教案吧 > 学科教案 > 数学教案 >

数学教案设计

时间: 新华 数学教案

教案可以帮助教师提高教学质量,从而更好地提高学生的学习成绩。什么才算好的数学教案设计?接下来给大家分享一些数学教案设计,供大家参考。

数学教案设计

数学教案设计篇1

教学目标:

1.进一步理解指数函数的性质;

2.能较熟练地运用指数函数的性质解决指数函数的平移问题;

教学重点:

指数函数的性质的应用;

教学难点:

指数函数图象的平移变换.

教学过程:

一、情境创设

1.复习指数函数的概念、图象和性质

练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.

2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?

二、数学应用与建构

例1解不等式:

(1);(2);

(3);(4).

小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.

例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:

(1);(2);(3);(4).

小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).

练习:

(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.

(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.

(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.

(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x—1的图象恒过的定点的坐标是.

小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2x2的图象?

(6)如何利用函数f(x)=2x的图象,作出函数y=2x—1的图象?

小结:函数图象的对称变换规律.

例3已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象.

例4求函数的最小值以及取得最小值时的x值.

小结:复合函数常常需要换元来求解其最值.

练习:

(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;

(2)函数y=2x的值域为;

(3)设a0且a1,如果y=a2x+2ax—1在[—1,1]上的最大值为14,求a的值;

(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围.

三、小结

1.指数函数的性质及应用;

2.指数型函数的定点问题;

3.指数型函数的草图及其变换规律.

四、作业:

课本P55—6,7.

五、课后探究

(1)函数f(x)的定义域为(0,1),则函数的定义域为。

(2)对于任意的x1,x2R,若函数f(x)=2x,试比较的大小。

数学教案设计篇2

【教学内容】

义务教育课程标准实验教科书(西师版)四年级上册第79、80页上的例2、例3,议一议及相应的课堂活动,练习十五第3~6题。

【教学目标】

1.以学生已有的知识经验为基础,自主迁移出因数中间、末尾有零的三位数乘两位数的笔算乘法。

2.掌握行程问题中的基本数量关系,感受数学知识间的内在联系,培养学生迁移类推能力和解决简单实际问题的能力,激发学生学习兴趣。

【教具学具准备】多

媒体课件、视频展示台。

【教学过程】

一、复习引入

计算下面各题。20×40=18×20=16×50=240×3=105×3=208×2=301×2=209×4=

学生可能有的用口算,有的用笔算,如果用笔算的可进行板演。

教师:我们已经学习了三位数乘两位数中间、末尾没有零的笔算,那么中间、末尾有零的又该怎样计算呢?今天我们继续研究三位数乘两位数的乘法。

板书课题。

二、进行新课

1.教学例2。

(多媒体课件出示例2情景图)

(1)学生独立思考,解答,抽一个学生板演。

(2)汇报思考过程及结果,在视频展台上展出学生计算的竖式,可能有以下两种:240240×30000×307200720

7200

(3)讨论:这道题和我们前面研究的三位数乘两位数的乘法有什么不同?以上两种算法哪种更简便?这道题为什么可以这样来计算?

学生讨论,教师给予必要的指导,重点围绕竖式的简便写法进行讨论。如果学生探讨有困难,则可用以下的教学设计。

教师:第二个竖式把240和30分成两个部分,一部分是24乘3,另一部分是两个0,24×3和240×30的结果一样吗?

学生:不一样。

教师:哪一个算式的乘积小?

学生:24×3

教师:算一算24×3的结果。

学生算出24×3=72。

教师引导学生说出72与7200相比,缩小了100倍,为了保持积的大小不变,我们把积扩大了100倍。

配合学生的回答,教师作如下板书:教师:谁能完整地说一说这个计算过程?

学生:略

教师:你认为末尾有0的乘法怎样计算比较简便?

引导学生归纳出:因数末尾有0的乘法,先把0前面的数相乘,乘完后,看因数末尾一共有多少个0,就在乘积的末尾添上几个0。

(4)及时巩固,算一算课堂活动的第2小题的前两小题:230×40,380×87。

2.教学例3。多媒体课件出示例3题目。

(1)根据题意,学生列式:108×18。

(2)引导学生观察算式有什么特征?

