初一数学教案电子版
编写优秀的教案可以帮助教师更好地完成教学任务,提高教学效果,并激发学生的学习能力和兴趣。下面给大家整理一些初一数学教案电子版,方便大家学习怎么写初一数学教案电子版。
初一数学教案电子版篇1
1、教材分析
(1)知识结构
(2)重点、难点分析
本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现;同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用.
本节内容的难点一是三角形按边分类,很多学生常常把等腰三角形与等边三角形看成独立的两类,而在解题中产生错误.二是利用三角形三边之间的关系解题,在学习和应用这个定理时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”而学生的错误就在于以偏概全;分类讨论在解题中也是学生感到困难的一个地方.
2、教法建议
没有学生参与的教学是不成功的教学,教师为了充分调动主体参与,必须在为学生提供必要的背景知识的前提下,与学生一道探索定理在结构上、应用上留给我们的启示.具体说明如下:
(1)强化能力
新课引入,先让学生阅读教材第一部分,然后通过回答教师设计的几个问题,使学生明确对三角形按边分类,做到不重不漏,其中等腰三角形包括等边三角形,反过来等边三角形是等腰三角形的一种特例.
通过阅读,使学生初步认识数学概念的含义,发现疑难;理解领会数学语言(文字语言、符号语言、图形语言),促进数学语言内化,从而提高学生的数学语言水平、自学能力及交流能力
(2)主动获取
在得出三角形三条边关系定理过程中,针对基础比较好的学生,让学生考虑回忆第
一册第一章中学过的这条公理并给出证明,在这个基础上,让学生把定理的内容叙述出来.(3)激荡思维
由定理获得了:判断三条线段构成一个三角形的一种方法,除了这一种方法外,是否还有其它的判断方法呢?从而激荡起学生思维浪花:方法是什么呢?学生最初可能很快得到“推论”,此时瓜熟蒂落,顺理成章地引出教材中的推论.在此基础上,让学生通过讨论,简化上述两种方法,由此得到下面两种方法.这里,学生若感到困难,教师可适当做提示.方法3:已知线段,(),若第三条线段c满足-c则线段,,c可组成一个三角形.教学中采用这种教学方法可培养学生分析问题探索问题的能力,提高学生对数学知识结构完整性的认识.
(4)加深理解
进行必要的例题讲解和适当的解题练习,以达到熟练地运用定理及推论.从过程中让学生体味到数学造化之神奇.也可适当指出,此定理及推论不仅提供了判定三条线段是否构成三角形的根据,也为今后解决字母取值范围问题提供了有利的依据.
整个教学过程,是学生主动参与,教师及时点拨,学生积极探索的过程,教学过程跌宕起伏,问题逐步深化,学生思维逐步扩展,使学生在愉快、主动中得到发展.
教学目标:
(1)掌握三角形三边关系定理及其推论,会根据三条线段的长度判断他们能否构成三角形;
(2)弄清三角形按边的相等关系的分类;
(3)通过三角形的分类学习,使学生知道分类的基本思想,提高学生归纳概括的能力;
(4)通过三角形三边关系定理的学习,培养学生转化的能力;
(5)通过等边三角形是等腰三角形的特例,渗透一般与特殊的辩证关系.
教学重点:三角形三边关系定理及推论
教学难点:三角形按边分类及利用三角形三边关系解题
教学用具:直尺、微机
教学方法:谈话、探究式
教学过程:
1、阅读新课,回答问题
先让学生阅读教材的第一部分,然后回答下列问题:
(1)这一部分教材中的数学概念有哪些?(指出来并给予解释)
(2)等腰三角形与等边三角形有什么关系?
估计有的学生可能把等腰三角形和等边三角形看成独立的两类.
(3)写出三角形按边的相等关系分类的情况.
教师最后板书给出.
(要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)
2、发现并推导出三边关系定理
问题1:用长度为4cm、10cm、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)
问题2:你能解释上述结果的原因吗?
问题3:任何三条线段都能组成一个三角形吗?满足什么条件时,三条线段可组成一个三角形?
