教案高中数学怎么写
一份优秀的教案应该包含合理的板书设计,以突出教学的重点和难点,展示知识结构,从而帮助学生理解和记忆。写教案高中数学怎么写有什么要注意的呢?这里给大家带来教案高中数学怎么写,希望对大家有所帮助。
教案高中数学怎么写篇1
一、 知识梳理
1.三种抽样方法的联系与区别:
类别 共同点 不同点 相互联系 适用范围
简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少
系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多
分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异
(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为
(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.
(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.
(4) 要懂得从图表中提取有用信息
如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值
2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差
3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=
特别提醒:古典概型的两个共同特点:
○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;
○2 ,即每个基本事件出现的可能性相等。
4. 几何概型的概率公式: P(A)=
特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。
二、夯实基础
(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.
(2)某赛季,甲、乙两名篮球运动员都参加了
11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,
则甲、乙两名运动员得分的中位数分别为( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)统计某校1000名学生的数学会考成绩,
得到样本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是 ;优秀率为 。
(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一个分和一个最低分后,所剩数据的平均值和方差分别为( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.
(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )
三、高考链接
07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒; 第六组,成绩大于等于18秒且小于等于19秒.右图
是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为 ,成绩大于等于15秒且小于17秒的学生人数为 ,则从频率分布直方图中可分析出 和 分别为( )
08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )
分数 5 4 3 2 1
人数 20 10 30 30 10
09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).
08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.
教案高中数学怎么写篇2
一、什么是教学案例
教学案例是真实而又典型且含有问题的事件。简单地说,一个教学案例就是一个包含有疑难问题的实际情境的描述,是一个教学实践过程中的故事,描述的是教学过程中“意料之外,情理之中的事”。
这可以从以下几个层次来理解:
教学案例是事件:教学案例是对教学过程中的一个实际情境的描述。它讲述的是一个故事,叙述的是这个教学故事的产生、发展的历程,它是对教学现象的动态性的把握。
教学案例是含有问题的事件:事件只是案例的基本素材,并不是所有的教学事件都可以成为案例。能够成为案例的事件,必须包含有问题或疑难情境在内,并且也可能包含有解决问题的方法在内。正因为这一点,案例才成为一种独特的研究成果的表现形式。
案例是真实而又典型的事件:案例必须是有典型意义的,它必须能给读者带来一定的启示和体会。案例与故事之间的根本区别是:故事是可以杜撰的,而案例是不能杜撰和抄袭的,它所反映的是真是发生的事件,是教学事件的真实再现。是对“当前”课堂中真实发生的实践情景的描述。它不能用“摇摆椅子上杜撰的事实来替代”,也不能从抽象的、概括化的理论中演绎的事实来替代。
二、如何进行教学案例研究
教学案例是教师教学行为真实、典型的记录,也是教师教学理念和教学思想的真实体现。因此它是教育教学研究的宝贵资源,也是教师之间交流的重要媒介。进行教学案例的研究是教师不断反思、改进自己教学的一种方法,能促使教师更为深刻地认识到自己工作中的重点和难点。这个过程就是教师自我教育和成长的过程。
那么如何进行教学案例研究呢?一般情况下,案例研究的程序基本有以下两个环节:案例研究的准备及实施、案例研究报告的撰写与反思。
(一)案例研究的准备与实施
1.研究主题的选择
案例研究都要有研究的重点和主题,这个主题常与教学改革的核心理念、常见的疑难问题和困惑事件相关,一般来说可以从教学的各个方面确定研究的主题,如从教师教学行为确定主题——教学材料的选择、教学中的提问、教学媒体的使用、教学评价语言、课堂教学调控行为等;也可以从学生的学习方式确定主题——探究性学习、问题解决学习、合作学习、实践性活动等。另外从学科特点、教学内容等都可以确定研究的主题。