学生:因数中间有0

(3)学生独立思考

计算,抽一学生板演。

教师巡视,重点围绕竖式的书写,从而归纳出中间有0的三位数乘两位数笔算的方法、要点。

3.结合两个例题,小结行程问题中的基本数量关系。

教师:在这两个题目中,王师傅每分行240m和列车平均每时行108km都叫做什么?

学生:速度

教师:30分和8时都叫做什么?

学生:时间

教师:要求路程,你发现了怎样的数量关系?

师生共同归纳得出:速度×时间=路程。

[点评:这个教学片段主要展示学生以已有的知识经验为基础,自主迁移出因数中间、末尾有零的三位数乘两位数的笔算乘法,并归纳出行程问题中的基本数量关系。这个过程主要由“发现、探索、小结”三个环节构成。这三个环节层层相扣,体现了学生探索新算法的全过程,充分发挥学生的主体作用,较好地体现了新课程理念。]

4.课堂活动。

(1)怎样用竖式计算34×386?

学生按书中的程序计算完成后,通过两个竖式的对比,讨论得出:三位数和两位数相乘的时候,为了计算简便,我们更习惯于把位数多的因数写在上面。

(2)完成课堂活动第2题的后面两个小题:65×408,207×20。

三、巩固练习

学生独立完成练习十五第3题,教师巡视指导。

四、课堂小结(略)

五、课堂作业

练习十五第4~6题。

数学教案设计篇3

一、第一轮复习(2月~4月)

第一轮复习的目的是夯实学生的数学基础,稳定核心知识考查分,为解决中等难度以上题目做好知识准备和方法技能准备。在这一过程中,学生需要完成知识梳理,把零散知识系统化、条理化、深刻化,促进知识向能力的转变,使自己思路更清晰,知识更扎实。

1.具体要求:

(1)以课时为单位,制定出详细的复习计划,每节课要复习什么知识点,做什么练习题,在复习开始之前就要做到心中有数。

(2)要踏踏实实的熟记每个公式、性质、定理。切忌“眼高手低”。准确的记忆是计算、推理的基础!不能想象,或者到了考场再做推导,这样会非常影响考试的发挥。

(3)第一轮最重要是要注重基础,要立足课本!从历年的中考经典试题中寻找课本的“影子”。其实遍观历年的中考试题,我们不难发现,多数试题均取材于教科书,所以在复习中一定要抓住教材,对教材要做到举一反三,触类旁通。

2.注意的问题:

(1)中考题很多来源于课本的原题或改编题,所以复习时必须以课本为纲,绝不能完全脱离课本。课本上的例题、习题必须过关。

(2)学生在平时练习、测验后,一定要分外留心做错的题,对那些做错的题,千万不能马虎,一定建立一个自己的“错题档案”,认真地反思总结自己做错题目的类型和方法,一定要吸取教训,防止重蹈覆辙。不同的学生的“错题档案”也应不同,这其实就是一份非常重要的学习资源,而且是只针对自己的,在考试之前只要拿出它复习一下,就能明自自己的不足和缺点,在考场上就能对这一类型的题目引起警觉,把失误减少到最低的限度。

二、第二轮复习(5月)

本轮复习应侧重培养数学能力,在第一轮复习的基础上,进行拔高,适当增加难度。这一轮复习是关键的一月,也是最为艰苦的一月,对学生体力和毅力是极大的考验。

1.具体要求:

(1)以专题复习为主,如填空题、选择题的专项练习,阅读理解型、开放探究型、实际应用型、几何代数综合型、研究性学习型等专题的练习,加强学生对中考题型的熟悉程度。

(2)重视方法思维的训练。教师对初中数学教学过程中所涉及的函数与方程思想、数形结合思想、分类讨论思想、转化化归思想、整体思想等数学思想方法,在复习时要做到理解深刻内涵,使用得心应手;对常用于数学解题的配方法、换元法、待定系数法等通法,在复习时应进行强化训练。