定理:三角形两边的和大于第三边
(发现过程采用小步子原则,让学生在不知不觉中发现数学中的真理)
3、导出三边关系定理的推论及其它两种方法
由前面得到了判断所给三条线段能否组成三角形的一个依据.那么是否还有其它方法呢?请同学们在定理的基础上来找:
估计学生很容易得到推论,让学生用自己的语言叙述,教师稍加整理后给出规范叙述.
推论:三角形两边的差小于第三边
(给每一个学生表现个人数学语言表达才能的机会)
能否简化上面定理及推论?从而得到如下两种判定方法:
(1)、已知线段,(),若第三条线段c满足-c则线段,,c可组成一个三角形.
4、三角形三边关系定理及推论的应用
例1判断题:(出示投影)
(1)等边三角形是等腰三角形
(2)三角形可分为不等边三角形、等腰三角形和等边三角形
(3)已知三线段满足,那么为边可构成三角形
(4)等腰三角形的腰比底长
(本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)
(本例要求学生说出解题思路,教师点到为止)
例3一个等腰三角形的周长为18.
(1)已知腰长是底边长的2倍,求各边长.
(2)其中一边长4,求其他两边长.
这是一道有课堂练习性质的例题,允许学生有3分钟左右的独立思考,允许想出来的同学表达自己的想法,其它同学补充完善.
(数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间)
例4草原上有4口油井,位于四边形ABCD的4个顶点,
如图1现在要建一个维修站H,试问H建在何处,
才能使它到4口油井的距离HA+HB+HC+HD为最小,
说明理由.
本例有一定的难度,给出的方法是解决此类型问题常见的极为简捷的方法,略微构造就可以使用三角形三边关系定理得出答案.
5、小结
本节课我们学习了三角形三边关系的定理和推论,还知道了定理和推论的一系列灵活运用:
(1)判断三条已知线段能否组成三角形
采用一种较为简便的判法:若最短边与较长边的和大于最长边,则可构成三角形,否则不能.
(2)确定三角形第三边的取值范围
两边之差<第三边<两边之和
若时间宽裕,让学生经讨论后自由表述,其他同学补充,自己将知识系统化,以自己的方式进行建构.
6、布置作业
a.书面作业P418、9
b.思考题:1、在四边形ABCD中,AC与BD相交于P,求证:
(AB+BC+CD+AD)<ac+bd<ab+bc+cd+ad<p="">
2、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(提示:由上面方法2,a+b+c>2a又a+b+c<3a得出a的范围,所以可知最多可以由7根火柴棒组成)
初一数学教案电子版篇2
教案
第一章有理数
(1)本周小张一共用掉了多少钱?存进了多少钱?
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
夯实基础
(1)序号为几的零件最接近标准?
④-(-)0.025.
第2课时加法运算律
教学目标:
1.能运用加法运算律简化加法运算.
2.理解加法运算律在加法运算中的作用,适当进行推理训练.
教学重点:如何运用加法运算律简化运算.
教学难点:灵活运用加法运算律.
教与学互动设计:
(一)情境创设,导入新课
思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.
(二)合作交流,解读探究
计算:20+(-30)与(-30)+20两次得到的和相同吗?
得出结论:20+(-30)=(-30)+20
换几组数去试:得到加法交换律:a+b=(学生填).
其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)
计算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出结论:加法结合律:(a+b)+c=.
【例1】计算:
16+(-25)+24+(-35)
【例2】课本P20例3
说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.
总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的&39;数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.
(三)应用迁移,巩固提高
【例3】利用有理数的加法运算律计算,使运算简便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20__)+(-20__)
【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?
(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?
(四)总结反思,拓展升华
本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.
(五)课堂跟踪反馈
夯实基础
1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是()
A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.计算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?
4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)问收工时距A地多远?
(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?
第3课时有理数的减法
教学目标:
1.经历探索有理数减法法则的过程,理解有理数减法法则.
2.会熟练进行有理数减法运算.
教学重点:有理数减法法则和运算.
教学难点:有理数减法法则的推导.
教与学互动设计
(一)创设情景,导入新课
观察温度计:
你能从温度计看出4℃比-3℃高出多少度吗?
学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?