研究者要了解当前教学的大背景,教改的大方向,要熟悉相关的《课程标准》和有针对性地作一些理论准备。还要通过有关的调查,搜集详尽的材料(如阅读教师的教学设计,进行访谈等),同时初步确定案例研究的方向、研究任务,即初步确定案例的内容是关于教学策略、学生行为或是教学技能的研究。
一般来说,案例研究主题的确定往往需要思考下面一些问题:即研究的事件是否对于自我发现更有潜力?选择的事件对学生是否有较大的情感影响(心灵是否受到震撼)?关键事件再现了前人(或自己)过去成功的行为吗?事件呈现的是一个你不能确定怎样解决的问题?事件需要你做出困难的选择吗?事件使得你必须以一种感觉不熟悉的方式或是仍在思考的方式回答吗?事件暗示一个与道德或道义上相关的问题吗?研究的主题如果反映以上的一些内容,那么这样的案例研究在自我学习、内省和深层次理解方面就可能更加富有成效。
高中数学教学案例研究的主题内容主要集中在三方面:(1)学科特点的体现:如数学思想方法的教学、数学思维品质的培养、本质属性的抽象、数学结论的推广等;(2)学生数学学习规律的探究:如数学学习习惯、解决问题的思维方式、独立思考与合作学习等;(3)教师专业知识的提升:如数学板书与电子屏幕的展示对学生思维的影响、数学语言的训练对人们思维的影响、数学知识模式化教学的优劣等。
2.案例研究的基本方法
(1)课堂观察。观察方法是指研究者按照一定的目的和计划,在课堂教学活动的自然状态下,用自己的感官和辅助工具对研究对象进行观察研究的一种方法。它可以是教师自己对教学对象——学生,在课堂活动中的片断进行观察,也可以由其他教师来实施观察,这两种观察的目的都是为了掌握课堂教学中的第一手资料。课堂观察方法不限于用肉眼观察、耳听手记,还可利用各种工具如照相、录音、摄像等作为辅助观察的手段,以提高观察的效果。对观察的资料,可以逐字逐句整理成课堂教学实录、教学程序表、提问技巧水平检核表、提问行为类型频次表、课堂教学时间分配表等,以便以后继续分析案例提供翔实的原始材料。
(2)访谈与调查。对一些课堂教学不能观察到的师生内心活动,如教师教学的目的、教学程序的意图、教学手段的运用以及教学达标的成效等一些需要进一步了解的问题,可以通过与执教教师的交谈以及和学生的座谈,以丰富和充实课堂教学观察的材料;对学生在课堂教学活动中回答问题的心理状态、解题思路等问题,也可以在课后做一些问卷调查;对学生达标的成度、效度,也可以作一些测试调查。从这些访谈、调查的材料中,再分析课堂教学的现象,不难发现造成各种课堂现象与教师教学行为之间的因果关系,然后再具体寻找在哪个教学环节中出现问题,从中提炼出解决问题的对策。
(3)文献分析。文献分析是通过查阅文献资料,从过去和现在的有关研究成果中受到启发,从中找到课堂教学现象的理论依据,从而增强案例分析的说服力。当然,对广大第一线教师而言,这里所运用的文献分析方法,并不是为了论证新教育理论,也不是去归纳教育的宏观现象,而是通过有关教育理论文献的查阅,去进一步解读课堂教学的活动,挖掘案例中的教育思想。如在数学教学中,我们常常通过学生的动手操作来获得有关的数学概念、法则与公式,那么,为什么要这样做呢?就可以带着问题,查阅、分析有关文献资料,从学习中提高研究者自身的理论水平。
(二)案例研究报告的撰写
1.常见的案例报告格式
撰写教学案例,结构可以灵活多样,并非要千篇一律、一个模式,而是可以有不同的表现形式,如“案例背景——案例描述——案例分析”、“案例过程——案例反思”、“课例——问题——分析”、“主题与背景——情景描述——问题讨论——诠释与研究”等。当前,国内外课堂教学案例编写的格式有多种多样。但不管何种编写格式,它们都有两个共同的特点:一是对案例的客观描述;二是对案例中所述问题、关键教学事件等的分析。
下面介绍两种常用的案例编写的格式:
(1)“描述+分析”式
此格式的特点是将整个案例分为两大部分,前半部分主要为描述课堂教学活动的情景,后半部分主要针对情景中的一个问题进行理论分析并获得结论。案例的描述一般是把课堂教学活动中的.某一片断像讲故事一样原原本本地、具体生动地描绘出来。描述的形式可以是一串问答式的课堂对话,也可以概括式地叙述,主要是提供一个或一连串课堂教学疑难的问题,并把教育理论、教育思想隐藏在描述之中。案例的分析部分是针对描述的情景发表个人或多人的感受,同时加以理论的分析与说明。分析方法可以是对描述中提出的一个问题,从几个方面加以分析:也可以是对描述中的几个问题,集中从一个方面加以分析。分析的目的是要从描述的情景中提炼问题的本质,讲述理论的解释,明确正确的方法,最终获得对关键教学事件的正确把握。
(2)“背景+描述+问题+诠释”式
此格式是一种要求比较高的编写格式,而且,它在实际教学中的作用也更大。通常它将整个案例分为四个部分:
A.主题与背景
主题是关键教学事件中所反映的案例主要观点,也是整篇案例的核心思想。背景主要叙述案例发生的地点、时间、人物的一些基本情况。当然,这部分的内容不宜很长,只需提纲挈领叙述清楚即可。
B.情景描述
与“描述+分析”式中的描述相同,主要突出主题所反映的课堂教学活动。
C.问题讨论
这是根据主题要求与情景描述,进行的分析、归纳、总结与提炼,包括学科知识的要点、教学法和情景特点以及案例的说明与注意事项。这部分内容主要是为案例教学服务的,目的是提高教师的认识水平与学生主动学习的能力。不同的教学观念,不同的教学手段,所提出的问题也不同。对案例中所提出的主题以及情景描述中提出的问题阐述自己的见解。
D.诠释与研究
这部分主要是用教育理论对案例情景作多角度的解读。它包括对课堂教学行为的技术资料、课堂教学实录以及教学活动背后的故事等作理论上的分析。例如,在课堂教学中,我们常看到这样的现象,课堂教学的效果高于预期的目标,反之教师期望的目标学生没有达到或有所偏离,教学内容呈现的先后与学生理解的程度、教学方法运用与学生内在动机的激发等环节存在着矛盾,这些事件的背后,必然隐含着丰富的教育思想。所以,通过诠释,挖掘这些事件背后的内在思想,揭示其教育规律就显得十分的必要。
2.案例报告撰写的关键
(1)掌握四个原则。要写好教学案例,除了平时多积累素材,学习他人的案例作品以提高写作技巧外,还应把握以下四点:
A.主题性原则:要有捕捉关键教学事件的意识,以此确定案例研究的主题。为此要注意了解新的课程改革的动向、把握适合时代要求的数学教育方式、明确学生数学学习的难点和重点,寻找数学教师专业发展的途径与规律。报告围绕主题进行情景描述和获得解决问题的策略。这种描述不是简单的教学活动实录,要反映事件发生的过程,重点描述反映关键教学事件的变化和戏剧化的情境,犹如记叙文写作,突出主题,详写重点,雕刻高潮。
案例鲜明的主题通常关系到教学的核心理念、常见问题、处理方法等等,可以说,主题就是案例的灵魂。而主题的最佳表现形式就是文题直接体现主题。因此,设计主题就要有新意、有时代感,通俗地说就是与众不同,要有独特见解、独家发现。来源于实践的教学案例并非都有同等价值,关键要看撰写者对实践的发展与理论的升华程度,包括对题目的推敲。如有的教学案例重点描述了有戏剧性的情节,用了“细节决定成败”的题目,给人耳目一新,一下子揪住了读者的心。再如,一些有创意的题目《“导之有方”方能“导之有效”》、《跳出数学教数学》、《在数学的疑难处悟成长》、《捕捉资源因势利导》等等,让人一看题目就有阅读的欲望。实践证明,在写作案例时,选择有感悟、有新意的内容,在明确主题,恰当拟题后再动笔,才能写出高质量的案例。
B.理论性原则:解决问题的策略中应当蕴含一定的教育基本原理和教育思想。实际是将自己对教育理念以及教育基本原理的理解渗透于描述的字里行间,比如学生做了什么,参与程度,投入程度如何,教师如何引导点拨,师生心理、行为变化情况等,无不体现教师的教学思想和教育基本原理。
C.叙事性原则:案例报告的书写方式是叙事式,它不同于论述式。叙事方式必须以课堂教学生动的事实为主要情节,可以夹叙夹议,也可以选择情景片段,可以是一节课中的情景,也可以是围绕一个主题的几节课的情景片段。
D.学科性原则:数学案例报告一定要体现学科的特征,要有较深刻的理性思考,要反映数学的基本思想与方法,要符合课程标准,满足教材内容的呈现方法,积极培养良好的思维习惯。就是撰写者的教育思想和教育理念在教学实践中具体体现。
(2)用好四种表述。教学案例的表述方法很多,可以归纳为以下四种方法:
A.故事式陈述法:就是教学全程或某一精彩教学片段实录,包括教师和学生的一言一行。陈述时,根据操作程序作一点“简评”,最后作“总评”。
B.以案说理:对教学过程进行陈述时,舍去与文题不相关或不重要的部分,并强化与主题相关的重要情节,尤其是引发高潮的关键行为,然后有较长篇幅的理性思考。
C.图表展示法:用图表进行统计的形式体现撰写者的教育思想,给人以一目了然的感觉,帮助读者迅速了解撰写者的写作意图,是常用的一种案例撰写方法。比如,描述学生的参与人数,投入程度,解决问题的质量等多个问题,都可以在一张或数张图表上用百分比或个(次)数进行统计。在每一张图表后,应有一段“分析”或“结论”,将撰写者的教学理念进行理性阐述,亦可在图表展示后,总的提出自己对案例的分析和建议。
D.分析讨论法:在撰写时,应汲取分析讨论中最精彩的部分做深入、细致的全面记录,最后撰写者还必须对讨论情况做一分析,或提出一些值得今后进一步思考的问题。
3.优秀案例的特征
(1)时代性:一个好的案例描述的是现实生活场景——案例的叙述要把事件置于一个时空框架之中,应该以关注今天所面临的疑难问题为着眼点,至少应该是近年发生的事情,展示的整个事实材料应该与整个时代及教学背景相照应,这样的案例读者更愿意接触。一个好的案例可以使读者有身临其境的感觉,并对案例所涉及的人产生移情作用。
(2)真实性:一个好的案例应该包括从案例所反映的对象那里引述的材料——案例写作必须持一种客观的态度,因此可引述一些口头的或书面的、正式的或非正式的材料,如对话、笔记、信函等,以增强案例的真实感和可读性。重要的事实性材料应注明资料来源。
(3)适用性:一个好的案例需要针对面临的疑难问题提出解决办法——案例不能只是提出问题,它必须提出解决问题的主要思路、具体措施,并包含着解决问题的详细过程,这应该是案例写作的重点。如果一个问题可以提出多种解决办法的话,那么最为适宜的方案,就应该是与特定的背景材料相关最密切的那一个。如果有包治百病、普遍适用的解决问题的办法,那么案例这种形式就不必要存在了。
(4)反思性:一个好的案例需要有对已经做出的解决问题的决策的评价——评价是为了给新的决策提供参考点。可在案例的开头或结尾写下案例作者对自己解决问题策略的评论,以点明案例的基本论点及其价值。
三、案例研究过程中需注意的问题
1.选材面过窄。从内容上看,多数案例是关于课堂教学甚至局限于一节课的研究,往往不能说明问题,或者在一节课中,也只会从简单的对话分析问题,做不到全方位、多角度。这说明教师对教学情境的丰富性、复杂性和联系性认识不够。
2.缺乏典型性。有的案例对教学实践没有挖掘与反思,随意摘取一些教学片段泛泛而谈、人云亦云,没有实用价值。不能够通过对某一事件现象的分析、处理、诠释,达到举一反三的效果,这样的案例对他人没什么借鉴作用。
3.主题不明确。主要体现为:
(1)主题涣散。有的案例象记流水帐,没有根据需要进行恰当的取舍,看不出作者要反映、探讨什么问题,缺乏指导性、创新性和参考性。
(2)定题过于随意。有的案例直接用案例研究依据的文题为题目,如《“三角函数”教学案例》、《“抛物线”教学案例》等,题目不鲜明、不形象,影响读者的选读和案例的传播。
4.结构不合理。案例作为一种文体,有它自己的写作结构,只有优化案例的结构,才能增强案例的可读性和指导性。如写成一般的教学设计,一般包括“备课思路、教学目标、教学重点、教学方法、课前准备、教学内容、教学过程”等内容;写成教学实录,把一堂课从头到尾详尽地记录下来,再写上作者的看法;重记录轻分析,过程描述多,评析少等等。没有创新,平淡无趣,看不出案例研究和反映的问题。
5.描述与分析脱节。有的案例描述与分析矛盾,让人不知所云;有时反映的是一种观点,分析阐明的是另一种观点,虽然不矛盾,但联系不紧密;有的分析中热衷于抄录教育理论的一些条条,脱离案例描述的事件而空谈理论,显得空泛无物。
教案高中数学怎么写篇3
教学目标:
1、椭圆是圆锥曲线的一种,是高中数学教学中的重点和难点,所以这部分内容中的知识点学生必须达到理解、应用的水平;
2、利用投影、计算机模拟动点的运动,增强直观性,激励学生的学习动机,培养学生的数学想象和抽象思维能力。
教学重点:对椭圆定义的理解,其中a>c容易出错。
教学难点:方程的推导过程。
教学过程(www.fwsir.com):
(1)复习
提问:动点轨迹的一般求法?
