教案吧 > 学科教案 > 数学教案 >

数学教案万能模板表格下载

时间: 新华 数学教案

教案可以帮助教师有计划地安排教学内容和方法,确保课堂上教学活动的有序进行,避免出现混乱和无效性。怎样写数学教案万能模板表格下载?这里提供数学教案万能模板表格下载分享,供大家参考。

数学教案万能模板表格下载

数学教案万能模板表格下载篇1

教学目标

知识性目标

1、通过观察、操作,初步认识轴对称现象,了解对称的一些简单特点。

2、认识对称轴,能正确找、画对称图形的对称轴,会利用对称的性质完成对称图形的绘制。能力目标

3、通过学生活动,发展学生的空间观念,培养学生的观察、动手操作能力。

4、培养学生合作意识,能够与他人交流思维过程和结果。态度情感价值观目标

5、通过对生活事物及相应图形的欣赏,感受对称图形的美,感受数学与生活的密切联系,陶冶情操。

教学重点感知对称,识别对称图形。教学难点找出图形的对称轴。

教学准备多媒体课件;剪好的对称图形;长方形;正方形;圆;剪刀;彩纸;直尺;水彩笔。教学过程

一、创设情景,引入课题。1、老师给大家带来了一个小故事,想听吗?(多媒体播放故事)2、小蝴蝶为什么说在图形王国里它们三个是一家的呢?这节课我们就来研究这个问题。

二、探究新知,认识对称图形。1、请同学们观察一下这三个图形,它们有一个共同的特点,你发现了吗?(它们的左右两边都是一样的)2、你怎么知道它们的左边和右边是一样的?(看出来的。)小朋友们真能干,是看出来的。对呀,观察是学习的一种好方法。3、除了观察,你还可以怎样证明呢?(可以将它们对折)同学们,老师给大家准备了一些图形,请打开老师给你们的信封,拿出这些图片,亲自动手折一折,看一看。(学生通过折一折的方法,体会蝴蝶、蜻蜓、树叶左右形状一样)你们对折过后,你发现了什么?4、揭示课题:像这样对折后完全重合的图形在数学上我们称为对称图形。(板书:对称图形)。我们生活中有很多图形是对称的,我们一起来欣赏欣赏吧。(多媒体展示对称图形)欣赏了这么多的对称图形,你觉得这些图形怎么样呀?

三、认识对称轴,找、画对称轴。1、请同学们观察一下自己手中的作品,打开,你发现了什么?(纸的中间的一条折痕)你们知道数学家们给这条线取个什么名字吗?这条线叫做这个图形的对称轴。(板书:对称轴)2、对称轴把对称图形分成了完全相等的两部分。请你摸一摸你的图形的对称轴,看一看,再用虚线把它画出来。3、生活中,你们还看到过哪些东西是对称的?4、生活中的对称图形可真多呀,你能用剪刀剪一个对称图形吗?请同方的同学商量商量,怎样才能剪出一个对称图形。谁来说一说,怎样才能剪出一个对称图形?5、引导学生明确剪对称图形的方法。要剪出一个对称图形,可以先把纸进行对折,然后再剪,最后沿对折的地方打开,就形成了一个对称图形。你想剪什么?说一说吧。试一试吧,比一比谁剪的对称图形最美。剪好后把对称轴画出来,再展示在黑板上。

四、拓伸延展,深化认识。1、老师给大家带来了一些图形,请同学们来找一找,哪些是对称图形,哪些不是,是对称图形的找出它的对称轴。(多媒体出示图形)2、长方形、正方形还有圆都是对称图形,请你们折一折,找一找,画出它们的对称轴。3、小结:通过刚才的折和画我们知道有些图形只有一条对称轴,有些图形有很多条对称轴。4、老师还给同学们带来了几个朋友,想认识它们吗?它们还不好意思,把脸藏起来了一半,你们能猜出它们吗?

五、小结回顾。这节课我们学习了什么?什么样的图形是对称图形?把对称图形分成完全一样的两部分的那条线叫做什么?我们生活中有很多对称图形,小朋友们都说对称图形很美,只要我们善动脑,勤思考,多动手就一定能用对称图形把我们的生活装扮得更美好。

数学教案万能模板表格下载篇2

一、设计思想

本节课是一节计算课,传统的计算教学是枯燥乏味的,为了打破传统的计算教学方法,突出新的教学理念,在教学时,我根据学生已有的生活经验,以湖塘的大香林桂花节为背景,让学生在生动具体的生活情境中理解、感受知识的发展过程,体验、经历多位数乘一位数(不进位)的计算过程,通过独立思考、合作交流,自主探索算法的多样化,并注意培养学生解决实际问题的能力。本节课的教学设计有这样几个特点:

1、从学生已有的生活经验入手,注意知识的迁移。

2、通过合作交流,突现学生的主体性,实现算法的多样化。

3、设计多种练习,培养学生的数学应用意识。

二、教材分析

两位数乘一位数不进位的乘法,是学生在掌握了整百、整十数乘一位数口算的基础上,探讨每一数位上的积都不满十的任意两、三位数乘一位数的计算方法,并引出乘法竖式的书写格式。通过计算使学生懂得任意两、三位数乘一位数,都是把这个数每一位上的数分别乘这个一位数,再把所得的积相加。这一内容是本单元的教学重点,因为它体现了多位数乘法的基本算理和算法,掌握了它,多位数乘法就可以在此基础上迁移、类推。而且两位数乘一位数的熟练程度还会影响到除数是两位数的除法试商的准确率和速度。因此,一定要让学生掌握好这部分知识。

三、学情分析

学生在学习本课之前,一般是不会列出乘法笔算竖式的,许多学生都会利用口算的方法来解决问题。笔算竖式是计算的通法,是学生今后进一步学习多位数乘法的基础。因此,教师应有意识地引导学生列出乘法竖式。刚开始用竖式计算的时候,有的学生可能会从高位算起,这时教师不必急于去纠正,这个问题可以留待以后学习进位乘法时再加以解决。

四、教学目标

1、使学生经历多位数乘一位数(不进位)的计算过程,体验计算方法的多样化。

2、初步学会乘法竖式的书写格式,了解竖式每一步计算的含义,理解并掌握其计算方法。

3、培养学生独立思考、合作交流的学习方法和积极的学习态度,同时让学生体会数学知识与现实生活的密切联系。

五、重点难点

重点:探索并掌握两位数乘一位数的笔算方法及乘法竖式书写的格式,并能正确计算。

难点:使学生学会乘法竖式的书写格式,理解并掌握其计算法则。

六、课前准备

教学挂图

七、教学过程

一、创设情境,提出问题

小朋友们,金秋十月,丹桂飘香,我们家乡美丽的大香林景区又迎来了一年一度的桂花节。十一长假,小明一家也来到了大香林,他们买了3张门票,每张30元。请问:一共要付多少钱?怎么解决这个问题?(30×3)为什么用乘法计算?(因为是求3个30)怎样计算?(复习整十数乘一位数的口算方法。)

师:景区内真是人山人海!入口处,3辆电动车正忙着把游客载往桂花林,(出示挂图)请小朋友仔细观察,说一说图上都告诉了我们什么?(有3辆电动车,每辆电动车上最多可以坐12名游客。)根据这些信息,你想提一个什么问题呢?(3辆车一共可以坐多少名游客?)板书问题。

二、自主探索,解决问题

1、先请小朋友估计一下,3辆车大约可以坐多少名游客?

2、师:如果我们要知道准确的人数,该怎么办呢?

怎样算一共可以坐多少人?(12×3)

为什么用乘法计算?(因为是求3个12是多少)

3、探讨交流

1)12×3等于几?你想怎样计算?写在草稿本上。

2)学生独立思考,请不同算法的学生板演。

3)学生在小组内讨论、交流算法。

4)请板演的学生给大家介绍自己的算法。

方法1用加法算:12+12+12=36

方法2口算:10×3=30 2×3=6 30+6=36

方法3:列竖式 1 2

× 3

3 6

4、数形结合,理解算理。

师指着竖式问:大家看懂了吗?6怎么来的?为什么写在个位上?表示什么?十位上的3怎么来?表示什么?

有这么多种算法,它们之间肯定是有联系的。这个6在第二种算法里表示什么?你能在图中把它圈出来吗?

出示: ○○○○○○○○○○ ○○

○○○○○○○○○○ ○○

○○○○○○○○○○ ○○

"3" 你能圈出来吗?

5、强调竖式的写法,师生共同完成,师边讲解边板书。

12×3=36,在写竖式时,先写第一个因数12,再写乘号,然后写第二个因数3,注意3要写在哪儿?乘的时候,要先从个位乘起,用3和个位上的2相乘得几?6写在哪儿?表示什么?乘完没有?还要再用3乘十位上的1,得3。这个3表示什么?要写在什么位上?现在竖式算完没有?如果百位上还有数,还要怎么样?乘得的积要写在(百位上)。小朋友们请看,在乘法竖式里,12叫什么?3呢?最后乘得的结果36就是它们的(积)。竖式算完了,一定要记住在横式上写出得数。这道题的单位是什么?一起口答。

6、揭示课题:刚才我们在计算12×3等于几时,不但可以用口算的方法,而且还探讨了用竖式来计算,这就是我们今天新学的笔算乘法。

板书课题:笔算乘法(齐读课题)

三、反馈练习,巩固新知。

1、做一做

3 2 3 1 2 3

× 2 × 2 × 2

学生独立完成。

师:你发现这3道题最大的区别是什么?(第一个算式,第一个因数是1位数;第二个算式,第一个因数是2位数;第三个算式,第一个因数是3位数。)

这3道题之间有什么联系?(先乘个位,再乘十位,最后乘百位,这是笔算乘法的基本方法。)

2、小明一家乘着电瓶车来到了桂花林,他们看见路边放着许多花。每一边都放了342盆,两边共放多少盆?