按照刚才观察到的结果,可知4-(-3)=7①,而4+(+3)=7②,∴由①②可知:4-(-3)=4+(+3)③,上述结论的获得应放手让学生回答.
(二)动手实践,发现新知
观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?
结论:减去-3等于加上-3的相反数+3.
(三)类比探究,总结提高
如果将4换成-1,还有类似于上述的结论吗?
先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.
计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2①,
又因为(-1)+(+3)=2②,
由①②有(-1)-(-3)=-1+(+3)③,
即上述结论依然成立.
试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?
让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.
再试:把减数-3换成正数,结果又如何呢?
计算9-8与9+(-8);15-7与15+(-7)
从中又能有新发现吗?
让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.
归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.
减法法则:减去一个数,等于加上这个数的相反数.
用字母表示:a-b=a+(-b).
(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)
(四)例题分析,运用法则
【例】计算:
(1)(-3)-(-5);(2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)总结巩固,初步应用
总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?
教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.
初一数学教案电子版篇3
课型:分析研讨课
教 学 设 计
教学后记
课 题
数据的收集(2)
教
学
目
标
知识与技能
过程和方法
重点、难点
教
学
策
略
教法选择
学法引导
课堂组织形式
教
学
过
程
一、课堂导入
二、分组讨论
三、集体分享
四、课堂调查
五、反思提高
六、课后作业
备注:
<p
初一数学教案电子版篇4
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得。
44x+64=328 (1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业 。教科书第3页,习题6.1第1、3题。
初一数学教案电子版篇5
教 学 设 计
教学后记
课 题
数据的收集(2)
教
学
目
标
知识与技能
让学生经历调查与收集数据的过程,从中体会到数据在解决现实世界的问题中是有用的,学会收集数据,掌握收集数据的方法,利用数据解决问题。
过程和方法
组织学生开展调查,收集自己感兴趣的数据,课堂上集体讨论,在合作探究活动中获取知识,感受知识。
情感、态度与价值观
感兴趣于探究活动,愿意和他人交流,学会表达,学会质疑,逐步养成用数据说话的习惯。
重点、难点
重点:认识数据的重要性,掌握数据收集的方法。
难点:如何收集数据,利用数据来解决问题。
教
学
策
略
教法选择
教师以主持人的身份,开展课堂活动,引导学生独立思考、合作探索、参与交流,发表意见。
学法引导
通过详细阅读课文,联系生活实际,亲身实践、自主探索,了解收集数据的过程、方法和用途并收集数据。
课堂组织形式
课堂活动课:教师引导,学生分组讨论,代表发言学生参与辩论,课堂展开调查,师生共同小结。
教
学
过
程
一、课堂导入
寓言小故事:通过寓言小故事引入教学,使学生的注意力进入到课堂的活动中,调动同学们的学习积极性,认识到数据的收集在生活中是有用的。
二、分组讨论
分小组讨论:把学生分成六个讨论小组,每位同学把自己经历调查所收集到的数据,和小组同学一起讨论,在小组中阐述自己的想法,介绍收集数据的过程和方法,选出有代表性的数据,进行修改认证。
三、集体分享
选派代表发言:每一个讨论小组派一至三位代表把本组有代表性的数据收集公布,阐述调查的问题,数据收集的对象、方法和过程,和同学们一起探讨数据的作用,分享调查的成果。学生或老师提出质疑,共同评价,达成共识。
四、课堂调查
课堂开展调查研究:在分享学生数据收集的基础上,师生合作交流,通过课堂调查,用唱票的方法,了解学生对老师的评价,用数据说话。
五、反思提高
活动过程 小结:对整个数据收集的过程做一个小结,学生发表自己的见解,总结数据收集的方法,了解到实验次数增多对结果产生的影响,明白数据在解决现实生活问题是有用的这个道理。
六、课后作业
1、把收集的数据加以整理,写出一份报告。
2、课本第188页习题5.1第1、2题,可以到其它班级收集数据。
3、阅读课本第189~192页
备注:
初一数学教案电子版篇6
教学目标:
1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。
重点难点:
重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加
教学过程
一激情引趣,导入新课
1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想
2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。
,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。
二合作交流,探究新知
以原点为起点,规定向东的方向为正方向,向西的方向为负方向,一个单位代表1千米
1同号两数相加
小亮从O点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点O出发向_____走了_______千米,用式子表示为_______________.