(通过回忆性质的提问,明示这节课所要学的内 容与原来所学知识之间的内在联系。并为后面椭圆的标准方程的推导作好准备。)
(2)引入
举例:椭圆是常见的图形,如:汽车油罐的横截面,立体几何中圆的直观图,天体中,行星绕太阳运行的轨道等等;
计算机:动态演示行星运行的轨道。
(进一步使学生明确学习椭圆的重要性和必要性,借计算机形成生动的直观,使学生印象加深,以便更好地掌握椭圆的形状。)
(3)教学实施
投影:椭圆的定义:
平面内与两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(一般用2c表示)
常数一般用2表示。(讲解定义时要注意条件:)
计算机:动态模拟动点轨迹的形成过程。
提问:如何求轨迹的方程?
(引导学生推导椭圆的标准方程)
板书:椭圆的标准方程的推导过程。(略)
(推导中注意:1)结合已画出的图形建立坐标系,容易为学生所接受;2)在推导过程中,要抓住“怎样消去方程中的根式”这一关键问题,演算虽较繁,也能迎刃而解;3)其中焦点为F1(,0)、F2(c,0),;4)如果焦点在轴上,焦点为F1(0,)、F2(0,c),只要将方程中,互换就可得到它的`方程)
投影:椭圆的标准方程:
()
()
投影:例1平面内两个定点的距离是8,写出到这两个定点的距离的和是10的点的轨迹方程
(由椭圆的定义可知:所求轨迹为椭圆;则只要求出、、即可)
形成性练习:课本P74:2,3
(4)小结 本节课学习了椭圆的定义及标准方程,应注意以下几点:
①椭圆的定义中,
②椭圆的标准方程中,焦点的位置看,的分母大小来确定
③、、的几何意义
(5)作业
P80:2,4(1)(3)
教案高中数学怎么写篇4
一、课前检测
1.在数列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求数列{bn}的前n项的和.
解:由已知得:an=1n+1(1+2+3++n)=n2,
bn=2n2n+12=8(1n-1n+1)数列{bn}的前n项和为
Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.
2.已知在各项不为零的数列中,。
(1)求数列的通项;
(2)若数列满足,数列的前项的和为,求
解:(1)依题意,,故可将整理得:
所以即
,上式也成立,所以
(2)
二、知识梳理
(一)前n项和公式Sn的定义:Sn=a1+a2+an。
(二)数列求和的方法(共8种)
5.错位相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。
如:等比数列的前n项和就是用此法推导的.
解读:
6.累加(乘)法
解读:
7.并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.
形如an=(-1)nf(n)类型,可采用两项合并求。
解读:
8.其它方法:归纳、猜想、证明;周期数列的求和等等。
解读:
三、典型例题分析
题型1错位相减法
例1求数列前n项的和.
解:由题可知{}的通项是等差数列{2n}的通项与等比数列{}的通项之积
设①
②(设制错位)
①-②得(错位相减)
变式训练1(20__昌平模拟)设数列{an}满足a1+3a2+32a3++3n-1an=n3,nN__.
(1)求数列{an}的通项公式;
(2)设bn=nan,求数列{bn}的&39;前n项和Sn.
解:(1)∵a1+3a2+32a3++3n-1an=n3,①
当n2时,a1+3a2+32a3++3n-2an-1=n-13.②
①-②得3n-1an=13,an=13n.
在①中,令n=1,得a1=13,适合an=13n,an=13n.
(2)∵bn=nan,bn=n3n.
Sn=3+232+333++n3n,③
3Sn=32+233+334++n3n+1.④
④-③得2Sn=n3n+1-(3+32+33++3n),
即2Sn=n3n+1-3(1-3n)1-3,Sn=(2n-1)3n+14+34.
小结与拓展:
题型2并项求和法
例2求=1002-992+982-972++22-12
解:=1002-992+982-972++22-12=(100+99)+(98+97)++(2+1)=5050.
变式训练2数列{(-1)nn}的前20__项的和S2010为(D)
A.-20__B.-1005C.20__D.1005
解:S2010=-1+2-3+4-5++2008-2009+2010
=(2-1)+(4-3)+(6-5)++(2010-2009)=1005.
小结与拓展:
题型3累加(乘)法及其它方法:归纳、猜想、证明;周期数列的求和等等
例3(1)求之和.