(3)复习中要寻求一题多解,积极地探求问题的最优解法。这样可以拓宽思维渠道,培养自己从多角度、多维度思考问题的习惯,对于后面的压轴题目会很有帮助。

(4)加强对实际问题的研究和学习。据悉近几年广州中考中都有理论联系实际的内容,解决实际应用问题的考题是中考数学题的新特点,这点能力是在总复习过程中不能忽视的。

(5)从第二轮复习开始,要保证每周做一套中考数学真题。

三、第三轮复习(6月)

本轮复习已进入冲刺阶段,主要以模拟试题训练为主。这一阶段,重点是查漏补缺,提高综合解题能力,特别要进行考试技巧训练,进行答卷程序合理化,书写规范化训练。避免会做的题失分,和考场慌乱等现象。

1.具体要求:

(1)以模拟试题训练为主。每两天做一套模拟试题,集中时间将试卷中出现的问题分类整理,每次考试前都回顾一遍,让自己状态越来越好。

(2)冲刺阶段对于规范性书写必须非常重视。不规范的符号,不规范的步骤一定要扣分。

2.注意的问题:

(1)模拟试题的难易程度,题量的多少,高中低档题的比例,要贴近中考题或者略高于中考题。

(2)到了这个时期,一定要注意保持自己的数学学习状态,维持自己前面建立起来的信心。

(3)经过长时间复习,几乎所有的学生都会感到身心疲惫,这时要注意休息,调节自己的生物钟,尽量把学习、思考的时间调整得与中考答卷时间相吻合,在考前调整出最佳状态。

注意事项

(1)千万注意解题后的反思。数学是靠坚持不懈的思考来成就的。对于一些经典问题的反思完全可以胜过再多做几道新的题目。

(2)专题复习应适当拔高。没有一定的难度,数学能力是很难提高的,拔高的程度以相当于或略高于中考题难度为宜。

(3)同学之间要经常资源共享,讨论题目。很多时候同学的思路会比老师课上讲的更加适合自己。同时这个措施也可以避免中考总复习过程中产生的“孤独心理”。

数学教案设计篇4

数学教案-《组合图形的面积计算》教学设计(精选2篇)

-《组合图形的面积计算》篇1

《组合图形的面积计算》教学设计

<313005>

一:教学目标 

1、掌握组合图形面积计算的方法,并能正确进行计算。

2、培养学生识图的能力和综合运用有关知识的能力。

二:教学难点 

能正确将一个组合图形进行分解,让学生学会这类题目的思考方法。

三:教学准备

组合图形纸片、剪刀、胶带

四:教学设想

以“妙”调趣,导入  新课。让学生以原有的知识为基础,通过学生亲手的“拼”、“剪”将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。

五:教学过程 

教师活动

学生活动

设计意图

(课前)将一些组合图形的纸片发给学生

1、出示:

草地上来了一群羊(打一水果名称)

2、出示第二个谜语:

又来了一群狼

(打一水果名称)

思考:

谜语的谜底是什么?

①草莓(没)

②杨(羊)梅(没)

抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。

设问:

你们觉得哪个谜语好猜?为什么?

畅所欲言:

第二个谜语好猜。

因为第二个问题有了第一个问题作基础,所以就容易些。

用猜谜语的形式让学生来明事理,从而导出新课。

教师活动

学生活动

设计意图

1、 出示课题:

(组合图形的面积计算)【板书】

今天我们要学习组合图形的面积计算,你们觉得以什么为基础好?

2、复习:

长方形、正方形、平行四边形、三角形、梯形的面积计算公式。

1、思考、回答:

长方形、正方形、平行四边形、三角形、梯形

2、巩固:

巩固以前所学几种平面图形的面积计算方法。

1、引出新课

2、巩固长方形、正方形、平行四边形、三角形、梯形面积的计算方法。

出示例:

计算下面图形的面积(单位:米)

8

4

10

14

你们有什么好办法来求出这个组合图形的面积?