从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。
同号两数相加,取__________的符号,并把它们的_____________相加。
2异号两数相加
(1)小明先从点O出发,先向东走4千米,发现口袋里的钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点O出发向___走了____千米,用式子表示为_________________________.
(2)小李先从点O出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点O出发,向___走了
_____千米。用式子表达为_______________________.
从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。
异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值
减去_______________的绝对值。
3一个数和零相加,以及互为相反数相加
(1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?
(2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?
从上问题,你发现了什么?把你的结论写在下框中,
互为相反数的两个相加得_______,一个数和零相加,任得____________________.
三应用迁移,拓展提高
例1计算(1)(-8)+(-12)(2)(-3.75)+(-0.25)
(3)(-5)+9(4)(–10)+7
例2计算(1)(-3)+(2)(-)+(-)
例3填空
(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=
四课堂练习,巩固提高
P21
五反思小结巩固提高
有理数的加法法则有哪些?请你把它们写在下面:
1
2
3
4
六作业p24-25A组1-4B1
初一数学教案电子版篇7
教学目标
1.会进行含有括号的整式加减运算。
2.会先进行整式的加减,再求值。
复习旧知识,引入新知识
复习“去括号法则”,请同学们先完成题目1:
教师根据情况分析错误原因,并提醒学生注意括号前面的“—”号。分析:在去括号的运算中,当()前是“-”号时,容易犯的错误是只将第一项变号,而其他项不变。
通过练习题1的分析后,再让学生继续完成练习题2,进行知识强化。(让4个学生出黑板板示,允许其他同学出来修改)
师:前面我们学习了合并同类项、去括号,本节课我们学习整式的加减。进行整式的加减运算,实际上就是做两件事,第一件事是去括号,第二件事是合并同类项。请看例6.
(按去括号、合并同类项两步先让生尝试)
师:通过上面的学习,你能说出整式加减的基本运算步骤吗?
每一步应注意什么?
让学生观察例题的过程,找出解题的路径。
试探练习,回授调节
师:请学生4人出黑板板示,其他同学在自己座位上迅速完成,作好改错准备。
生:在自己座位上独立完成?
板示学生返回座位后,发现有错误的学生可出黑板改正。
师:提问学生,要求说出错误在什么地方,并加以改正。
学生练习,老师巡查并指导。
学生多数会漏写括号。
师:在这几个整式相加或相减时,为什么要加上括号
生:思考回答?
师:观察本例,并说出本例与之前练习有什么区别?
生:此例最后给出x、y的值,要求多项式的值。
师:请用两种方法做一做,并比较哪一种方法简单些?
学生通过比较,都会认为先化简,后求值较为简单些。
教师再板书规范的书写过程。
通过本题的解答,让学生进一步熟练整式加减法的一般解题步骤,让学生先化简再求值,并培养学生规范的解题格式。
学生练习,教师巡查指导,及时提醒出现差错的学生改正。注意不同层次学生的积极性的调动,使每个学生都参与到训练中来,积极动脑、动手,同时教师对差生进行指导和鼓励。
初一数学教案电子版篇8
学习目标
1.理解有序数对的应用意义,了解平面上确定点的常用方法
2.培养用数学的意识,激发学习兴趣.
学习重点: 理解有序数对的意义和作用
学习难点: 用有序数对表示点的位置
学习过程
一.问题导入
1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案.
2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?
二.概念确定
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)
利用有序数对,可以很准确地表示出一个位置。
1.在教室里,根据座位图,确定数学课代表的.位置
2.教材40页练习
三.方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.如图,A点为原点(0,0),则B点记为(3,1)
2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km处。
例2如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
[巩固练习]
1.如图是某城市市区的一部分示意图,对市政府来说:
北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?
结合实际问题归纳方法
学生尝试描述位置
2.如图,马所处的位置为(2,3).
(1)你能表示出象的位置吗?