你能列式解答吗?是怎样计算出结果的?和同桌说一说。

指名汇报。

3、小明一家去了钓鱼池钓鱼,小明和妈妈分别钓了14条鱼,爸爸钓了16条,一家人一共钓了多少条鱼?

4、小朋友真能干!现在老师要考考大家,难一点的题目会不会做?

□ 2 □ 2 □ □

× 3 × □

□ □ 9 8 □ □

师:看清题目中隐含的条件。第1题你会先解决哪一个数?接着填哪一位?还有不同填法吗?

师:第2题你会先填哪一位?为什么?

5、小明一家在大香林游玩了一圈,要回家了。小明想给阿姨家的2个妹妹带一件纪念品回去。妈妈给了小明50元钱,让小明自己挑选礼物。(出示图片:木挂件11元/个,竹水枪22元/支,风箱24元/只),小明会挑什么礼物?一共要花多少钱?还有钱多吗?多多少?

四、全课总结

这节课你有什么收获?

八、板书设计

笔算乘法

3辆车一共可以坐多少名游客?

12×3=36(名)

1 2……因数

× 3……因数

3 6……积

九、问题探讨

1、教学中,教师是否能够充分放手,让学生独自经历探索多种算法和与他人交流的过程,享受成功的快乐?

2、学生是否真正懂得了乘法竖式中每一步计算的含义?

十、作业设计

1、先说一说计算顺序,再计算。

3 1 1 2 2 4 1 3 1 1 2

× 3 × 4 × 2 × 4

2、解决问题。

(1)黄花有32朵,红花的朵数是黄花的2倍。红花有多少朵?一共有花多少朵?(2)三年级有3个班,2个班都是42人,另一个班有45人。三年级一共有多少人?

3、你能写出多少两位数乘一位数和三位数乘一位数的不进位乘法算式?并计算出结果。比一比,看谁写得又快又多。写好后,同桌互相交流。

两位数乘一位数的不进位乘法:

三位数乘一位数的不进位乘法:

你还能写出多位数乘一位数的不进位乘法算式吗?

数学教案万能模板表格下载篇3

【教材分析】

本节课是青岛版小学数学四年级上册第六单元《快捷的物流运输—解决问题》信息窗中第二个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。因为相遇问题牵扯到两个物体的运动情况,其中的数量关系比较复杂,学生理解起来有一定困难,因此学生要首先理解和掌握速度、时间和路程三者的关系,然后在此基础上,创设他们感兴趣的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动经验。

【教学目标】

1、         在具体情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。

2、         在解决问题的过程中,经历“发现问题----提出问题----分析问题----解决问题”的过程,积累数学活动经验。

3、         在合作交流中体验学习的乐趣,培养学习数学的积极情感。

【重点】

用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。

【难点】

理解“相遇问题”的基本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。

【教具】

多媒体课件,两个能在一条线上自由活动的小人。

【教学过程】

一、       情境导入,复习旧知

谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。

ppt出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。

根据这个信息,你能提出什么问题吗?

ppt出示:刘老师家距离人民公园有多远?

你会解决吗?

ppt:60×5=300(米)

这60表示什么?5呢?300呢?

通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。

今天我们就在这个关系式的基础上来研究点新问题,好不好?

二、       合作探究,构建数学模型

1、初步感知相遇问题

ppt出示例题:小明和李老师同时从家出发相对而行,小明步行每分钟走60米,李老师骑自行车,每分钟骑行140米,5分钟后他俩在人民公园相遇。小明家和李老师家相距多少米?

同学们自己读题。在这个题目中有没有你不太理解的词,将它找出来。你觉得这几个词(同时、相对而行、相遇、相距)是什么意思?

预设:让学生用语言或者肢体动作来解释这几个词的含义。

把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。

【设计意图】

此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。

2、合作演绎相遇问题

现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。

学生活动,教师巡视。

(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?

预设:出现相遇点在中间和相遇点不在中间两种情况。

【设计意图】

通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。

3、理解速度和

老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:

一分钟后他俩分别走了多少?一共走了多少?

两分钟后他俩又走了多少?一共走了多少?

三分钟?四分钟?五分钟呢?

【设计意图】

通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。

4、画线段图

你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?

投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?

学生补充和完善自己的线段图。

师出示课件演示画线段图的过程。

5、自主解决问题

你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。

找2生板书2种方法,点评。

回顾这两种方法,我们是怎么解决相遇问题的?

小结:方法1:路程1+路程2=总路程

方法2:速度和×相遇时间=总路程

6、体会线段图的好处

对比题目文字和线段图,你有什么感觉?

小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。

三、       巩固练习,拓展应用

1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)

2、

数学6制4上打样_页面_087

两队分别从两头同时施工,4个月开通。这条隧道长多少米?(只列式不计算)

3、两人同时打印一份稿件,甲的打字速度是85字/分,乙的打字速度是65字/分。1小时后两人共同录完。请问这份稿件一共多少字?(只列式不计算)数学6制4上打样_页面_087

刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?

小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。

四、       总结

这节课你有什么收获?学会了什么?

数学教案万能模板表格下载篇4

指数与指数幂的运算教案

整体设计

教学分析

我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.

教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.

本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.

根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.

三维目标

1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.

2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.

3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.

4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.

重点难点

教学重点

(1)分数指数幂和根式概念的理解.

(2)掌握并运用分数指数幂的运算性质.

(3)运用有理指数幂的性质进行化简、求值.

教学难点

(1)分数指数幂及根式概念的理解.

(2)有理指数幂性质的灵活应用.

课时安排

3课时

教学过程

第1课时

作者:路致芳

导入新课

思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.

思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.

推进新课

新知探究

提出问题

(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?

(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?

(3)根据上面的结论我们能得到一般性的结论吗?

(4)可否用一个式子表达呢?

活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.

讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.

(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.

(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.

(4)用一个式子表达是,若xn=a,则x叫a的n次方根.

教师板书n次方根的意义:

一般地,如果xn=a,那么x叫做a的n次方根(nthroot),其中n>1且n∈正整数集.

可以看出数的平方根、立方根的概念是n次方根的概念的特例.

提出问题

(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).

①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.

(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?

(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?

(4)任何一个数a的偶次方根是否存在呢?

活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.

讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.

(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.

(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.

(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.

类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:

①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

③负数没有偶次方根;0的任何次方根都是零.

上面的文字语言可用下面的式子表示:

a为正数:n为奇数,a的n次方根有一个为na,n为偶数,a的n次方根有两个为±na.

a为负数:n为奇数,a的n次方根只有一个为na,n为偶数,a的n次方根不存在.

零的n次方根为零,记为n0=0.

可以看出数的平方根、立方根的性质是n次方根的性质的特例.

思考

根据n次方根的性质能否举例说明上述几种情况?

活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.

解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等.其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式.

根式的概念:

式子na叫做根式,其中a叫做被开方数,n叫做根指数.

如3-27中,3叫根指数,-27叫被开方数.

思考

nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?

活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.

〔如3(-3)3=3-27=-3,4(-8)4=-8=8〕.

解答:根据n次方根的意义,可得:(na)n=a.

通过探究得到:n为奇数,nan=a.

n为偶数,nan=a=a,-a,a≥0,a<0.

因此我们得到n次方根的运算性质:

①(na)n=a.先开方,再乘方(同次),结果为被开方数.

②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数.

n为偶数,nan=a=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值.

应用示例

思路1

例求下列各式的值:

(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).

活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.

解:(1)3(-8)3=-8;

(2)(-10)2=10;

(3)4(3-π)4=π-3;

(4)(a-b)2=a-b(a>b).

点评:不注意n的奇偶性对式子nan的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.

变式训练

求出下列各式的值:

(1)7(-2)7;

(2)3(3a-3)3(a≤1);

(3)4(3a-3)4.

解:(1)7(-2)7=-2,

(2)3(3a-3)3(a≤1)=3a-3,

(3)4(3a-3)4=

点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解.

思路2

例1下列各式中正确的是()

A.4a4=a

B.6(-2)2=3-2

C.a0=1

D.10(2-1)5=2-1

活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.

解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=a,故A项错.

(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错.

(3)a0=1是有条件的,即a≠0,故C项也错.

(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确.所以答案选D.

答案:D

点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.

例23+22+3-22=__________.

活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.

解析:因为3+22=1+22+(2)2=(1+2)2=2+1,

3-22=(2)2-22+1=(2-1)2=2-1,

所以3+22+3-22=22.

答案:22

点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式.

思考

上面的例2还有别的解法吗?

活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.

另解:利用整体思想,x=3+22+3-22,

两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.

变式训练

若a2-2a+1=a-1,求a的取值范围.

解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=a-1=a-1,

即a-1≥0,

所以a≥1.

点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.

知能训练

(教师用多媒体显示在屏幕上)

1.以下说法正确的是()

A.正数的n次方根是一个正数

B.负数的n次方根是一个负数

C.0的n次方根是零

D.a的n次方根用na表示(以上n>1且n∈正整数集)

答案:C

2.化简下列各式:

(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

答案:(1)2;(2)3;(3)x2;(4)xy;(5)x-y.

3.计算7+40+7-40=__________.