思考、讨论:

分小组思考讨论,这个图形的面积应该怎样计算?

以学生为主体,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。

巡视:

作简单的提示和指导。

小组交流、讨论

通过剪一剪、拼一拼来计算图形的面积:

1、让学生亲手参与学习,让学生明白能将组合图形进行分解。

2、初步培养学生的识图能力。

教师活动

学生活动

设计意图

采纳学生的解法进行分析与讲解:

8

4  

10

(10-4)

14

(14-8)

反馈、交流:

小组推荐一位学生为代表将本小组的方法介绍给全班。

⑴、沿虚线剪下,将组合图形分割成一个三角形和一个长方形。

⑵、分别算出两个图面积。

⑶、将两个图形的面积相加,就是组合图形的面积。

即:S三角形+S长方形

=S组合图形

⒈让学生通过拼剪与讨论,将组合图形进行分解。

⒉让学生学会倾听同伴的意见,并能结合自己的想法进行评价。

出示计算过程:【板书】

10×8=80(㎡)

(14-4)×(10-4)÷2

=6×6÷2

=36÷2

=18(㎡)

80+18=98(㎡)

观察、思考:

⑴、选择正确的

“底”、“高”和“长”、

“宽”进行计算。

⑵、观察计算组合图形面积的一般步骤。

⑶、明确80(㎡)、18(㎡)分别指什么?

让学能根据图形关系,推算出图中的隐蔽条件。

让学生明确计算组合图形面积时的一般步骤和格式。

教师活动

学生活动

设计意图

提问:

有没有其他的解法?

小结:

这两种解法的差异

小组发表自己的解题方法。

巩固、明确:

通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。

让学生明确,解组合图形的面积,方法不是唯一的。

掌握组合图形面积的计算方法。

布置巩固练习:

选一种你最喜欢的方法进行计算,并将题目的解题过程写下来。

巩固、练习:

(学生独立完成)

进一步巩固组合图形面积的计算方法以及书写时的注意点。

通过学生的独立练习,让学生明确在书写时的注意点以及熟悉解题的步骤。

教师活动

学生活动

设计意图

1、出示课堂练习:

求下面涂色部分的面积(单位:厘米)

10

10  

5

20

2、个别指导

课堂练习

培养学生综合运用有关知识的能力。

结束语:

通过这节课对组合图形面积的学习,今后在解这样的题目时,你有什么心得或对其他同学有什么建议?