(2)写出马的下一步可以到达的位置。
[小结]
1.为什么要用有序数对表示点的位置,没有顺序可以吗?
2.几种常用的表示点位置的方法.
[作业]
必做题:教科书44页:1题
初一数学教案电子版篇9
教学目标:
1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.
2、能用符号语言写出一个命题的题设和结论.
3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.
教学重点:证明的步骤与格式.
教学难点:将文字语言转化为几何符号语言.
教学过程:
一、复习提问
1、命题“两直线平行,内错角相等”的题设和结论各是什么?
2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)
3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)
二、例题分析
例1、 证明:两直线平行,内错角相等.
已知:a∥b,c是截线.
求证:∠1=∠2.
分析:要证∠1=∠2,
只要证∠3=∠2即可,因为
∠3与∠1是对顶角,根据平行线的性质,
易得出∠3=∠2.
证明:∵a∥b(已知),
∴∠3=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
例2、 证明:邻补角的平分线互相垂直.
已知:如图,∠AOB+∠BOC=180°,
OE平分∠AOB,OF平分∠BOC.
求证:OE⊥OF.
分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.
三、课堂练习:
1、平行于同一条直线的两条直线平行.
2、两条平行线被第三条直线所截,同位角的平分线互相平行.
四、归纳小结
主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.
五、布置作业
课本P143 5、(2),7.
六、课后思考:
1、垂直于同一条直线的两条直线的位置关系怎样?
2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?
3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?
初一数学教案电子版篇10
教学目标:
1、明白生活中存在着无数表示相反意义的量,能举例说明;
2、能体会引进负数的必要性和意义,建立正数和负数的数感。
重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。
难点:对负数的意义的理解。
教学过程:
一、知识导向:本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。
二、新课拆析:1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。如:0,1,2,3,…,,
2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。
如:汽车向东行驶3千米和向西行驶2千米
温度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米;3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的`数(零除外)前面放上一个“—”号来表示。
如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C概括:我们把这一种新数,叫做负数,如:-3,-45,…过去学过的那些数(零除外)叫做正数,如:1,2.2…零既不是正数,也不是负数例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-,0,-11,+123,…
三、阶梯训练:P18练习:1,2,3,4。
四、知识小结:
从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。
五、作业巩固:
1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;2、分别举出几个正数与负数(最少6个)。3、P20习题2.1:1题。
初一数学教案电子版篇11
一、教学内容:
人教版教材五年级上册第五单元多边形的面积整理与复习
二、教学目标:
1、使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。
2、使学生感受数学方法和思想的重要性及其应用的广泛性。体会数学的价值,培养对数学学习的热爱
三、教学重、难点
重点:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。
难点:引导学生整理多边形面积的.推导过程,掌握转化的数学思想方法,建构知识网络。
四、教学准备:多媒体课件,多边形纸模
五、教学步骤与过程
(一)导入复习
师:同学们,我们学过哪些平面图形的面积计算公式?(正方形、长方形、平行四边形、三角形、梯形)
师:这节课我们就来重点整理和复习有关这些多边形的面积的知识。
板书课题:多边形面积计算复习课
(二)回顾整理,建构网络
1.复平行四边形、三角形、梯形面积公式的推导过程。
⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。
⑵根据学生的回答,出示每个公式的推导过程。
六、课堂练习
学生独立计算。指名学生板演,集体订正七、说一说,你学会了什么?从整理图中能看出各种图形之间的关系吗?