解析:7+40+7-40

=(5)2+25?2+(2)2+(5)2-25?2+(2)2

=(5+2)2+(5-2)2

=5+2+5-2

=25.

答案:25

拓展提升

问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明.

活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义.

通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下.再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论.

解:(1)(na)n=a(n>1,n∈N).

如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立.

例如:(43)4=3,(3-5)3=-5.

(2)nan=a,a,当n为奇数,当n为偶数.

当n为奇数时,a∈R,nan=a恒成立.

例如:525=2,5(-2)5=-2.

当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=a=-a,如(-3)2=32=3,

即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的.

点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解.

课堂小结

学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.

1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集.用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数.

(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

(3)负数没有偶次方根.0的任何次方根都是零.

2.掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=a=a,-a,a≥0,a<0.

作业

课本习题2.1A组1.

补充作业:

1.化简下列各式:

(1)681;(2)15-32;(3)6a2b4.

解:(1)681=634=332=39;

(2)15-32=-1525=-32;

(3)6a2b4=6(a?b2)2=3a?b2.

2.若5<a<8,则式子(a-5)2-(a-8)2的值为__________.<p="">

解析:因为5<a<8,所以(a-5)2-(a-8)2=a-5-8+a=2a-13.<p="">

答案:2a-13

3.5+26+5-26=__________.

解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,

不难看出5+26=(3+2)2=3+2.

同理5-26=(3-2)2=3-2.

所以5+26+5-26=23.

答案:23

设计感想

学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.

第2课时

作者:郝云静

导入新课

思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.

思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂.

推进新课

新知探究

提出问题

(1)整数指数幂的运算性质是什么?

(2)观察以下式子,并总结出规律:a>0,

①;

②a8=(a4)2=a4=,;

③4a12=4(a3)4=a3=;

④2a10=2(a5)2=a5=.

(3)利用(2)的规律,你能表示下列式子吗?

,,,(x>0,m,n∈正整数集,且n>1).

(4)你能用方根的意义来解释(3)的式子吗?

(5)你能推广到一般的情形吗?

活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.

讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;

a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①5a10=,②a8=,③4a12=,④2a10=结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变.

根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).

(3)利用(2)的规律,453=,375=,5a7=,nxm=.

(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是.

结果表明方根的结果和分数指数幂是相通的.

(5)如果a>0,那么am的n次方根可表示为nam=,即=nam(a>0,m,n∈正整数集,n>1).

综上所述,我们得到正数的正分数指数幂的意义,教师板书:

规定:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1).

提出问题

(1)负整数指数幂的意义是怎样规定的?

(2)你能得出负分数指数幂的意义吗?

(3)你认为应怎样规定零的分数指数幂的意义?

(4)综合上述,如何规定分数指数幂的意义?

(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?

(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?

活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价.

讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N+.

(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.

规定:正数的负分数指数幂的意义是==1nam(a>0,m,n∈=N+,n>1).

(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.

(4)教师板书分数指数幂的意义.分数指数幂的意义就是:

正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是==1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.

(5)若没有a>0这个条件会怎样呢?

如=3-1=-1,=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2=,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.

(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.

有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q).

我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题.

应用示例

例1求值:(1);(2);(3)12-5;(4).

活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来.

解:(1)=22=4;

(2)=5-1=15;

(3)12-5=(2-1)-5=2-1×(-5)=32;

(4)=23-3=278.

点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如=382=364=4.

例2用分数指数幂的形式表示下列各式.

a3?a;a2?3a2;a3a(a>0).

活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结.

解:a3?a=a3?=;

a2?3a2=a2?=;

a3a=.

点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.

例3计算下列各式(式中字母都是正数).

(1);

(2).

活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.

解:(1)原式=[2×(-6)÷(-3)]=4ab0=4a;

(2)=m2n-3=m2n3.

点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了.

本例主要是指数幂的运算法则的综合考查和应用.

变式训练

求值:(1)33?33?63;

(2)627m3125n64.

解:(1)33?33?63==32=9;

(2)627m3125n64==9m225n4=925m2n-4.

例4计算下列各式:

(1)(325-125)÷425;

(2)a2a?3a2(a>0).

活动:先由学生观察以上两个式子的特征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答.

解:(1)原式=

==65-5;

(2)a2a?3a2==6a5.

知能训练

课本本节练习1,2,3

【补充练习】

教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.

1.(1)下列运算中,正确的是()

A.a2?a3=a6B.(-a2)3=(-a3)2

C.(a-1)0=0D.(-a2)3=-a6

(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是()

A.①②B.①③C.①②③④D.①③④

(3)(34a6)2?(43a6)2等于()

A.aB.a2C.a3D.a4

(4)把根式-25(a-b)-2改写成分数指数幂的形式为()

A.B.

C.D.

(5)化简的结果是()

A.6aB.-aC.-9aD.9a

2.计算:(1)--17-2+-3-1+(2-1)0=__________.

(2)设5x=4,5y=2,则52x-y=__________.

3.已知x+y=12,xy=9且x<y,求p=""的值.

答案:1.(1)D(2)B(3)B(4)A(5)C2.(1)19(2)8

3.解:.

因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

又因为x<y,所以x-y=-2×33=-63.<p="">

所以原式==12-6-63=-33.

拓展提升

1.化简:.

活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:

x-1=-13=;

x+1=+13=;

.

构建解题思路教师适时启发提示.

解:

=

=

=

=.

点拨:解这类题目,要注意运用以下公式,

=a-b,

=a±+b,

=a±b.

2.已知,探究下列各式的值的求法.

(1)a+a-1;(2)a2+a-2;(3).

解:(1)将,两边平方,得a+a-1+2=9,即a+a-1=7;

(2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+a-2=47;

(3)由于,

所以有=a+a-1+1=8.

点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.

课堂小结

活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:

(1)分数指数幂的意义就是:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是==1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.

(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.

(3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q).

(4)说明两点:

①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.

②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用=am来计算.

作业

课本习题2.1A组2,4.

设计感想

本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务.

第3课时

作者:郑芳鸣

导入新课

思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是无理数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂.

思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题.

推进新课

新知探究

提出问题

(1)我们知道2=1.41421356…,那么1.41,1.414,1.4142,1.41421,…,是2的什么近似值?而1.42,1.415,1.4143,1.41422,…,是2的什么近似值?

(2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?

2的过剩近似值

的近似值

1.511.18033989

1.429.829635328

1.4159.750851808

1.41439.73987262

1.414229.738618643

1.4142149.738524602

1.41421369.738518332

1.414213579.738517862

1.4142135639.738517752

……

的近似值

2的不足近似值

9.5182696941.4

9.6726699731.41

9.7351710391.414

9.7383051741.4142

9.7384619071.41421

9.7385089281.414213

9.7385167651.4142135

9.7385177051.41421356

9.7385177361.414213562

……

(3)你能给上述思想起个名字吗?

(4)一个正数的无理数次幂到底是一个什么性质的数呢?如,根据你学过的知识,能作出判断并合理地解释吗?

(5)借助上面的结论你能说出一般性的结论吗?

活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:

问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.

问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.

问题(3)上述方法实际上是无限接近,最后是逼近.

问题(4)对问题给予大胆猜测,从数轴的观点加以解释.

问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般.

讨论结果:(1)1.41,1.414,1.4142,1.41421,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.4143,1.41422,…,这些数都大于2,称2的过剩近似值.

(2)第一个表:从大于2的方向逼近2时,就从51.5,51.42,51.415,51.4143,51.41422,…,即大于的方向逼近.

第二个表:从小于2的方向逼近2时,就从51.4,51.41,51.414,51.4142,51.41421,…,即小于的方向逼近.

从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面从51.4,51.41,51.414,51.4142,51.41421,…,即小于的方向接近,而另一方面从51.5,51.42,51.415,51.4143,51.41422,…,即大于的方向接近,可以说从两个方向无限地接近,即逼近,所以是一串有理数指数幂51.4,51.41,51.414,51.4142,51.41421,…,和另一串有理数指数幂51.5,51.42,51.415,51.4143,51.41422,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示的点靠近,但这个点一定在数轴上,由此我们可得到的结论是一定是一个实数,即51.4<51.41<51.414<51.4142<51.41421<…<<…<51.41422<51.4143<51.415<51.42<51.5.

充分表明是一个实数.

(3)逼近思想,事实上里面含有极限的思想,这是以后要学的知识.

(4)根据(2)(3)我们可以推断是一个实数,猜测一个正数的无理数次幂是一个实数.

(5)无理数指数幂的意义:

一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.

也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂.

提出问题

(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?

(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢?

(3)你能给出实数指数幂的运算法则吗?

活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳.

对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.

对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通.

对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.

讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱.

(2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则:

①ar?as=ar+s(a>0,r,s都是无理数).

②(ar)s=ars(a>0,r,s都是无理数).

③(a?b)r=arbr(a>0,b>0,r是无理数).

(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂.

实数指数幂的运算性质:

对任意的实数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈R).

②(ar)s=ars(a>0,r,s∈R).

③(a?b)r=arbr(a>0,b>0,r∈R).

应用示例

例1利用函数计算器计算.(精确到0.001)

(1)0.32.1;(2)3.14-3;(3);(4).

活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值;

对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可;

对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可;

对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按键,再按3,最后按=键.有时也可按2ndf或shift键,使用键上面的功能去运算.

学生可以相互交流,挖掘计算器的用途.

解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3)≈2.336;(4)≈6.705.

点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可.

例2求值或化简.

(1)a-4b23ab2(a>0,b>0);

(2)(a>0,b>0);

(3)5-26+7-43-6-42.