(2)已知各项均为正数的数列{an}的前n项的乘积等于Tn=(nN__),
,则数列{bn}的前n项和Sn中最大的一项是(D)
A.S6B.S5C.S4D.S3
解:(1)由于(找通项及特征)
=(分组求和)==
=
(2)D.
变式训练3(1)(20__福州八中)已知数列则,。答案:100.5000。
(2)数列中,,且,则前20__项的和等于(A)
A.1005B.20__C.1D.0
小结与拓展:
四、归纳与总结(以学生为主,师生共同完成)
以上一个8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使
其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。
教案高中数学怎么写篇5
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
(4)通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的基本思想贯穿在解决组合应用题当中。
组合与组合数,也有上面类似的关系。从n个不同元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个组合,而这种集合的个数,就是相应的组合数。
解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘).
三、教法设计
1.对于基础较好的学生,建议把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系.
2.学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题.这样既调动了学生学习的积极性,又在编题辨题中澄清了概念.
为了理解排列与组合的概念,建议大家学会画排列与组合的树图.如,从a,b,c,d 4个元素中取出3个元素的排列树图与组合树图分别为:
排列树图
由排列树图得到,从a,b,c,d 取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.
组合树图
由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd).
从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图.
学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式.
3.排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题.
对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播.对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择方案,总结解题规律.对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高.
4.两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是
这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是—一对应的.
对定理2,可启发学生从下面问题的讨论得出.从n个不同元素 , ,…, 里每次取出m个不同的元素( ),问:(1)可以组成多少个组合;(2)在这些组合里,有多少个是不含有 的; (3)在这些组合里,有多少个是含有 的;(4)从上面的结果,可以得出一个怎样的公式.在此基础上引出定理2.
对于 ,和 一样,是一种规定.而学生常常误以为是推算出来的,因此,教学时要讲清楚.
教学设计示例
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕.
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答.
答案提示:(1)排列;(2)组合.
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.
设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文.
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.
(教师活动)对照课文,逐一评析.
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识.
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.
(学生活动)倾听、思索、记录.
(教师活动)提出思考问题.
[投影] 与 的关系如何?
(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .
根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.
【例题示范 探求方法】
(教师活动)打出字幕,给出示范,指导训练.
[字幕]例1 列举从4个元素 中任取2个元素的所有组合.
例2 计算:(1) ;(2) .
(学生活动)板演、示范.
(教师活动)讲评并指出用两种方法计算例2的第2小题.
[字幕]例3 已知 ,求 的所有值.
(学生活动)思考分析.
解 首先,根据组合的定义,有
①
其次,由原不等式转化为
即
解得 ②
综合①、②,得 ,即
[点评]这是组合数公式的应用,关键是公式的选择.
设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.
【反馈练习 学会应用】
(教师活动)给出练习,学生解答,教师点评.
[课堂练习]课本P99练习第2,5,6题.
[补充练习]
[字幕]1.计算:
2.已知 ,求 .
(学生活动)板演、解答.
设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.
【点评矫正 交流提高】
(教师活动)依照学生的板演,给予指正并总结.
补充练习答案:
1.解:原式:
2.解:由题设得
整理化简得 ,
解之,得 或 (因 ,舍去),
所以 ,所求
[字幕]小结:
1.前一个公式主要用于计算具体的组合数,而后一个公式则主要用于对含有字母的式子进行化简和论证.
2.在解含组合数的方程或不等式时,一定要注意组合数的上、下标的限制条件.
(学生活动)交流讨论,总结记录.
设计意图:由“实践——认识——一实践”的认识论,教学时抓住“学习—一练习——反馈———小结”这些环节,使教学目标得以强化和落实.
(三)小结
(师生活动)共同小结.
本节主要内容有
1.组合概念.
2.组合数计算的两个公式.
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题.
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.
作业参考答案
2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.
3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.
探究活动
同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?
解 设四人分别为甲、乙、丙、丁,可从多种角度来解.
解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:
甲拿乙制作的贺卡时,则贺卡有3种分配方法.
甲拿丙制作的贺卡时,则贺卡有3种分配方法.
甲拿丁制作的贺卡时,则贺卡有3种分配方法.
由加法原理得,贺卡分配方法有3+3+3=9种.
解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.
正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).
逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).
说明(1)对一类元素不太多而利用排列或组合计算公式计算比较复杂,且容易重复遗漏计算的排列组合问题,常可采用直接分类后用加法原理进行计算,如本例采用解法一的做法.
(2)设集合 ,如果S中元素的一个排列 满足
教案高中数学怎么写篇6
高中数学备课教案模板(通用2篇)
高中数学备课模板篇1
一、教学目标:
知识与技能:了解直线参数方程的条件及参数的意义
过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:曲线参数方程的定义及方法
教学难点:选择适当的参数写出曲线的参数方程.
三、教学方法:启发、诱导发现教学.
四、教学过程
(一)、复习引入:
1.写出圆方程的标准式和对应的参数方程。
圆参数方程(为参数)
(2)圆参数方程为:(为参数)
2.写出椭圆参数方程.
3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程?
(二)、讲解新课:
1、问题的提出:一条直线L的倾斜角是,并且经过点P(2,3),如何描述直线L上任意点的位置呢?
如果已知直线L经过两个
定点Q(1,1),P(4,3),
那么又如何描述直线L上任意点的
位置呢?
2、教师引导学生推导直线的参数方程:
(1)过定点倾斜角为的直线的
参数方程
(为参数)
【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t的几何意义是指从点P到点M的位移,可以用有向线段数量来表示。带符号.