即发挥了学生的主动性,又将本堂课的内容进行了总结。

1、布置课堂作业 

2、个别指导

课堂练习

巩固本节课所学的内容。

数学教案-《组合图形的面积计算》教学设计篇2

实验学校执教教师课程内容组合图形的面积计算课程学时1所属学科数学教学对象五年级一、教学目标知识与技能1.使学生理解组合图形的含义,初步掌握用分解法和割补法计算组合图形的面积;2.通过学习,能正确的计算由两个基本图形组合而成的图形的面积,培养学生的分析、综合能力,发展学生的空间观念;3.通过网络资源获取信息,培养了学生收集、处理和运用信息的能力,在专题网站自主协作完成任务;4.通过小组交流、组际交流,培养学生自主探索和协作学习的精神。过程与方法1.在网络创设的虚拟情景下,通过小组合作学习,在对小组成员和进行自我评价的过程中,掌握评价他人的方法;2.通过观察、操作等活动,使学生经历自主探索的学习过程,在协作、交流中获得成功的体验,能借助信息工具平台,尝试创造性实践活动。情感态度与价值观1.培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣;2.进一步渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神;3.在利用网络资源进行自学的过程中培养团结互助的精神,培养学生通过网络交流获取信息的本领。二、学习内容《组合图形的面积计算》是义务教育课程标准实验教科书第九册第五单元的内容,组合图形的面积是指由几个基本图形组合成的图形的面积,在生活中有着广泛的应用。在学生已经初步掌握几个基本图形面积计算公式的基础上,本节课进一步学习多边形的面积,理解计算组合图形面积的多种方法,能根据各种组合图形的条件,有效地选择简单有效的计算方法并进行正确的解答。三、学习者特征分析及分组情况1、学习者特征分析本班学生是网络环境下基础教育跨越式发展创新实验班的学生,他们具有一定的信息素养,思维活跃,学习热情高,合作精神好。2、学习者分组情况按照学生座位情况每三人为一组四、学习环境的设计1、问题及问题情境的设计问题描述问题情境简述呈现方式问题1:在七巧板中利用两个基本图形拼出新图形利用多媒体,在七巧板中利用两个基本图形拼出新图形,并思考拼出的图形是由什么基本图形组成的动手做一做分享心得问题2:以少先队的队旗为例,怎样求组合图形的面积呢?根据分割法,将少先队的队旗分成不同形状,找出多种计算少先队的队旗面积的方法,并比较各种方法的优劣动手做一做问题3:展示组合图形,选择最简便的方法计算图形面积。利用多媒体课件展示组合图形,小组讨论选择最简便的方法计算图形面积,并写出面积计算关系式。动手做一做讨论协商2、学习资源的设计资源类型资源内容简要描述资源来源网络课件七巧板拼图,组合图形分割法,组合图形添补法自行制作3、学习工具作品创作工具绘图工具协作交流工具东城小学论坛4、教学策略支架策略、反思策略5、教学环境网络教室五、基于问题解决的协作知识建构活动流程设计活动1:创设情境、激发兴趣ckb教师活动学生活动资源/工具活动成果共享布置任务:利用七巧板拼出新图形,并将结果投影展示独立拼摆组合图形,共同欣赏结果七巧板拼图激发学习兴趣活动2:设疑求解、探究新知ckb教师活动学生活动资源/工具活动成果共享论证(1)展示少先队队旗课件(2)引导学生分割法把组合图形转化成基本的平面图形借助网络资源学习分割组合图形,用分割法把组合图形转化成基本的平面图形,小组讨论交流、汇报方法组合图形分割法四种分割示例组合图形的方法论证提问:没有数据能求出图形的面积吗?集体回答计算图形面积必须知道图形各边的数据论证协商(1)给出组合图形的具体数据,(2)要求学生选择一种方法计算组合图形的面积,并说出选择此种计算方法的理由。(1)选择一种计算方法算出组合图形的面积(2)小组讨论各种组合图形分割法的优劣分割组合图形要考虑方便计算其面积活动3:总结方法、拓展提高ckb教师活动学生活动资源/工具活动成果协商共享(1)展示一组组合图形(2)引导学生用分割法和添补法计算组合图形面积(1)根据教师指导分别用分割法和添补法计算组合图形面积(2)小组交流讨论分割法和添补法适用范围和优劣组合图形添补法掌握添补法活动4:应用新知、解决问题ckb教师活动学生活动资源/工具活动成果协商创作应用新知,解决实际问题利用分割法和添补法解决实际问题网络课件、纸、笔问题解决方案活动5:共享心得、总结反思ckb教师活动学生活动资源/工具活动成果评价要求学生挑选优秀作品学生走动观察屏幕并讨论选出最优秀的作品反思布置作业并引导学生谈收获在全班分享学习收获,课后上传反思到论坛东城论坛数学六、教学结构流程的设计七、学习评价设计1、测验形式:课堂提问、书面练习、自主网上测试、自主完成作品2、测试内容:组合图形分割训练、组合图形添补训练

数学教案设计篇5

教学目标:

1.理解有理数的意义.

2.能把给出的有理数按要求分类.

3.了解0在有理数分类中的作用.

教学重点:会把所给的各数填入它所在的数集图里.

教学难点:掌握有理数的两种分类.

教与学互动设计:

(一)创设情境,导入新课

讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

(二)合作交流,解读探究

3,5.7,-7,-9,-10,0,,,-3,-7.4,5.2…

议一议你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

说明我们把所有的这些数统称为有理数.