活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律.

解:(1)a-4b23ab2==3b46a11.

点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.

(2)

=

=425a0b0=425.

点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.

(3)5-26+7-43-6-42

=(3-2)2+(2-3)2-(2-2)2

=3-2+2-3-2+2=0.

点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.

例3已知,n∈正整数集,求(x+1+x2)n的值.

活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性,与具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.

=.

这时应看到1+x2=,

这样先算出1+x2,再算出1+x2,代入即可.

解:将代入1+x2,得1+x2=,

所以(x+1+x2)n=

=

==5.

点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.

知能训练

课本习题2.1A组3.

利用投影仪投射下列补充练习:

1.化简:的结果是()

A.B.

C.D.

解析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形.

因为,所以原式的分子分母同乘以.

依次类推,所以.

答案:A

2.计算2790.5+0.1-2+-3π0+9-0.5+490.5×2-4.

解:原式=

=53+100+916-3+13+716=100.

3.计算a+2a-1+a-2a-1(a≥1).

解:原式=(a-1+1)2+(a-1-1)2=a-1+1+a-1-1(a≥1).

本题可以继续向下做,去掉绝对值,作为思考留作课下练习.

4.设a>0,,则(x+1+x2)n的值为__________.

解析:1+x2=.

这样先算出1+x2,再算出1+x2,

将代入1+x2,得1+x2=.

所以(x+1+x2)n=

==a.

答案:a

拓展提升

参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂的意义.

活动:教师引导学生回顾无理数指数幂的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算的过剩近似值和不足近似值,利用逼近思想,“逼出”的意义,学生合作交流,在投影仪上展示自己的探究结果.

解:3=1.73205080…,取它的过剩近似值和不足近似值如下表.

3的过剩近似值

的过剩近似值

3的不足近似值

的不足近似值

1.83.4822022531.73.249009585

1.743.3403516781.733.317278183

1.7333.3241834461.7313.319578342

1.73213.322110361.73193.321649849

1.732063.3220182521.732043.3219722

1.7320513.3219975291.7320493.321992923

1.73205093.3219972981.73205073.321996838

1.732050813.3219970911.732050793.321997045

…………

我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数

21.7,21.72,21.731,21.7319,…,

同样把用2作底数,3的过剩近似值作指数的各个幂排成从大到小的一列数:

21.8,21.74,21.733,21.7321,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为,

即21.7<21.73<21.731<21.7319<…<<…<21.7321<21.733<21.74<21.8.

也就是说是一个实数,=3.321997…也可以这样解释:

当3的过剩近似值从大于3的方向逼近3时,23的近似值从大于的方向逼近;

当3的不足近似值从小于3的方向逼近3时,23的近似值从小于的方向逼近.

所以就是一串有理指数幂21.7,21.73,21.731,21.7319,…,和另一串有理指数幂21.8,21.74,21.733,21.7321,…,按上述规律变化的结果,即≈3.321997.

课堂小结

(1)无理指数幂的意义.

一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.

(2)实数指数幂的运算性质:

对任意的实数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈R).

②(ar)s=ars(a>0,r,s∈R).

③(a?b)r=arbr(a>0,b>0,r∈R).

(3)逼近的思想,体会无限接近的含义.

作业

课本习题2.1B组2.

设计感想

无理数指数是指数概念的又一次扩充,教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力.

备课资料

【备用习题】

1.以下各式中成立且结果为最简根式的是()

A.a?5a3a?10a7=10a4

B.3xy2(xy)2=y?3x2

C.a2bb3aab3=8a7b15

D.(35-125)3=5+125125-235?125

答案:B

2.对于a>0,r,s∈Q,以下运算中正确的是()

A.ar?as=arsB.(ar)s=ars

C.abr=ar?bsD.arbs=(ab)r+s

答案:B

3.式子x-2x-1=x-2x-1成立当且仅当()

A.x-2x-1≥0B.x≠1C.x<1D.x≥2

解析:方法一:

要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.

若x≥2,则式子x-2x-1=x-2x-1成立.

故选D.

方法二:

对A,式子x-2x-1≥0连式子成立也保证不了,尤其x-2≤0,x-1<0时式子不成立.

对B,x-1<0时式子不成立.

对C,x<1时x-1无意义.

对D正确.

答案:D

4.化简b-(2b-1)(1<b<2).<p="">

解:b-(2b-1)=(b-1)2=b-1(1<b<2).<p="">

5.计算32+5+32-5.

解:令x=32+5+32-5,

两边立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.

∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.

∴32+5+32-5=1.

数学教案万能模板表格下载篇5

教学内容:学习课本第一页的例1、完成“试一试”和“练一练”,练习一的第1至3题。

教学目标:

1.在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2.在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

教学重、难点:

理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

教学准备:

教学光盘及多媒体设备

教学过程:

一、复习导入

1.谈话:同学们,上学期我们已经初步学习了有关百分数的一些知识,知道百分数是表示一个数是另一个数的百分之几的数,还学习了解决求一个数是另一个数的百分之几的实际问题。你会解决下面的实际问题吗?

(出示下列题目,请学生解答。)

东山村去年原计划造林16公顷,实际造林24公顷。实际造林是原计划的百分之几?

五(1)班有男生25人,女生20人,女生人数是男生的百分之几?男生人数是女生的百分之几?

2.学生独立列式计算后进行交流,重点说说数量关系。

3.揭示课题:今天这节课我们继续学习有关百分数的知识。

二、教学例1

1.出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?

提出要求:根据这两个已知条件,你能求出哪些问题?

引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

2.引导思考:

这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位“1”?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?

小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

启发:根据上面的讨论,你打算怎样列式解答这个问题?

学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?

3.进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?

学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?

联系学生的讨论明确:从125%中去掉与单位“1”相同的部分,就是实际造林比原计划多的百分数。

提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?

三、教学“试一试”

1.出示问题:原计划造林比实际少百分之几?

启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

学生作出猜想后,暂不作评价。

提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?

2.学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

四、指导完成“练一练”

1.要求学生自由读题。

2.提问:你是怎样理解“2005年在读研究生的人数比2004年增加了百分之几”这个问题的?

学生讨论后,要求他们各自列式解答。

3.根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?

学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

五、巩固练习

1.指导完成练习一第1~3题

做练习一第1题。

可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

做练习一第2题。

先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

做练习一第3题。

先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。

2.对比练习

(1)建造一个游泳池,计划投资100万元,实际投资80万元。实际投资比计划节约了百分之几?

(2)建造一个游泳池,计划投资100万元,实际投资比计划节约20万元。节约了百分之几?

(3)建造一个游泳池,实际投资100万元,比计划投资节约20万元。节约了百分之几?

学生读题后先独立思考并列式计算,然后指名分析每题的解题思路。同桌间互相查看解答情况。

3.拓展题。

(1)爸爸买的股票“中国石化”上周五收盘价是20元,本周五收盘价是24元。“中国石化”本周上涨了百分之几?(用两种方法解答)

(2)从南京开往淮安,甲车行了3小时到达,乙车行了4小时到达。甲车速度比乙车快百分之几?

六、全课小结

通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?今天你在课堂上的表现如何?你的同桌呢?

七、布置作业

1.课内作业:补充习题第1页。

求一个数比另一个数多(少)百分之几的实际问题

例题1(线段图略)

解法一:先算实际造林比原计划多多少公顷解法二:先算实际造林相当于原计划的百分之几

20-16=4(公顷)20÷16=1.25=125%

4÷16=0.25=25%125%-100%=25%

数学教案万能模板表格下载篇6

本学期我担任了四年级数学教学任务,在教学过程中我发现有的学生是数学基础差,底子薄,但更有一部分同学是学习态度不端正。为了帮助这些在思想,学习中遇到困难的学生,我制定以下计划。

一.明确帮助对象。需要帮助的对象有学习方面的对象、思想方面的对象,也有智力方面的对象。

二.制定帮助的方法:

(一)谈话法:

有的学生在上课期间有故意起哄和影响他人学习的行为,原因是他们对学习已经失去了兴趣,不重视学习。针对这一现象,我对他们提出了一定的要求,给他们讲学习的重要性,以激发他们学习的积极性,以达到其转_度的目的。

(二)激励法

有的同学的学习的情况,在激励中,激发学习兴趣,鼓励他们不要恢心,让学生明白自己学习,生活的重要性,发现闪光点,随时表扬,随时提高要求,使其在受关注的同时,思想,心灵都得到一个转化。

对于智力差的同学,我并没有对他们放弃,对他们进行基本教学要求,使他们能赶上其它同学,慢慢提高学习。

总之,人性化的教育终会使后进变成前进,人文教育虽是一个漫长的过程,但乐在其中。

数学教案万能模板表格下载篇7

一、学生情况分析。

二(3)班原有学生34人,本学期转走4人,插入3人。二(4)班原有学生34人,本学期转走2人。通过一年级的学习,孩子们已基本适应了北师大版教材特点和班级学习生活。在上学期期末测试中,两个班合格率均为100%,但是优生率还有待提高。两个班的孩子的学习习惯都比较好。2、4班的学习成绩相对同年级几个班比较薄弱,个别孩子如耿瑞天、赖恩培、许耀月等,还需要重点加强基础的辅导。2、3班整体情况比较好,但也有个别的如郭轲辰、付豪等,基础比较薄弱。本学期的教学重点还是要放在良好听课习惯的养成和数学思维能力养成训练。

二、教学目标

1、数与代数

第一单元“数一数与乘法”。通过“数一数”等活动,经历从具体情景中抽象出乘法算式的过程,体会乘法的意义,从生活情景中发现并提出可以用乘法解决的问题,初步感受乘法与生活的密切联系。