七,作业布置:练习十九
板书设计
S=ah÷2
S=abS=ah
S=(a+b)h÷2
初一数学教案电子版篇12
【教学目标】
知识与技能
1、理解三种统计图各自的特点、
2、根据不同的问题选择适当的统计图、
过程与方法
1、训练学生作图的技能、通过数据处理体会统计对决策的作用、
2、能够根据实际问题,选择适当的统计图清晰、有效地展示数据、
3、能从条形统计图、折线统计图、扇形统计图中获取信息、
情感、态度与价值观
统计图是展示数据的重要方法,它也经常出现在媒体上、通过对三种统计图的认识、制作和选择进一步培养学生对数据处理的能力及统计观念,使学生深刻体会到数学和我们的社会、生活密切相关、
【教学重难点】
重点:
1、了解不同统计图的特点、
2、根据实际问题选择合适的统计图,培养统计观念、
难点:
1、根据实际问题选择合适的统计图、
2、制作三种统计图并会从中获取有用的信息、
【教学过程】
一、创设情境,引入新课
师:在我们日常所接触的报刊、杂志及电视中,我们会经常见到一些统计图、最近,我在一本百科全书上就遇到了这样的情况:
我们知道地球上有人类生存至少已有200万年的历史、在相当长的.一段时间内,地球上的人口数量并不是很多,因为出生的人口和死亡的人口大致持平、然而随着农业耕作水平的不断提高和医疗条件的不断改善,世界人口开始急剧增加、目前,世界人口已超过70亿,平均每4天要出生100万以上的婴儿、在世界上的许多地方,人口的过快增长已造成了一系列严重的问题,例如食品短缺和城市过分拥挤等、
下面我们来看两幅统计图,了解一下世界人口在各大洲的百分比分布及世界人口增长的状况,也许能让我们很好地了解世界人口的状况、
课件出示相关图示、
师:你会从世界人口增长图中获得哪些信息呢?在哪一段时间,世界人口的增长率变化不大?在哪一段时间,世界人口就翻了一番?20__年,世界人口预测将达到多少?
生:从世界人口增长图中,我们可以看到公元1500年,人口达4.25亿;在公元1800年以前世界人口增长率的情况变化不大;但从公元1800年起,世界人口就开始迅速增长、当时医疗条件得到了改善,粮食产量增加以及工业革命的影响,世界人口才开始迅速增长、
师:这位同学回答得很好!从世界人口增长的情况还能联系到当时的历史背景,看来我们的统计图不仅是数据的展现,而且还是历史背景的再现、
生:从统计图中,我们还看到1950年~1990年这段时间人口翻了一番,而且从图上还可以预测出20__年世界人口将达到85亿、
师:我们再接着分析“世界人口的百分比分布图”、这是一个什么形式的统计图?
生:扇形统计图,条形统计图、
师:这个统计图是在扇形统计图的基础上综合改造得到的根据这个统计图你又能得到何种信息呢?扇形统计图反映的是世界人口在七大洲的分布吗?联系我们前两节课学的内容,同学们可针对这个统计图讨论交流、
(教师此时可参与到学生的讨论中,看同学们如何认识这个统计图、从统计图中得到的信息是否准确、根据学生讨论交流的情况进行讲评、)
生:扇形统计图是地球陆地面积分布统计图,条形统计图才是相应各大洲人口占世界人口的百分比、由此我们可以看出人口在地球上的分布是不均匀的,像亚洲陆地面积占地球陆地总面积的29.3%,可人口却占世界人口的63%;而北美洲陆地面积占地球陆地总面积的16.1%,人口只占世界人口的6.9%;南极洲陆地面积占地球陆地总面积的9、3%,那个地方却由于气候、地理位置等不同成为无人区、所以有些地区自然条件很差,人口很少,而有些地区土地肥沃,交通方便,人口相对集中、
师:很好!同学们已经能用数学中统计的眼光去观察、分析我们生存的这个世界、现在我们再来看某家报刊公布的反映世界人口情况的数据、
二、讲授新课
师:请同学们观察下面的统计图,你能尽可能的获取信息吗?
生1:从统计图中,我们可知50年后,世界人口将达到90亿、
生2:我们还可以看到从__年到20__年世界人口的变化情况、
生3:从__年到__年,世界人口由30亿增加到40亿;从__年到__年,世界人口由40亿增加到50亿;__年到__年由50亿增加到60亿、由此预测__年到__年世界人口从?