试一试你能对以上各种类型的数作出一张分类表吗?

有理数

做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

有理数

数的集合

把所有正数组成的集合,叫做正数集合.

试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

(三)应用迁移,巩固提高

【例1】 把下列各数填入相应的集合内:

,3.1416,0,20__,-,-0.23456,10%,10.1,0.67,-89

【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

有理数有理数

(四)总结反思,拓展升华

提问:今天你获得了哪些知识?

由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

(五)课堂跟踪反馈

夯实基础

1.把下列各数填入相应的大括号内:

-7,0.125,,-3,3,0,50%,-0.3

(1)整数集合{};

(2)分数集合{};

(3)负分数集合{};

(4)非负数集合{};

(5)有理数集合{}.

2.下列说法中正确的是()

A.整数就是自然数

B.0不是自然数

C.正数和负数统称为有理数

D.0是整数,而不是正数

提升能力

3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

数学教案设计篇6

1、空间一点 位于不共线三点、、所确定的平面内的充要条件是存在有序实数组、、、,对于空间任一点,有且(时常表述为:若且,则空间一点位于不共线三点 、、所确定的平面内。)

2、若多边形的面积为 ,它在一个平面上的射影面积为,若多边形所在的平面与这个平面所成的二面角为,则有。(射影面积公式,解答题用此须作简要说明)

3、经过平面外一点只有一个平面和已知平面平行。

4、过一点和一个平面垂直的直线有且只有一条;过一点和一条直线垂直的平面有且只有一个。

5、经过两条异面直线中的一条,只有一个平面与另一条直线平行。

6、三个两两垂直的平面的交线两两垂直。

7、对角线相等的平行六面体是长方体。

8、线段垂直平分面内任一点到这条线段两端点的距离相等。

9、经过一个角的顶点引这个角所在平面的斜射线,设它和已知角两边的夹角为锐角且相等,则这条斜射线在这个平面内的射影是这个角的平分线。(斜射线上任一点在这个平面上的射影在这个角的平分线上)

10、如果一个角 所在平面外一点到这个角两边的距离相等,那么这点在平面上的射影,在这个角的平分线上。(解答题用此须作简要证明)

11、若三棱锥的三条侧棱相等或侧棱与底面所成的角相等,那么顶点在底面上的射影是底面三角形的外心。

(1)当底面三角形为直角三角形时,射影落在斜边中点上。

(2)当底面三角形为锐角三角形时,射影落在底面三角形内。

(3)当底面三角形为钝角三角形时,射影落在底面三角形外。

12、如果三棱锥的三个侧面与底面所成的二面角都相等或三棱锥的顶点到底面三条边距离都相等(顶点在底面上的射影在底面三角形内),那么顶点在底面上的射影是底面三角形的内心。

13、如果三棱锥的三条侧棱两两垂直,或有两组对棱垂直,那么顶点在底面上的射影是底面三角形的垂心。

14、若平面 、平面、平面两两互相垂直,那么顶点在平面内的射影是三角形的垂心。

15、棱长为 的正四面体的对棱互相垂直,对棱间的距离为。(该间距为小棱切球之直径)

16、设正四面体的棱长为 ,高为,外接球半径为,内切球半径为,棱切球(与各条棱都相切的球,正四面体中存在两个这样的球)半径为,体积为,则:

, ,,或,

17、设正方体的棱长为 ,正方体的内切球、棱切球(与各条棱都相切的球)、外接球的半径分别为、、,则,,。

18、若二面角 的平面角为,其两个面的法向量分别为、,且夹角为,则或()。

19、点 到平面的距离:(其中为垂足,为斜足,为平面的法向量)。

20、证明两平面平行:

(1)若平面 、的法向量、共线,则;

(2)若平面 、有相同的法向量,则。

21、若直线 与平面的法向量共线,则可推出。

22、设 为空间直角坐标系内一点,平面的方程为:,则点到平面的距离为。

23、证明两平面垂直:

(1)确定两个平面 、的法向量、,若,则;