第二单元“乘法口诀(一)”,第七单元“乘法口诀(二)”。在这两个单的学习中,学生经历2——5和6——9乘法口诀的编制过程,形成有条理的思考问题的习惯和初步的推理能力,能够熟记乘法口诀表,并正确运用口诀计算表内乘法,解决生活中的实际问题。

第四单元“分一分与乘法”,第五单元“除法”。学生通过大量的“分一分”活动,经历从具体情景中抽象出除法算式的过程,体会除法的意义,从生活情景中发现并提出可以用除法解决的问题,体会除法与生活的密切联系,学会用乘法口诀求商,体会乘法与除法的互逆关系。

第六单元“时、分、秒”。学生通过时、分、秒的学习,初步养成遵守和爱惜时间的良好习惯。在实际情景中,认识时、分、秒,初步体会时、分、秒的实际意义,掌握时、分、秒之间的进率,能够准确的读出钟面上的时间,并能说出经过的时间。

2、空间与图形

第三单元“观察物体”。在这个单元学习中,学生将经历观察的过程,体验到从不同的位置观察物体,所看到的物体可能是不一样的,最多能看到物体的三个面;能正确辨认从正面、侧面、上面观察到的简单物体的形状;通过观察活动,初步发展空间概念。

第五单元“方向与位置”。通过本单元的学习,学生能根据给定的一个方向(东、南、西、北)辨认其余三个方向,并能用这些词语描述物体所在的方向;知道地图上的方向,会看简单的路线图,从而发展学生的空间观念。

3、统计与概率:第九单元“统计与猜测”。通过本单元的学习,学生将进一步体验数据的调查、收集、整理的过程,根据图表中的一些数据回答一些简单的问题,并与同伴交流自己的想法,初步形成统计意识。在简单的猜测活动中,初步感受感受不确定现象,体验有些事件发生是确定的,有些则是不确定的。

4、实践活动:本册教材安排了三个大的实践活动——“节日活动”“地球旅行”“人类的好朋友”,旨在综合运用所学的知识解决实际问题。同时,在其他具体内容的学习中,安排了“小调查”活动和贴进生活多样化的应用性问题,旨在对某一知识进行实际应用。

三、教学重点

1、从具体的情境中抽象出乘法算式的过程,体会乘法的意义从生活情景中发现并提出可以用乘法解决的问题,初步感受乘法与生活的密切联系。

2、经历2—5和6—9乘法口诀的编制过程,形成有条理的思考问题的习惯,熟记乘法口诀表,能正确运用口诀计算表内乘法,解决生活中的实际问题。

3、通过“分一分”活动,经历从具体情景中抽象出除法算式的过程,体会除法的意义,从生活情景中发现并提出可以用除法解决的问题,体会除法与生活的密切联系,学会用乘法口诀求商,体会乘法与除法的互逆关系。

四、教学难点:理解乘除法的意义并能解决实际问题。五、教学措施:

根据两个班的实际情况,在本学期中,重点采取学生下措施:

1、注重培养学生良好的学习习惯,对班级孩子进行分工,负责班级的课前准备、课后作业、家庭作业的收发。

2、注重学生倾听习惯的培养。

3、培养学生学习数学的愿望。做足课前的准备,创造生动情境、激发学习兴趣。让学生在生动具体的活动中学习数学,重视动手操作与抽象概括相结合,体验乘除法的含义,发展学生的数感和符号感。从学生的生活经验出发,通过操作活动发展空间观念。

4、引导学生独立思考与合作交流,帮助学生积累参加数学活动的经验,鼓励算法的多样化。

5、培养学生初步的问题意识,学会用数学的眼光发掘身边的数学信息,并以周记的形式记录下来。

6、在整理与复习中,注重培养学生回顾与反思的学习能力。

7、加强家校合作和培优辅弱工作。

数学教案万能模板表格下载篇8

教学目标:

1、在认识东、南、西、北四个方向的基础上认识东南、西南、东北、西北四个方向,能根据给定的一个方向来辨认其余七个方向,并能用这些词语描述物体所在的位置。

2、在观察、解决实际问题中,感受数学与日常生活的密切联系,培养运用生活经验进行思考的意识。

3、在合作交流的过程中,获得成功的经验,树立学好数学的信心。教学难点:在具体场景中根据不同的参照物来确定方向。

4、激发幼儿学习兴趣,体验数学活动的快乐,并感受集体活动的乐趣。

5、培养幼儿比较和判断的能力。

教学重点:

认识东南、西北、东北、西南四个方向。教学准备:多媒体课件。

教学过程:

一、导入,认识四个复合方向。(课件出示小动物方位图)

1、小朋友们,六一儿童节快到了,为了准备六一的表演,小动物们进行了紧张的排练。今天,它们要进行试演了,看——小老虎出场了。(课件出示)它的好朋友小猴也来了(课件出示),它站在小老虎的哪个方向?(北方)还有小老鼠、小羊、小兔呢,你们看看它们分别站在小老虎的哪一面?“(出示三个小动物,课件指向南西东)还有小猪呢?它可是要表演踢踏舞的,它会从东面和西面之间出场的,小朋友们,你们能用手指出是哪一面吗?(一起指,课件出示箭头)那你知道,这一面应该怎么说吗?(东北面)真棒!看小猪出来了。(课件出示小猪)小牛会从西面和南面之间入场,这一面该怎么说?(西南面)为什么叫西南面?(在西面和南面之间)你们同不同意?(课件出示箭头)看,它来了!(课件出示小牛)你们猜小狗会从哪面入场?(西北或东南)哪里是西北?用手指一指,西北面在哪两个方向之间?东南面呢?小狗出来吧(课件出示小狗)它是从哪一面出来的呀?(箭头指向西北)还有哪一面没有表演?(东南面)你猜会是谁?快出来吧小鸡!大家都等你呢!(课件出示鸡)

2、刚才我们确定小动物们的位置时说出了几个方向?(八个)你能一次说出这八个方向吗?自己说说。__你记住了几个?__你呢?

小结:以小老虎为中心,小猴在它的北方,与北相对的是南面,上北下南左西右东,还有四个复合方向,它们是:东与北之间的东北方,东与南之间的东南方,西与北之间的西北方,西与南之间的西南芳。根据小结板书:

北西北

东北西

东西南

东南南

3、仔细观察老师画的方向盘,你觉得这几个方向之间有什么特点?

(东和西总在南和北前面,如东南、东北,西南、西北)(东北与西南,西北与东南,字是相反的方向是相对的)

小朋友真爱动脑筋,发现了这么多特点。

4、刚才我们都是以小老虎为中心来确定小动物的方向的,你能以别的小动物为中心说说它的周围有哪些小动物吗?如:小羊的西南面是谁?小兔在小羊的哪一面?

你能像老师这样用新学的四个复合方向提问吗?(同桌之间互相提问)谁愿意考考大家?

二、练习,熟悉方向。

1、下面来看看我们熟悉的校园。(课件出示校园平面图)学校大门在哪个方向?(北)从大门进来就可以看到精致的小花园。教学楼在小花园的哪一面?实验楼在小花园的哪一面?操场在教学楼的哪一面?如果请你当小导游,用四个复合方向向游人介绍我们的校园,你能行吗?先自己试试。谁愿意?指名答。

2、刚才只是小练兵,小导游们,我们要走出校园,去向游人介绍我们美丽的长沙,你们敢吗?

让我们去五一广场看看。(出示五一广场图)你能找出图上哪一面是北面吗?真了不起!

(南门口是地名,一听就知道它在南面,那与它相对的就是北面,所以这一段叫黄兴北路,那图上哪一面是东,哪一面是西)

各位游客,我们现在站在五一路与黄兴路交汇的十字路口上,春天百货、平和堂、东汉名店、绿化广场分别在十字路口的哪一面呢?小导游,你能介绍一下吗?先说给你的同学听。

谁有信心站起来介绍?我要从平和堂往东汉名店去,应该往哪个方向走?我从春天百货出发,想去绿化广场坐坐,往哪个方向走呢?

谁能当游客,考考小导游?

3、下一步,我们要走出长沙市,到湖南各地去看看,好吗?

先买张湖南地图研究研究。(出示湖南地图)图上每有块就是一个地区。

我们住的长沙市在哪里?早听说张家界风景如画,我想去看看,你们说我应该往哪儿走?(西北方)湘西的永州也很有名,我也想去,从长沙出发该往哪里走呢?(西南方)从永州到长沙,又该往哪个方向呢?4、湖南省也看过了,湖南在首都北京的什么位置呢?我们看看全国地图。(课件出示全国行政图)

讲解:图上每一块就是一个省,这绿色的一片就是湖南,画了五角星的就是北京。湖南在北京的什么位置呢?(南方或南偏西、西南,一般说南偏西)

在北京的西北方向有一个盛产葡萄、哈密瓜的地方,你知道是哪里吗?(新疆)你猜是哪一块?