6、4、1统计图的选择:课后作业
(20__·武汉)为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍、如果没有喜欢的书籍,则作“其他”类统计、图①与图②是整理数据后绘制的两幅不完整的统计图、以下结论不正确的是()
A、由这两个统计图可知喜欢“科普常识”的学生有90人
B、若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人
C、由这两个统计图不能确定喜欢“小说”的人数
D、在扇形统计图中,“漫画”所在扇形的圆心角为72°
《6、4统计图的选择》同步练习
基础巩固
1、(题型一)用条形统计图表示的数据可以转换成()
A、扇形统计图
B、折线统计图
C、扇形统计图和折线统计图
D、既不能表示成扇形统计图也不能表示成折线统计图
2、(题型三)甲、乙两人参加某体育项目训练,为了便于研究,把最后5次的训练成绩分别用实线和虚线连接起来,如图6—4—1,下面的结论错误的是()
A、乙的第2次成绩与第5次成绩相同
B、第3次测试,甲的成绩与乙的成绩相同
C、第4次测试,甲的成绩比乙的成绩多2分
D、在5次测试中,甲的成绩都比乙的成绩高
初一数学教案电子版篇13
一、教学目标:
⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。
⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。
⑶体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。
二、教学重点、难点:
余角与补角的性质
三、教学过程:
复习、引入:
⑴复习角的定义。你知道有哪些特殊的角?
⑵用量角器量一量图中每组两个角的.度数,并求出它们的和。
你有什么发现?
新课:
由学生的发现,给出余角和补角的定义(文字叙述)。
并且用数学符号语言进行理解。
问题1:如何求一个角的余角和补角。
①∠1的余角:90°-∠1
②∠α的补角:180°-∠α
练习:填表(求一个角的余角、补角)
拓广:观察表格,你发现α的余角和α的补角有什么关系?
如何进行理论推导?
结论:α的补角比α的余角大90°
α一定是锐角
钝角没有余角,但一定有补角。
初一数学教案电子版篇14
尊敬的各位领导、老师:
大家好!
今天我说课的课题是有理数的加法。本节课选自湖南教育出版社出版的数学七年级(上)第一章第四节第一课时的内容。下面我就从教材分析、教法学法、教学程序和教学反思四个方面向大家介绍我对本节课的理解与设计。
教材分析
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础、有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。
就本章而言,有理数的加法是本章的重点。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习。
(二)教学目标
1、知识与能力目标:
(1)了解有理数加法的意义。
(2)理解并掌握的有理数加法的法则,并会运用法则进行准确运算,提高学生的运算能力。
2、过程与方法目标:
(1)经历法则探索的过程,培养学生归纳总结知识的能力。
(2)体验初步的算法思想。(转化)
(3)在探索过程中感受数形结合和分类讨论的数学思想。
(4)渗透由特殊到一般的唯物辩证法思想。
3、情感与态度目标:
(1)让学生体会到数学知识来源于生活,服务于生活,培养学生对数学的热爱。
(2)培养学生协作意识,体验成功,树立学习自信心。
(三)教学重点、难点:
重点:理解和运用有理数的加法法则。
难点:异号两数相加的法则。
教法与学法
我在本节课主要采用“引导——发现教学法”,并借助多媒体课件来展开教学。学生主要采用“合作探究学习法”来学习本节内容。
教学程序:
我采用的教学模式分为“引——探——结——用”四个环节。
(一)、引出课题(2分钟)
例如,足球比赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。
如果,红队进4个球,失2个球;蓝队进1个球,失1个球。则红队的净胜球数为4+(-2),
蓝队的净胜球数为1+(-1)。
这里用到正数和负数的加法。
那么,怎样计算4+(-2)呢?
此环节大约2分钟。
(二)、探索规律、得出法则。(15分钟)
现规定正能量为正,负能量为负。
(1)若两个好人携带正能量分别为+20、+30,
则相加的结果是()。
写成算式:(+20)+(+30)=()
(2)若两个坏人携带负能量分别为—20、—30,
则相加的结果是()。
写成算式:(—20)+(—30)=()
这两个算式,运算有什么特点呢?
同号两数相加,好比作同伙人:正数+正数,正能量增大;
负数+负数,负能量增大。
最后概括为①定符号;②把绝对值相加。
(3)若一个好人携带正能量+30一个坏人携带负能量—10。
则两人较量的结果是()赢,还剩()能量。
写成算式:(+30)+(—10)=()。
(4)若一个好人携带正能量+20一个坏人携带负能量—40。
则两人较量的结果是()赢,还剩()能量。
写成算式:(+20)+(—40)=()。
这组算式,运算有什么特点呢?