(2)、经过两个定点Q,P(其中)的直线的参数方程为。其中点M(X,Y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点M分有向线段的数量比。当时,M为内分点;当且时,M为外分点;当时,点M与Q重合。
(三)、直线的参数方程应用,强化理解。
1、例题:
学生练习,教师准对问题讲评。反思归纳:
1)求直线参数方程的方法;
2)利用直线参数方程求交点。
2、巩固导练:
补充:
1)直线与圆相切,那么直线的倾斜角为(A)
A.或B.或C.或D.或
2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则.
解:直线化为普通方程是,
该直线的斜率为,
直线(为参数)化为普通方程是,
该直线的斜率为,
则由两直线垂直的充要条件,得,。
(四)、小结:
(1)直线参数方程求法;
(2)直线参数方程的特点;
(3)根据已知条件和图形的几何性质,注意参数的意义。
(五)、作业:
补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______
【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。
解析:由题直线的普通方程为,故它与与的距离为。
五、:
高中数学备课教案模板篇2
一、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本P12练习1、2P18习题1.2A组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
教案高中数学怎么写篇7
一、设计思想
本节课是数列的起始课,着重研究数列的概念,明确数列与函数的关系,用函数的思想看待数列。通过引导学生通过对实例的分析体会数列的有关概念,并与集合类比,通过类比,学生能认识到数列的明确性、有序性和可重复性的特点。在体会数列与集合的区别中,学生意识到数列中的每一项与所在位置有关,并通研究数列的表示法,学生意识到数列中还有潜在的自变量——序号,从而发现数列也是一种特殊的函数,能用函数的观点重新看待数列。
二、教学目标
1.通过自然界和生活中实例,学生意识到有序的数是存在的,能概况出数列的概念,并能辨析出数列和集合的区别;
2.通过思考数列的表示,学生意识到可以用表达式简洁的表达数列,能分析出数列的项是与序号相关,需要借助于序号来表示数列的项;
3.在用表达式表示数列的过程中,学生发现项与序号的对应关系,认识到数列是一种特殊的函数,能用函数的观点重新研究数列;
4.通过对一列数的观察,能用联系的观点看待数列,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
5.从现实出发,学生能抽象出现实生活中的数列
重点:理解数列的概念,认识数列是反映自然规律的基本数学模型难点:认识数列是一种特殊的函数,发现数列与函数之间的关系
三、教学过程
活动一:生活中实例,概括出数列的概念
1.背景引入:
观察以下情境:
情境1:各年树木的枝干数:1,1,2,3,5,8,...情境2:某彗星出现的年份:1740,1823,1906,1989,2072,...
情境3:细胞分裂的个数:1,2,4,8,16,...情境4:A同学最近6次考试的名次17,18,5,8,10,8
情境5:奇虎360最近一个周每日的收盘价:
问题1:以上各情境中都有一系列的数,你看了这些数,有什么感受?
或者有什么共同特征?
共同特点:
(1)排成一列,可以表达信息
(2)顺序不能交换,否则意义不一样.
设计思想:通过例子,学生感受到数列在现实生活中是大量存在的,一列数的顺序是蕴含信息的,从而感受到数列的有序性。
2.数列的概念
(1)数列、项的定义:
通过上述的例子,让学生思考以上一列数据共同的特征,从而归纳出数列的定义:
按照一定次序排列的一列数称为数列,数列中的每一个数叫做这个数列的项。问题2:能否用准确的语言给我描述一下情境4中的数列?
设计思想:通过让学生描述,学生再次体会数列中除了数之外,还蕴含着重要的信息:序号。
问题3:这两个数都是8,表示的含义是否一样?
不一样,第四项,第六项,即每一项结合序号才有意义,所以,描述数列的项时必须包含位置信息,即序号。
排在第一位的叫首项,排在第二位的叫第二项……排在第n位的数
问题4:根据对数列的理解,你能否举出数列的例子?
答:我校高一年级各班的人数。
问题5:能否抽象出数列的一般形式?
a1,a2,a3,...,an,...,记为?an?
(2)数列与集合的区别
问题6:数列是集合吗?
通过与集合的特点进行对比,更清楚的数列的特点。
让学生与前一章学习的集合做比较,可以更清楚的了解到数列的本质性的定义。也符合建构主义的旧知基础上形成新知的有效学习。
(3)数列的分类?能不能不讲?
活动二:思考数列的表示——通项公式
3.通项公式的概念
问题7:对于上述情境中的数列,有没有更简洁的表示方式?
学生活动:学生可能会用序号n来表示,问学生为什么用n来表示,引出通项公式的概念
一般地,如果数列?an?的第n项与序号n之间的关系可以用一个公式来表示.那么这个公式叫做这个数列的通项公式.
4.通项公式的存在性
问题8:是否任意一个数列都能写出通项公式?
写出通项公式
活动三:用函数的观点看待数列
5.数列也是函数
问题9:在数列?an?中,对于每一个正整数n(或n??1,2,...,k?),是不是都有一个数an与之对应?
问题10:数列是不是函数?
通过前铺垫,学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是函数。
把序号看作看作自变量,数列中的项看作随之变动的量,用函数的观点来深化数列的概念。
6.用函数的观点看待数列
问题11:所以,除了用解析式表示数列,还有哪些方法?
再从函数的表示方法过渡到数列的三种表示方法:列表法,图象法,通项公式法。学生通过观察发现数列的图象是一些离散的点。
例2.已知数列?an?的通项公式,写出这个数列的前5项,并作出它的图象:(?1)nn(1)an?;(2).an?nn?12
问题12:数列的图象的特点是什么?