(2)在平面 内找出向量,若与的法向量共线,则;

24、向量 与轴垂直竖坐标(对轴、轴同理)。

25、"等积变换"、"割形"与"补形"是解决立体几何问题常用方法。有关正四面体中的计算有时可造正方体模型,使正方体的面对角线恰好构成正四面体。

三条侧棱两两垂直的正三棱锥中的有关计算有时可以补成正方体。

题型:四面体abcd中,共顶点a的三条棱两两相互垂直,且其长分别为1、 、3,若四面体的四个顶点同在一个球面上,则这个球的表面积为( )。该题型解法:可构造球内接长方体,长方体的体对角线长为球直径。

补充:三棱锥能够构造长方体的几种基本情形

(1)三条侧棱两两垂直的三棱锥可以构造长方体;

(2)三个侧面两两垂直的三棱锥可以构造长方体;

(3)三组对棱两两相等的三棱锥可以构造长方体。

数学教案设计篇7

活动目标

1、进一步理解巩固小数加减计算的算理、算法,并能较熟练地进行计算。

2、进一步培养学生提出问题和解决问题的能力,体会数学能广泛应用于生活的价值。

教具准备

挂图、计分表等。

活动建议

一、宣布活动内容

1、课题“森里旅游”。

2、出示挂图(课本插图)。说明“森林旅游”的购物情境,营造氛围。

二、活动形式

把“森林旅游”的购物活动组织成同桌之间的数学游戏。其中一人扮顾客,承担提出购物问题的任务,另一个扮服务员,承担解决问题的任务。

这里有两幅(二种情境),当购物地点从森林食品店转到纪念品商店,两人也随着对换角色。

三、活动要求

1、结合具体情境,由顾客提出数学问题。从容易到困难,从简单到复杂,并由服务员解决这些问题。

2、“服务员”、“顾客”都应该加强角色意识,讲究服务态度,讲究礼貌,言语文明。

3、教师巡视,帮助组织活动,注意保持课堂秩序。

四、活动过程

1、出示两张情境挂图。

由于教材上的插图没有注明物品名称。所以,先根据图形形状给物品标上名称。

2、宣布活动规则。

(1)每人有5分的基础分。

(2)“服务员”每解决一个问题并且令“顾客”满意,可加1分。这里的满意包含礼貌用语。

(3)“顾客”能发现并指出“服务员”的一个失误,并被对方认可,可加1分;“服务员”每失误一次扣1分。

(4)如果“服务员”能发现并指出“顾客”对失误的指控是错误的,并能以理服人,那么“服务员”额外加1分,同样,“顾客”应该扣1分。

(5)在事先规定到每家商店购物10分的时间内,积分达到10分以上者,可获“优秀服务员”或“诚信顾客”荣誉称号。

3、发放记分表。

4、活动开始。

同桌同学面对面进行游戏活动,教师进行巡视,加强课堂组织、辅导部分学生。

为增强游戏活动有序而正确地进行,提高准确性,可引导(或准许)学生在活动开始时,先各自记录所要提出的问题,从易到难。然后再把问题向对方提出,要求对方解决。这样也便于检查谁对谁错,从而进行正确地评分。

5、活动小结。

(1)各小组汇报最后得分情况。

(2)评出“优秀服务员”和“诚信顾客”。

(3)小组提供富有新颖的问题,让大家共同分享,引导启发学生从不同的角度提出富有创意的问题。

(4)分析。总结计算方法,进一步理解,领悟什么问题用估算解决,什么问题可以用口算解决,什么问题应该用笔算解决。

五、实践活动

课本第15页的“实践活动”。

这里的第1题,第2题是通过“找一找生活中的小数”与“调查自己家两个月水费、电费开支情况”的实践活动。

要求:

1、按课本要求记录“生活中的小数”。

2、与同伴交流,进一步感受小数与生活的密切联系,获得并分享实践活动的初步经验与良好的情感体验。

3、用数学日记形式记录下自己对“生活中的小数”独特的发现或对调查现状的感受及节省开支建议。

14099