异号两数相加,好比两人在打仗,谁的力量强大,谁就赢。如果正能量大,符号就定为正;如果负能量大,符号就定为负,又让学生理解两人打仗,彼此力量会彼此抵消,彼此消损。那么赢的一方还剩多少能量呢?故而把绝对值做减法。强调用大的绝对值减去小的绝对值。
最后概括为①定符号;②把绝对值相减。
再看两种特殊情形:
(5)若一个好人携带正能量+30,一个坏人携带负能量—30。则两人较量的结果是(),还剩()能量。
写成算式:(—30)+(+30)=()。
(6)20+0=()0+(—15)=()
新课程倡导让学生从“要我学”向“我会学”转变,而教师是学生学习的组织者、引导者和合作者。由于教材上利用数轴和绝对值来探究法则过于抽象,不易引起学生的兴趣。借鉴之下,我选用了学生感兴趣的卡通动画人物,激发学生的学习兴趣,营造一种轻松愉快的学习氛围;我让学生来当裁判,学生必须把6次的情况都完成后,才能得到结果,这样每个学生的注意力一直会很集中。若学生有困难,则小组内探讨交流、补充,让学生能逐步引导概括出有理数的加法法则。上述过程,大约20分钟的时间,将突出重点,突破难点。
(三)小结(3分钟)
有理数的加法法则
1、同号两数相加:
取加数的符号,并把绝对值相加。
2、异号两数相加:
取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得0。
4、一个数同零相加:仍得这个数
(四)、用
1、加深理解,巩固法则。(5分钟)
(1)填表
(2)思考:在进行有理数加法运算时,应分几步完成?
此题的设计是为了学生更好地理解、掌握有理数加法法则。同时,让学生知道,凡是有理数运算都要首先确定结果的符号。学生独立完成表格后,我将解题步骤,分步板书在黑板上,让学生对解题格式引起重视。
2、变式训练,应用法则。(15分钟)
数学家皮亚杰认为:“不断的训练才能够逐渐的发展出一个合理的数学模型”。练习和科学的重复练习始终是数学学习的有效办法。为了让学生熟练应用法则准确计算,我设计了2个例题、例1是同号两数相加;例2是异号两数相加。这两种最典型的类型,以起到巩固法则和规范格式的&39;作用。我让学生尝试独立完成,让基础组的学生板演后,并让别的学生找错误,这样充分调动了学生的积极性,活跃了课堂气氛。同时,通过学生纠错的过程,让学生对错误加深记忆,将知识转化为技能。
3、小组闯关,检测目标。(5分钟)
在新课程下,教学的本质是学习活动,学生是否有效的学习,教学目标是否落实到位,检测目标成为一节课的一个重要环节。
我设计了两个闯关小游戏。一个是学生口答抢答,另一个是男生出题女生抢答,反之女生出题男生抢答,通过男女同学竞争中巩固、应用法则。
初一数学教案电子版篇15
学习目标:
1、会进行包括小数或分数的有理数的加减混合运算。
2、熟练地进行有理数加减混合运算,并利用运算律简化运算。
3、会比较“加减法统一为加法”与“省略加号的代数和”两种计算形式。
学习重难点:
1、准确迅速地进行有理数的加减混合运算,加减运算法则和加法运算律。
2、减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。
学习过程:
任务一:温故知新
1、完成课本44页习题2、7的第1、2题,写在作业本上。
2、6有理数的加减混合运算》课时练习
一、选择题(共10题)
1、下列关于有理数的加法说法错误的是()
A、同号两数相加,取相同的符号,并把绝对值相加
B、异号两数相加,绝对值相等时和为0
C、互为相反数的两数相加得0
D、绝对值不等时,取绝对值较小的数的符号作为和的符号
答案:D
解析:解答:D选项应该是有理数相加时,如果绝对值不等时,取绝对值较小的数的&39;符号作为和的符号
分析:考查有理数的的加法法则
《2、6有理数的加减混合运算》同步练习
2、有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?
3、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5
这10名学生的总体重为多少?10名学生的平均体重为多少?