数列的图象是一些孤立的点。
通过学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是以特殊的函数,再从函数的表示方法过度到数列的三种表示方法:列表法,图象法,数列的通项。学生通过观察发现数列的图象是一些离散的点。最后通过通项求数列的项,进而升华到观察数列的前几项写出数列的通项。
【课堂小结】
1.数列的概念;
2.求数列的通项公式的要领.
教案高中数学怎么写篇8
一、说教材
1、从在教材中的地位与作用来看
《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
2、从学生认知角度看
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
3、学情分析
教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。
4、重点、难点
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法和公式的灵活运用。
公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。
二、说目标
知识与技能目标:
理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。
过程与方法目标:
通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。
情感与态度价值观:
通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。
三、说过程
学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:
1。创设情境,提出问题
在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。
此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。
设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔。
2、师生互动,探究问题
在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?
探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)
探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?
设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。
经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?
设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。
3、类比联想,解决问题
这时我再顺势引导学生将结论一般化,
这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。
设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。
对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)
再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)
设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。
4、讨论交流,延伸拓展
教案高中数学怎么写篇9
教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的&39;应用意识.
教学重点:1.等差数列的概念的理解与掌握.2.等差数列的通项公式的推导及应用.教学难点:等差数列“等差”特点的理解、把握和应用.教学过程:
Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子
Ⅱ.讲授新课10,8,6,4,2,…;21,21,22,22,23,23,24,24,252,2,2,2,2,…首先,请同学们仔细观察这些数列有什么共同的&39;特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点)它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数.也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.
1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.
2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得:(n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d即:an=a1+(n-1)d当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式.看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项.由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d
请同学们来思考这样一个问题.如果在a与b中间插入一个数A,使a、A、b成等差数列,那么A应满足什么条件?由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=.反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列.总之,A=a,A,b成等差数列.如果a、A、b成等差数列,那么a叫做a与b的等差中项.例题讲解[
例1]在等差数列{an}中,已知a5=10,a15=25,求a25.
思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.
思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算.思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.
[例2](1)求等差数列8,5,2…的第20项.分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项
答案:这个数列的第20项为-49.(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401.∴-401是这个数列的第100项.
Ⅲ.课堂练习
1.(1)求等差数列3,7,11,……的&39;第4项与第10项.
(2)求等差数列10,8,6,……的第20项.(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.2.在等差数列{an}中,
(1)已知a4=10,a7=19,求a1与d;
(2)已知a3=9,a9=3,求a12.
Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。
Ⅴ.课后作业课本P39习题1,2,3,4
教案高中数学怎么写篇10
教学目标
(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;
(2)能结合树形图来帮助理解加法原理与乘法原理;
(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;
(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;
(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。
教学建议
一、知识结构
二、重点难点分析
本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。
两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是, 做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。
三、教法建议
关于两个计数原理的教学要分三个层次:
第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).
第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):
①用0,1,2,……,9可以组成多少个8位号码;
②用0,1,2,……,9可以组成多少个8位整数;
③用0,1,2,……,9可以组成多少个无重复数字的4位整数;
④用0,1,2,……,9可以组成多少个有重复数字的4位整数;
⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;
⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.
第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理.
教学设计示例
加法原理和乘法原理
教学目标
正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.
教学重点和难点
重点:加法原理和乘法原理.
难点:加法原理和乘法原理的准确应用.
教学用具
投影仪.
教学过程设计
(一)引入新课
从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.
今天我们先学习两个基本原理.
(二)讲授新课
1.介绍两个基本原理
先考虑下面的问题:
问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?
因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.
这个问题可以总结为下面的一个基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.
请大家再来考虑下面的问题(打出片子——问题2):
问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?
这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法.
2.浅释两个基本原理
两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.
比较两个基本原理,想一想,它们有什么区别?
两个基本原理的区别在于:一个与分类有关,一个与分步有关.
看下面的分析是否正确(打出片子——题1,题2):
题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.
1~10中一共有N=4+2+1=7个合数.
题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?
第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.
题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.
从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.
(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)
进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.
也就是说:类类互斥,步步独立.
(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)
(三)应用举例
现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.
例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?
(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)
(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是
N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.
(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原理,得到不同的取法种数是N=m1×m2×m3=3×5×6=90.故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法.
(3)从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有3×5种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有3×6种方法;第三类办法是语文书、英语书各取1本,有5×6种方法.一共得到不同的取法种数是N=3×5+3×6+5×6=63.即,从书架任取不同科目的书两本的不同取法有63种.
例2 由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?
解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是N=4×5×5=100.
答:可以组成100个三位整数.
教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础.
(四)归纳小结
归纳什么时候用加法原理、什么时候用乘法原理:
分类时用加法原理,分步时用乘法原理.
应用两个基本原理时需要注意分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.
(五)课堂练习
P222:练习1~4.
(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)
(六)布置作业
P222:练习5,6,7.
补充题:
1.在所有的两位数中,个位数字小于十位数字的共有多少个?
(提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)
2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.
(提示:需要按三个志愿分成三步,共有m(m-1)(m-2)种填写方式)
3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?
(提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)
4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?
(提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语.