指四川,这里是四川省,那里的人和我们一样爱吃辣椒,四川在北京的什么方向?(西南)在湖南的什么方向?(西北)

台湾在北京的什么方向?(东南)你猜东北三省是哪三个省?(指:在东北方向连起来的三个省)

三、总结。

教学反思:

数学活动对于小朋友来说是个很愉快的课程,因为整节活动中游戏的时间多,而且小朋友动手操作的机会比较多,但是要让孩子们能真正的理解这节教学活动的内容,并做到熟练掌握、灵活运用却不是那么容易。

数学教案万能模板表格下载篇9

教材分析:

本课的内容是第十一册第三单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

2、采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

3、提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:

知道倒数的意义和会求一个数的倒数

教学难点:

1、0的倒数的求法。

教具准备:

课件

教学过程:

一、导入

师:上课前啊,老师发现许多同学是结伴来到多媒体教室的,比如说~你们俩是不是好朋友啊?(请点到名字的两名学生分别表述一下两人之间的关系)

师:好朋友是双向的,可以说成“____为好朋友(也可以说____好朋友)

教师找一对儿同桌,让他们也说说相互间的关系。(____为同桌,一起来上数学课)

二、揭示倒数的意义

师:那今天咱们来学点儿什么呢?

1、(课件出示例7)

请学生动手找找哪两个数的乘积是1?

学生回答教师演示。

2、师:你知道吗?像这样的乘积是1的两个数,我们把它称之为互为倒数。(课件展示:乘积是1的两个数互为倒数。)板书课题:倒数的认识。

教师请学生提炼一下,然后板书:乘积是1、两个数、互为倒数

3、举例子说清两数之间的关系。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)

师:还可以怎么说呢?像刚才我们表述朋友、同桌关系一样。

引导学生说:3/8的倒数是8/3;8/3的倒数是3/8。

师:我们能不能说3/8是倒数?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

比如5/4和4/5的积是1,我们就说……7/10和10/7的乘积是1,我们就说……(生齐说)

4、请你再举个例子和你的同桌说一说。

(学生活动)

5、师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。根据对倒数意义的理解你们能不能找出3/5和2/3的倒数呢?

(学生写并汇报师板书。)

三、探索求一个倒数的方法

1、师:我们来进行一个小小的比赛。请你写出更多的乘积是1的任意两个数,看谁写得多。四人一小组,怎么分工呢?(请学生说建议)准备好了吗?一分钟倒计时开始!

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。)

师:这么短的时间内就能写出这么多乘积是1的两个数,真不错。如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个。

2、师:其实我知道大家在刚才的比赛过程中啊,一定有窍门,所以才会写得那么快,那么多,是什么窍门?谁来说说看?

(学生畅所欲言,但是一定不规范。)

教师引导学生观察每组互为倒数的两个数分子和分母的位置发生了什么变化?规范说法。

3、师:正因为分子和分母调换了位置,(师指黑板)相乘时分子分母就可以完全约分,得到乘积是1。所以很快就可以找出一个数的倒数来,对不对?

4、师生一起小结:也就是说求一个数的倒数,只要把分子分母调换位置。(板书)

5、学生自主探索5和1的倒数。

学生先独立思考,在小组交流。

师根据学生的回答及时板书。

6、0的倒数呢?

启发思考,允许讨论。

因为0和任何数相乘都得0,不可能得1。

四、归纳小结

师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个分数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。)

五、巩固练习

1、完成练习十一第一题。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(7/12=12/7)

师:为什么?规范书写,要写清谁是谁的倒数,或谁的倒数是谁。

3、完成练习十一第二题。

4、完成练习十一第三题。

5、完成练习十一第四题。

师:请你仔细观察每组数,你发现了什么?

同桌可以先互相说一说。

应该有的汇报是:

生1:我从第一组中发现真分数的倒数都是假分数(大于1)。

生2:大于1的假分数的倒数都是真分数(小于1)。

生3:几分之一的倒数都是整数。

生4:非0整数的倒数都是几分之一……

五、全课总结

今天我们学习了什么?你有什么收获?

认识倒数这一小节,就像是一篇文章里的过渡段一样,既承上又启下,是学习下一章分数除法的必要基础,请同学们课后认真练习,掌握倒数的意义和求一个数的倒数的基本方法,为下一章的学习做好准备。

数学教案万能模板表格下载篇10

一、教学目标:

1.知识与技能:理解并掌握等比数列的性质并且能够初步应用。

2.过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、

概括等逻辑思维能力。

3.情感态度价值观:体会类比在研究新事物中的作用,了解知识间存在的共同规律。

二、重点:等比数列的性质及其应用。

难点:等比数列的性质应用。

三、教学过程。

同学们,我们已经学习了等差数列,又学习了等比数列的基础知识,今天我们继续学习等比数列的性质及应用。我给大家发了导学稿,让大家做了预习,现在找同学对照下面的表格说说等差数列和等比数列的差别。

数列名称等差数列等比数列

定义一个数列,若从第二项起每一项减去前一项之差都是同一个常数,则这个数列是等差数列。一个数列,若从第二项起每一项与前一项之比都是同一个非零常数,则这个数列是等比数列。

定义表达式an-an-1=d(n≥2)

(q≠0)

通项公式证明过程及方法

an-an-1=d;an-1-an-2=d,

…a2-a1=d

an-an-1+an-1-an-2+…+a2-a1=(n-1)d

an=a1+(n-1)__d

累加法;…….

an=a1qn-1

累乘法

通项公式an=a1+(n-1)__dan=a1qn-1

多媒体投影(总结规律)

数列名称等差数列等比数列

定义等比数列用“比”代替了等差数列中的“差”

定义

达式an-an-1=d(n≥2)

通项公式证明

迭加法迭乘法

通项公式

加-乘

乘—乘方

通过观察,同学们发现:

•等差数列中的减法、加法、乘法,

等比数列中升级为除法、乘法、乘方.

四、探究活动。

探究活动1:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习1;等差数列的性质1;猜想等比数列的性质1;性质证明。

练习1在等差数列{an}中,a2=-2,d=2,求a4=_____..(用一个公式计算)解:a4=a2+(n-2)d=-2+(4-2)__2=2

等差数列的性质1:在等差数列{an}中,an=am+(n-m)d.

猜想等比数列的性质1若{an}是公比为q的等比数列,则an=am__qn-m

性质证明右边=am__qn-m=a1qm-1qn-m=a1qn-1=an=左边

应用在等比数列{an}中,a2=-2,q=2,求a4=_____.解:a4=a2q4-2=-2__22=-8

探究活动2:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习2;等差数列的性质2;猜想等比数列的性质2;性质证明。

练习2在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8的值为.解:a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=2a5+2a5+a5=5a5=450a5=90a2+a8=2×90=180

等差数列的性质2:在等差数列{an}中,若m+n=p+q,则am+an=ap+aq特别的,当m=n时,2an=ap+aq

猜想等比数列的性质2在等比数列{an}中,若m+n=s+t则am__an=as__at特别的,当m=n时,an2=ap__aq

性质证明右边=am__an=a1qm-1a1qn-1=a12qm+n-1=a12qs+t-1=a1qs-1a1qt-1=as__at=左边证明的方向:一般来说,由繁到简

应用在等比数列{an}若an>0,a2a4+2a3a5+a4a6=36,则a3+a5=_____.解:a2a4+2a3a5+a4a6=a32+2a3a5+a52=(a3+a5)2=36

由于an>0,a3+a5>0,a3+a5=6

探究活动3:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习3;等差数列的性质3;猜想等比数列的性质3;性质证明。

数学教案万能模板表格下载篇11

教师在教后一定要用心反思自己,下面是由小编为大家带来的关于用字母表示数教学反思,希望能够帮到您!

用字母表示数教学反思一

《用字母表示数》是学习代数知识的重要内容,是小学生们由具体的数过渡到用字母表示数,在认识上的一次飞跃。对我们四年级孩子来说,本课内容较为抽象与枯燥,教学有一定难度。因此,在设计过程中应以建构主义为理论依据构建信息环境下“主体参与”教学模式,立足于学生的知识基础和认知水平,采用多样性的教学方式,让学生逐步理解用字母表示数的意义,并使学生在获取知识的同时,抽象思维能力得到提高,成为学习的真正主人。讲完这节课,我有以下几点体会:

1、实现情景创设的趣味性和有效性

本课开始,我从学生感兴趣的儿歌入手,一只青蛙一站嘴,两只眼睛四条腿……让学生从儿歌中捕捉信息,再进行编儿歌的过程,充分调动积极性的同时也自然引出了新的问题,如果有很多只青蛙该怎么表示。学生在编儿歌的同时也在经历着寻找规律的过程,从而自然总结出相应的数量关系,再把数量关系从用文字描述上升到用字母表示,体会用字母表示的优越性。在这一环节中,原本比较枯燥的教学内容因为这样的情境创设变得十分生动,学生的学习兴趣充分被调动。更重要的是,在编写儿歌的过程中,学生的思维经历了从具体到抽象,从简单到复杂,从特殊到一般的过程。在玩游戏的同时,学到了许多数学知识。让教学情境直接为教学目标、教学内容服务。

2、练习设计的层次性

课堂练习是学生对学习内容的重复接触或重复反应,课堂练习能及时反馈不同层次学生所掌握知识的情况,能反映一堂课的教学效果,又能对学生的学习起到巩固、发展、深化知识的作用,同时又起到一种激励效应,通过课堂练习使三个层次的学生都有所获,有所悟,并体验到成功和快乐。在上完编儿歌这一环节之后,没有急着出示更高层次的问题,而是设置了摆三角形小棒这一环节,主要目的是为了让学生在基本练习中巩固新知,教师更可以丛中检查学生对知识掌握的情况,促使知识的内化,以达到第一层次教学目标的落实。接下来的环节:“魔术盒”问题,就将显形的规律变化隐藏起来,要求学生要完全通过原始数据和结果中去寻找过滤,思维要求更高的同时也考察了学生对于知识掌握的程度和运用知识的能力。第三层次则是通过一些综合练习,对新知识掌握的程度和灵活运用知识的能力。

