础巩固 1、(知识点1)要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是() A、选取该校一个班级的学生 B、选取该校50名男生 C、选取该校50名女生 D、随机选取该校50名九年级学生 2、(题型二)下列调查适合用抽样调查的是() A、了解义乌电视台“同年哥讲新闻”栏目的收视率 B、了解禽流感H7N9确诊病人同机乘客的健康状况 C、了解某班每个学生家庭电脑的数量 D、“神七”载人飞船发射前对重要零部件的检查 3、(题型三)为了了解某市八年级男生的身高,有关部门准备对200名八年级男生的身高做调查,以下调查方案中比较合理的是() A、查阅外地200名八年级男生的身高统计资料 B、测量该市一所中学200名八年级男生的身高 C、测量该市两所农村中学各100名八年级男生的身高 D、在该市市区任选两所中学,农村任选两所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高 【学习目标】: 1、掌握正数和负数概念; 2、会区分两种不同意义的量,会用符号表示正数和负数; 3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。 【重点难点】:正数和负数概念 【教学过程】: 一、知识链接: 1、小学里学过哪些数请写出来: 2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题: 3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数? 二、自主学习 1、正数与负数的产生 (1)、生活中具有相反意义的量 如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子:。 (2)负数的产生同样是生活和生产的需要 2、正数和负数的表示方法 (1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。 (2)活动:两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. (3)阅读P2的内容 3、正数、负数的概念 1)大于0的数叫做,小于0的数叫做。 2)正数是大于0的数,负数是的数,0既不是正数也不是负数。 【课堂练习题】: 1.P3第1,2题(直接做在课本上)。 2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。 3.已知下列各数:?13,?2,3.14,+3065,0,-239;54 则正数有_____________________;负数有____________________。 4.下列结论中正确的是________() A.0既是正数,又是负数 C.0是最大的负数 【要点归纳】: 正数、负数的概念: (1)大于0的数叫做,小于0的数叫做。 (2)正数是大于0的数,负数是的数,0既不是正数也不是负数。 【拓展训练】: 1.零下15℃,表示为_________,比O℃低4℃的温度是_________。 2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米, 其中最高处为_______地,最低处为_______地. 3.“甲比乙大-3岁”表示的意义是______________________。 4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。 【课后作业】P5第1、2题 教学目的: 1、使学生初步到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识; 2、使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。 教学分析: 重点:加强数学意识; 难点:数学能力的培养。 教学过程: 一、与数学交朋友 1、数学伴我们成长 人来到世界上的第一天就遇到数学,数学将哺育着你的成长。数学知识开阔了你的视野,改变了你的思维方式,使你变得更聪明了。 从生活的一系列人生活动中,我们会逐渐意识到这一切的一切都和数、数的运算、数的比较、图形的大小、图形的形状、图形的位置有关。另外,数学知识开阔了你的视野,改变了你的思维方式,使我们变得更聪明。 2、人类离不开数学 自然界中的数学不胜枚举。 如:蜜蜂营造的峰房;电子计算机等等。 从生活中的常见的天气预报图,从经济生活中的股票指数,到某些图案的组成: 3、人人都能学会数学 数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学。 学好数学要对数学有兴趣,要有刻苦钻研的精神,要善于发现和提出问题,要善于独立思考。 学好数学还要关于把数学应用于实际问题。 二、激发训练 三、作业巩固 教学目标: 1、知识与技能 (1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。 (2)理解有理数的意义,体会有理数应用的广泛性。 2、过程与方法 通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。 重点、难点: 1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。 2、难点:对负数的理解以及正确地对有理数进行分类。 教学过程: 一、创设情景,导入新课 大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数? 学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的. 为了表示一个人、两只手、……,我们用到整数1,2,…… 为了表示“没有人”、“没有羊”、……,我们要用到0. 但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。 二、合作交流,解读探究 1、某市某一天的温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。 现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。 同学们能举例子吗? 学生回答后,教师提出:怎样区别相反意义的量才好呢? 待学生思考后,请学生回答、评议、补充。 教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。 现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。 让学生用同样的方法表示出前面例子中具有相反意义的量: 高于海平面8848米,记作+8848米;低于海平面155米,记作-155米; 教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。 2、给出新的整数、分数概念 引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。 3、给出有理数概念 整数和分数统称为有理数。 4、有理数的分类 为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法? 待学生思考后,请学生回答、评议、补充。 教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。 ●教学目标 1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。 2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。 3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。 ●教学重点与难点 教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。 教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。 ●教学准备 多媒体课件 ●教学过程 一、创设问题情境 1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作__________,B处记作__________。 以O为原点,取适当的单位长度画数轴,并标出A、B的位置。 (用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。 2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。 3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢? 小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。 二、建立数学模型 1、绝对值的概念 (借助于数轴这一工具,师生共同讨论,引出绝对值的概念) 绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记-5=5;5的绝对值是5,记做5=5。 注意:①与原点的关系②是个距离的概念 2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。] (通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。) 三、应用深化知识 1、例题求解 例1、求下列各数的绝对值 -1.6,,0,-10,+10 2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结) 特点:1、一个正数的绝对值是它本身 2、一个负数的绝对值是它的相反数 3、零的绝对值是零 4、互为相反数的两个数的绝对值相等 3.出示题目 (1)-3的符号是_______,绝对值是______; (2)+3的符号是_______,绝对值是______; (3)-6.5的符号是_______,绝对值是______; (4)+6.5的符号是_______,绝对值是______; 学生口答。 师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗? 5、练习3:回答下列问题 ①一个数的绝对值是它本身,这个数是什么数? ②一个数的绝对值是它的相反数,这个数是什么数? ③一个数的绝对值一定是正数吗? ④一个数的绝对值不可能是负数,对吗? ⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗? (由学生口答完成,进一步巩固绝对值的概念) 6、例2.求绝对值等于4的数 (让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。) 分析: ①从数字上分析 ∵+4=4,-4=4∴绝对值等于4的数是+4和-4画一个数轴(如下图) ②从几何意义上分析,画一个数轴(如下图) 因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M 所以绝对值等于4的数是+4和-4. 6、练习:做书上12页课内练习1、2两题。 四、归纳小结 1、本节课我们学习了什么知识? 2、你觉得本节课有什么收获? 3、由学生自行总结在自主探究,合作学习中的体会。 五、课后作业 1、让学生去寻找一些生活中只考虑绝对值的实际例子。 2、课本15页的作业题。 一.教学目标 (1) 使学生进一步理解并掌握判定两条直线平行的方法; (2) 了解逻辑推理过程. 二.教学重点与难点 重点:判定两条直线平行方法的应用; 难点:逻辑推理过程. 三.教学过程 复习提问: 1.判定两条直线平行的方法有哪些? 2.如图(1) (1) 如果∠1=∠4,根据_________________,可得AB∥CD; (2) 如果∠1=∠2,根据_________________,可得AB∥CD; (3) 如果∠1+∠3=1800,根据______________,可得AB∥CD . 3.如图(2) (1) 如果∠1=∠D,那么______∥________; (2) 如果∠1=∠B,那么______∥________; (3) 如果∠A+∠B=1800,那么______∥________; (4) 如果∠A+∠D=1800,那么______∥________; 新课: 例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么? 分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法? 答:这两条直线平行. 如图所示 理由如下: ∵b⊥a,c⊥a ∴∠1=∠2=900(垂直定义) ∴b∥c(同位角相等,两直线平行) 思考: 这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法? 例2 如图所示,∠1=∠2,∠BAC=200,∠ACF=800. (1) 求∠2的度数; (2) FC与AD平行吗?为什么? 巩固练习 1. 教科书19页练习 2. 如图所示,如果∠1=470,∠2=1330,∠D=470,那么BC与DE平行吗?AB与CD平行吗? 3. 如图所示,已知∠D=∠A,∠B=∠FCB,试问ED与CF平行吗? 4. 如图,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出图中互相平行的直线. 作业:教科书19页习题5.2第7、8题 教学目标: 1、通过填写百数表,使学生清楚地了解100以内数的排列顺序,构建数与数之间的关系,深化学生对数概念的理解,培养学生的数感。 2、通过观察,分析百数表,探究100以内数的规律,并培养学生探究的乐趣,发展学生的思维。 教学重点和难点: 1、发现100以内数的排列顺序的一般规律。 2、初步构建数之间的关系,建立数感。 教学过程: 一、创设情境,揭示课题。 由小精灵带来一张藏宝图引出“百数表” 二、解构百数表,探索数的规律。 1、观察百数表,找规律。 出示41页百数表第一、二行所给的数,观察:这些数有什么特点呢?按照这个顺序,你能填出它们之间的数吗? 依次出示两支特殊的数队伍(两个斜行),有什么特殊的地方呢? 剩下的数你能填出来吗?(学生按一定顺序把百数表填完整)。 2、涂色,找规律。 (1)完成41页例4(1)的涂色活动。并交流涂色中发现的规律。 (2)你还发现哪些新的规律了吗? 自己观察,想一想。 和同桌或前后桌小朋友说一说。 全班交流。 3、课堂小结。 三、依据规律,拓展提升。 1、给数找家: (1)34和56 (2)78和45 2、完成41页“做一做” 四、全课总结 这节课,我们学习了什么?你有什么收获? 一、教学目标: 1.知识目标: 使学生理解同类项的概念和合并同类项的意义,学会合并同类项。 2.能力目标: 培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。 3.情感目标: 借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。 二、教学重点、难点: 重点:同类项的概念和合并同类项的法则 难点:合并同类项 三、教学过程: (一)情景导入: 1、观察下面的图片,并将这些图片分类: 你是依据什么来进行分类的呢? 生活中,我们常常为了需要把具有相同特征的事物归为一类。 2、对下列水果进行分类: (二)新知探究1: 1、对下列八个单项式进行分类: a,6_2,5,cd,-1,2_2,4a,-2cd 这些被归为同一类的项有什么相同的特征? 2、揭示同类项的概念。 同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。 《3.4合并同类项》同步练习 1.已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________. 2.若-4_ay+_2yb=-3_2y,则a+b=_______. 3.下面运算正确的是() A.3a+2b=5abB.3a2b-3ba2=0 C.3_2+2_3=5_5D.3y2-2y2=1 4.已知一个多项式与3_2+9_的和等于3_2+4_-1,则这个多项式是() A.-5_-1B.5_+1 C.-13_-1D.13_+1 《3.4合并同类项》测试 1.下列说法中,正确的是() A.字母相同的项是同类项 B.指数相同的项是同类项 C.次数相同的项是同类项 D.只有系数不同的项是同类项七年级教案数学教案篇5
七年级教案数学教案篇6
七年级教案数学教案篇7
七年级教案数学教案篇8
七年级教案数学教案篇9
七年级教案数学教案篇10
七年级教案数学教案篇11
七年级教案数学教案篇12
七年级教案数学教案篇13
七年级教案数学教案篇14
七年级教案数学教案篇15