3、本节课的不足之处

1)关于用字母表示数的特定和变化的优越性不必深究,如果简单而过,那么省下来的时间可以进行大量练习。

2)教师讲得多,学生说的少。

3)练习设计中通常对第一、第二层次的练习关注较多,如何把握第三层次的练习——即综合运用这一部分,以更好的体现教学目标。

不足之处有待于以后教学中不断提高改进。

用字母表示数教学反思二

我上了小学数学四年级下册第七单元认识方程中的《字母表示数》这一课,看教材时我觉得这节课内容简单,但比较抽象,在备课时我就尝试根据新课标理念和学生实际设计本节课,在本节数学课的教学中,我主要体现三大特点:

首先、引导学生从生活中学习数学知识。

“用字母表示数”在数学史上具有无可替代的作用,但是怎样让刚刚接触这些知识的小孩子理解“为什么要用字母表示数”、“在什么情况下用字母表示数”呢?于是,我采用了上课初,我选择了学生最熟悉的电视台标记(cctv)、扑克牌(A、J、Q、K)和肯德基(KFC)展示给学生看,让他们从这里感知到字母代表的意思,然后从生活中提出有字母的事例;其次我选用了学生喜欢的儿歌《数青蛙》,通过唱儿歌,来体会、认识到用字母表示数在实际生活和学习中的广泛应用。让学生感受到数学就在身边,与我们的生活关系密切。做到了“生活性”和“数学性”相结合。

其次、让学生在游戏中学习数学知识

为了让学生在实践活动中理解掌握知识,变“学了做”为“做中学”。我把书上的淘气与妈妈的年龄之间的关系变成了老师与学生之间的关系,在课堂上我找一名学生与我配合做游戏,全体学生的积极性很高,都愿意上台,这一下就把学生的学习热情调动起来了。在猜老师的年龄时,孩子们的热情很高,这样我就很自然地引导到我与该生之间的年龄关系,从而引出用含有字母的式子表示两者的数量关系,在轻松愉悦的氛围下让学生能够接受了抽象的知识。

最后、习题设计有趣,生动。

本节课在学生学完新知后,其精神正处于疲惫状态,为充分调动学生学习的积极性,让其思维充分活跃起来,我在习题的设计上下了一番功夫,我给每道题都配上了学生喜欢的卡通人物,题目的颜色很鲜艳。我设计了唱儿歌,让学生放松心情,同时在这里我采用了绚丽的图片吸引学生。同时,我还引导大家回忆以前学过的运算律,用字母表示出来儿童用品大全。学生兴趣很高,从而巩固了本节课的知识。

但是,我觉得本节课我还存有一些不足之处:在讲课时,我对学生的信息反馈不到位。课堂上教师要“耳听四方,眼观八路”,将学生中反馈的信息迅速纳入下一进程的教学活动中去;但我只是点了个别学生,尤其是在说一个含有字母的式子所表示的意思时,没有认真地倾听学生的想法。在课堂上多数都是被我点将的,没有能听取各类学生的意见;学生练习情况也应既有互评,也有教师根据学生基础适时抽查;优则按高标准要求与评价,差则按低标准要求与评价,并及时给予个别点拨,在课堂上体现分层教学的思想。本课在反馈与评价上显得不够全面,因材施教的思想不够鲜明。

结合对新《课程标准》教学理念的知识和本次课堂教学的深切体会,让我感到我们不仅要学习教材、领悟教材、学会超越教材,更要了解学生,会倾听学生的心声,这样我的课堂效益才会更高。

数学教案万能模板表格下载篇12

教学内容:

北师大版小学数学二年级上册教科书P74-75页。

教学目标:

1、通过具体的情境创设,让学生在观察、思考、推理的活动中,经历7的乘法口诀的整理过程。

2、培养学生独立思考、合作交流的能力,并能运用所学的知识解决实际问题。

3、让学生感受数学与生活的联系。

教学重点:

经历7的乘法口诀的整理过程,并运用口诀解决问题。

教学难点:

独立整理7的乘法口诀。

设计思路:

本节课的主要内容是对7的乘法口诀的整理。一星期正好是7天,本设计通过创设情境,在体育用品商店中的几个同学的对话进行引入,激发学生学习兴趣,借机引导学生回答问题,调动起学生主动的参与意识,创造了良好的学习氛围。

第二环节是师生互动、探索新知。先是让学生独立填写表格,并说出为什么填得这么快,特别是7个星期、8个星期、9个星期各有多少天的算法,让学生充分的交流。然后根据所填表格的数据小组合作整理7的乘法口诀,学生很容易就能完成了。接下来是引导学生对口诀进行整理和记忆。为了帮助学生记忆,设计了对口令的游戏,使枯燥的记忆变成了有趣的数学活动。

最后是7的乘法口诀的应用。通过看口诀写算式,解决实际问题和看算式编故事等多种形式的数学活动,让学生充分地体会到数学与生活的联系,也培养了学生的口头表达能力。

教学过程:

一、创设情境、激发兴趣

1、师:同学们,老师告诉大家一个好消息:那就是我们学校再过四个星期就要广播操比赛了,你们想参加吗?有谁知道2个星期有多少天?

同学们,再过4个星期就是元旦了,你们高兴吗?有谁知道4个星期有多少天?

2、知道了2(4)个星期是14(28)天,那3(5)个星期、4(6)个星期呢?算才最简便呢?如果学习了7的乘法口诀我们就能很快的算出来了。

揭示课题:7的乘法口诀

二、师生互动、探索新知

1、填一填

出示表格,师:仔细观察你发现这张表格向我们提出了什么问题?你能独立把这张表格填完吗?

学生同桌交流后,独立完成表格的填写。

师:同学们这么快就填写完了,而且完成得很好,说说你的窍门好吗?

生:我按每次都加7算的。

生:从1个星期到6个星期的填写,可以运用前面学过的乘法口诀来算,从7个星期到9个星期的填写,是按每次都加7算的。

生:

师:真棒!你们都有自己不同的解决方法,而且问题都解决得很好。那你们能根据自己填写的表格的数据,四人小组合作,编出7的乘法口诀吗?

2、理一理

(1)学生四人小组合作进行7的乘法口诀的整理,写到小组记录单上。

(2)全班交流编写的7的乘法口诀。

(3)(师在黑板上出示从学生编的口诀中整理出来的一张大的7,8并排的乘法口诀表。)师:你们仔细观察,发现7的乘法口诀中有哪些秘密?师:你们仔细观察,发现7的乘法口诀中有哪些秘密?

3、记一记

(1)口诀意义的理解

师:(指口诀:六七四十二)谁知道这句口诀表示什么意思?

生:六七四十二表示6个7相加是42,也表示7个6相加是42。

师再指两个口诀让学生进行练习。

(2)引导学生记住口诀,让学生交流如何记得又快又准的?

(4)对口令

同桌进行如:四七二十八的对口令游戏。

三、联系生活,巩固应用

师:口诀记熟了吗?老师来考考你们行吗?

1、抢答比赛

如:7()=()

2、解决问题

学生独立完成练一练的第3题,全班交流。

3、编有趣的数学故事

电脑显示:78

师:同学们,这是一道普通的乘法算式,但它蕴藏着好多有趣的数学故事,你能看算式编出一个有趣的数学故事吗?比一比,谁编的故事最动听。

四、情境交流、全课总结

师:同学们,通过这节课的学习,你有什么收获吗?

数学教案万能模板表格下载篇13

一、第一轮复习(2月~4月)

第一轮复习的目的是夯实学生的数学基础,稳定核心知识考查分,为解决中等难度以上题目做好知识准备和方法技能准备。在这一过程中,学生需要完成知识梳理,把零散知识系统化、条理化、深刻化,促进知识向能力的转变,使自己思路更清晰,知识更扎实。

1.具体要求:

(1)以课时为单位,制定出详细的复习计划,每节课要复习什么知识点,做什么练习题,在复习开始之前就要做到心中有数。

(2)要踏踏实实的熟记每个公式、性质、定理。切忌“眼高手低”。准确的记忆是计算、推理的基础!不能想象,或者到了考场再做推导,这样会非常影响考试的发挥。

(3)第一轮最重要是要注重基础,要立足课本!从历年的中考经典试题中寻找课本的“影子”。其实遍观历年的中考试题,我们不难发现,多数试题均取材于教科书,所以在复习中一定要抓住教材,对教材要做到举一反三,触类旁通。

2.注意的问题:

(1)中考题很多来源于课本的原题或改编题,所以复习时必须以课本为纲,绝不能完全脱离课本。课本上的例题、习题必须过关。

(2)学生在平时练习、测验后,一定要分外留心做错的题,对那些做错的题,千万不能马虎,一定建立一个自己的“错题档案”,认真地反思总结自己做错题目的类型和方法,一定要吸取教训,防止重蹈覆辙。不同的学生的“错题档案”也应不同,这其实就是一份非常重要的学习资源,而且是只针对自己的,在考试之前只要拿出它复习一下,就能明自自己的不足和缺点,在考场上就能对这一类型的题目引起警觉,把失误减少到最低的限度。

二、第二轮复习(5月)

本轮复习应侧重培养数学能力,在第一轮复习的基础上,进行拔高,适当增加难度。这一轮复习是关键的一月,也是最为艰苦的一月,对学生体力和毅力是极大的考验。

1.具体要求:

(1)以专题复习为主,如填空题、选择题的专项练习,阅读理解型、开放探究型、实际应用型、几何代数综合型、研究性学习型等专题的练习,加强学生对中考题型的熟悉程度。

(2)重视方法思维的训练。教师对初中数学教学过程中所涉及的函数与方程思想、数形结合思想、分类讨论思想、转化化归思想、整体思想等数学思想方法,在复习时要做到理解深刻内涵,使用得心应手;对常用于数学解题的配方法、换元法、待定系数法等通法,在复习时应进行强化训练。

(3)复习中要寻求一题多解,积极地探求问题的最优解法。这样可以拓宽思维渠道,培养自己从多角度、多维度思考问题的习惯,对于后面的压轴题目会很有帮助。

(4)加强对实际问题的研究和学习。据悉近几年广州中考中都有理论联系实际的内容,解决实际应用问题的考题是中考数学题的新特点,这点能力是在总复习过程中不能忽视的。

(5)从第二轮复习开始,要保证每周做一套中考数学真题。

三、第三轮复习(6月)

本轮复习已进入冲刺阶段,主要以模拟试题训练为主。这一阶段,重点是查漏补缺,提高综合解题能力,特别要进行考试技巧训练,进行答卷程序合理化,书写规范化训练。避免会做的题失分,和考场慌乱等现象。

1.具体要求:

(1)以模拟试题训练为主。每两天做一套模拟试题,集中时间将试卷中出现的问题分类整理,每次考试前都回顾一遍,让自己状态越来越好。

(2)冲刺阶段对于规范性书写必须非常重视。不规范的符号,不规范的步骤一定要扣分。

2.注意的问题:

(1)模拟试题的难易程度,题量的多少,高中低档题的比例,要贴近中考题或者略高于中考题。

(2)到了这个时期,一定要注意保持自己的数学学习状态,维持自己前面建立起来的信心。

(3)经过长时间复习,几乎所有的学生都会感到身心疲惫,这时要注意休息,调节自己的生物钟,尽量把学习、思考的时间调整得与中考答卷时间相吻合,在考前调整出最佳状态。

注意事项

(1)千万注意解题后的反思。数学是靠坚持不懈的思考来成就的。对于一些经典问题的反思完全可以胜过再多做几道新的题目。

(2)专题复习应适当拔高。没有一定的难度,数学能力是很难提高的,拔高的程度以相当于或略高于中考题难度为宜。

(3)同学之间要经常资源共享,讨论题目。很多时候同学的思路会比老师课上讲的更加适合自己。同时这个措施也可以避免中考总复习过程中产生的“孤独心理”。

数学教案万能模板表格下载篇14

学习内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第一课时(第67、70页内容)。

学习目标

1、知道在不同的位置上,观察到物体的形状是不同的。

2、通过学学生活动,正确辨认从正面、侧面、背面观察到的物体。

3、培养学学生的合作意识,让学学生在合作中交流、学习、互动。

学习重难点:使学学生能辨认从不同位置观察到的简单物体的形状。

教、学具准备:学学生喜欢的玩具、小黑板等。

学习过程

一、用学学生喜爱的游戏入手,创设情境

1、播放有多种动物叫声的vcd,请学学生猜一猜都有动物(如孔雀、恐龙、狮子等),同时问:“你是怎样猜出这些可爱的动物的?”(学学生回答说是根据动物的声音。)

2、出示几张动物卡片,遮住动物的一部分,又请学学生是什么动物?

3、根据学学生的回答,逐步撤掉遮住动物的纸片,问学学生是怎样猜出来的?

4、学生:我看见大象的长鼻子;我看见老鼠的尾巴;我看见骆驼的驼峰……

老师:你们看见了动物的不同形状,有正面的、侧面的、后面的。那今天我们就玩一玩,从不同位置观察物体,你看到了什么?(出示课题)

二、引导探索,体验不同位置观察到的不同的物体形状

1、老师:请同学拿出汽车玩具放在桌面上,小组内的同学互相玩耍,并说出自己在座位上所看到的汽车的形状。

小组汇报:看到的是什么形状?

__学生:我看到的是它的车门和车轮;我看到的是它的车灯;我看到的是它的车尾。

2、画学学生看到的汽车形状。老师:咱们来一个画画比赛,看谁能把自己看到汽车的形状简单而又比较准确的画出来。(小组活动)

3、展示图画。请每组小组长把本组的画收集到一起,并贴在黑板上。

老师:请小朋友来介绍自己的画,讲讲画出来的形状是在什么位置看到的?为什么汽车有这么多不同形状?

学生:因为我是从侧面看的;因为我是从正面看的;因为我是从后面看的……

老师:原来站的位置不同,看到的汽车形状也不同。

4、老师:请学学生交换位置,再观察,说说自己在座位上所看到的汽车的形状。

__学生:我看到的是它的车门和车轮;我看到的是它的车灯;我看到的是它的车尾。(让学学生回原位。)

5、请学学生拿出自己喜爱的玩具(每组一个)放在桌上,坐在现在的位置上观察玩具的形状并把它画出来。(全班交流,介绍画出来的形状是在什么位置上看到的。)

三、应用拓展

1、找朋友。请小组每一个成员将自己的数学书合在一起,摆放在桌上,再请每一个同学从自己所在的位置介绍看到书的形状。老师同时出示图片请学学生判断。

2、连线游戏。教科书第70页第一题,请学学生仔细观察从不同的位置所看到的汽车形状。

四、小结评价

我们的学生活中有许许多多从不同位置看到的物体的形状,(出示卡片)所以在我们的眼睛里世界是多姿多彩的,而这里面有我们许多数学的知识。因此我们更应该热爱我们的学生活。

数学教案万能模板表格下载篇15

各位领导,老师:

大家好!

今天,我说课的内容是现代小学数学四年级上册第三单元《三步计算和应用》中的相遇问题。从以下三方面进行我的说课:分析教材,理清思路;优选教法,注重学法;优化程序,突出主体。

一、分析教材,理清思路

本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,借助生活原型,可更好地解决数学问题。学好此内容,也为后继学习做好铺垫。

本节课的教学目标是:

1、知识技能目标:明确相遇问题的特点;理解基本数量关系;正确分析解答相遇问题。

2、发展性目标:经历比较、优化的学习过程,发展求异思维、逆向思维的能力。

3、情感性目标:感受数学问题的探索性,激发学生兴趣,体验数学与生活的密切联系。

在实施知识目标过程中,重点是让学生在做中发现规律,从而理解相遇问题的数量关系,掌握解答方法。

二、优选教法,注重学法

学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。

三、优化程序,突出主体

本节课的教学流程分为四个部分:

(一)在情境中感知

引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)

[建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的情境,使学生能主动地在与情境的交互作用中学习。]

(二)在游戏中引入

1、理解意义:新授课时,我以学生经常在做的两个游戏为主线,激发学生的学习兴趣,使学生初步感受数学与日常生活的密切联系,并揭示课题相遇问题

游戏1:红绿灯相向游戏2:跨步子相对

思考:两个游戏,有什么相同点和不同点

教师画出线段图,帮助学生理解

2、联系生活提问:在实际生活中还有哪些情况属于相遇问题?

3、归纳小结要想出现相遇的情况应具备哪些条件?

(板书:两个物体、同时、两地、相对、相遇)

教师指出本节课侧重研究两个物体同时行进的规律。

(三)在操作中发现

这是本节课的中心环节。在充分认识两种运动方式后,问你想研究哪种运动方式,认识了这两种运动方式,你想通过这两种运动方式知道什么。现在小组合作,我们来研究相遇问题,请你利用相遇卡摆一摆,并完成表格

小组合作:

(1)利用相遇卡,两位同学同时行进,一位每次行3厘米,另一位每次行进2厘米。

(2)每行进一次把数据填入表中。

(四)在巩固中深化

练习是课堂教学的重要组成部分,设计练习题时,我对教材做了处理,设计了一个智力大冲浪,智夺小红旗的环节,力求形式多样,条件问题开放,引导学生从不同的角度思考问题,留给学生思维的空间。

第一环节:起跑线,是只列式不计算的基本练习

1、两个工程队合开一条隧道。同时各从一端开凿。甲队的进度是12米/天,乙队的进度是14米/天。经15天打通。这条隧道长多少米?(用两种方法解答)

2、小名和小化从相距180米的跑道上同时相对而行,小名每分钟42米,小化每分钟48米,两人几分钟后相遇?

第二环节:加油站:自选超市:让学生依个人掌握知识情况,选择练习题。

1、比一比三道题的联系与区别;

A、两辆汽车同时从两地相对开出,甲车每小时行55千米,乙车每小时行75千米,3小时相遇。两地相距多少千米?

B、两辆汽车同时从相距390米的两地相对开出,甲车每小时行55千米,乙车每小时行75千米。几小时相遇?

C、两辆汽车同时从相距390米的两地相对开出,经3小时相遇,甲车每小时行55千米,乙车每小时行多少千米?

2、两辆汽车同时从一个地方相反的方向开出,甲车每小时行44.5千米,乙车每小时行3805千米。经过3小时,两车相距几千米?

3、客车和货车同时从A、B两地相对开出。客车每小时80千米,货车每小时70千米,经过4小时,两车相距10千米。A、B两城相距多少千米?

第三环节:凯旋门:

小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。

[设计开放性的练习,我考虑到满足不同层次学生的求知欲,因材施教,使每个学生在发散性、多维度的思维活动中提高解决实际问题的能力。]

你真棒祝贺你随着一声声赞扬,同学们肯定会一路过关斩将,站到领奖台上。

(四)在总结中提高

谈一谈本节课有什么收获?

12840