(1)N=5+2+3;(2)N=5×2+5×3+2×3)
教案高中数学怎么写篇11
近期,我开设了一节公开课《椭圆的几何性质1》。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。
一、要有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。
二、要能突出重点、化解难点
每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备例2时,就设置了三个小题,从易到难,便于学生理解接受。
三、要善于应用现代化教学手段
在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如解析几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。
四、根据具体内容,选择恰当的教学方法
每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。这节课是高三的复习课,我采取了让学生自己回忆讲述椭圆的几何性质,教师补充的方法,改变了传统的教师讲,学生听的模式,调动了学生的积极性。在例题的解决过程中,我也尽量让学生多动手,多动脑,激发学生的思维。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
五、关爱学生,及时鼓励
高中新课程的&39;宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
六、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解
决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
七、渗透教学思想方法,培养综合运用能力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
教案高中数学怎么写篇12
教学目标:
1、在新学期能够以积极的学习态度投入到学习中去,并用高昂的兴趣参与学习。
2、熟悉新学期音乐课的要求,并能够有意识的遵守,以良好的学习习惯规范自己在课堂中的表现。
教学重点:
养成良好的学习习惯
教学过程:
一.师生互相问好,拉近彼此的距离。
二.师生共同演绎节目,学生表演,老师表演,增进彼此感情,与孩子打成一片。
三.讲述新学期音乐课要求:
1、按时按顺序进入教室,不迟到,不早退。
2、进入教室不得高声喧哗打闹,保持安静状态。
3、认真保持教室卫生,不乱扔果皮纸屑,不随地吐痰。
4、课堂上发言积极有序,有礼有节,争做文明小学生。
5、做到爱护公共物品,轻拿轻放,损坏照价赔偿。
6、上课保持良好的状态,以积极的态度认真学习。
四、习惯养成训练,听音乐做出相关要求:
1、起立、坐下
2、安静
3、师生问好
4、请坐好
5、同桌面对
五、分组选拨,并对小组长提出要求
1、四人一小组
2、讲述课堂要求,小组合作学习,评价真实客观,学会欣赏别人;正当优秀小组,小组团结合作,富有创新;组长根据组员的表现,从纪律、学习习惯、上课表现上进行评价计分,获得3分就可获得一张绿卡。
小结:
希望第一节课能让师生互相留下印象,更好的进行今后的音乐教学,把音乐课上的更加的有声有色。
教案高中数学怎么写篇13
教学目标
知识目标等差数列定义等差数列通项公式
能力目标掌握等差数列定义等差数列通项公式
情感目标培养学生的观察、推理、归纳能力
教学重难点
教学重点等差数列的概念的理解与掌握
等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用
教学过程
由__《红高粱》主题曲“酒神曲”引入等差数列定义
问题:多媒体演示,观察————发现?
一、等差数列定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:…。
二、等差数列通项公式:
已知等差数列{an}的首项是a1,公差是d。
则由定义可得:
a2—a1=d
a3—a2=d
a4—a3=d
……
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。
分析:知道a1,d,求an。代入通项公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=—2,先求出通项公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。
解:由题意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
练习
1、判断下列数列是否为等差数列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
2、等差数列{an}的前三项依次为a—6,—3a—5,—10a—1,则a等于
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在数列{an}中a1=1,an=an+1+4,则a10=。
提示:d=an+1—an=—4
教师继续提出问题
已知数列{an}前n项和为……
作业
P116习题3。21,2
教案高中数学怎么写篇14
[核心必知]
1、预习教材,问题导入
根据以下提纲,预习教材P6~P9,回答下列问题、
(1)常见的程序框有哪些?
提示:终端框(起止框),输入、输出框,处理框,判断框、
(2)算法的基本逻辑结构有哪些?
提示:顺序结构、条件结构和循环结构、
2、归纳总结,核心必记
(1)程序框图
程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形、在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序、
(2)常见的程序框、流程线及各自表示的功能
图形符号名称功能
终端框(起止框)表示一个算法的起始和结束
输入、输出框表示一个算法输入和输出的信息
处理框(执行框)赋值、计算
判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”
流程线连接程序框
○连接点连接程序框图的两部分
(3)算法的基本逻辑结构
①算法的三种基本逻辑结构
算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的
②顺序结构
顺序结构是由若干个依次执行的步骤组成的这是任何一个算法都离不开的基本结构,用程序框图表示为:
[问题思考]
(1)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束吗?
提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束、
(2)顺序结构是任何算法都离不开的基本结构吗?
提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构、
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)程序框图的概念:
(2)常见的程序框、流程线及各自表示的功能:
(3)算法的.三种基本逻辑结构:
(4)顺序结构的概念及其程序框图的表示:
问题背景:计算1×2+3×4+5×6+…+99×100。
[思考1]能否设计一个算法,计算这个式子的值。
提示:能。
[思考2]能否采用更简洁的方式表述上述算法过程。
提示:能,利用程序框图。
[思考3]画程序框图时应遵循怎样的规则?
名师指津:
(1)使用标准的框图符号。
(2)框图一般按从上到下、从左到右的方向画。
(3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是一个具有超过一个退出点的程序框。
(4)在图形符号内描述的语言要非常简练清楚。
(5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序。
教案高中数学怎么写篇15
数列的相关概念
1.数列概念
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N--或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
教案高中数学怎么写篇16
本节课是《等比数列的前n项和》的第一课时,学生在学习了等比数列的概念、等差与等比数列的通项公式及等差数列的前n项和公式前提下学习的,对于本节课所需的知识点和探究方法都有了一定的储备。这节课我充分利用情境,激发学生兴趣,顺利导入本节课的内容。
本节课我用心准备、精心设计、潜心专研,是我上好这节课的前提。在教学过程中,我充分体现了教学目标,抓住了教学重点,解决了教学难点,更重要的是,全班学生心、神、情、与我深度融合。这节课的.内容是“等差数列的前n项和”与“等比数列”内容的延续,为学生后面学综合数列的求和做了铺垫,重点是推导等比数列的前n项和的公式以及公式的简单应用,难点是用错位相减法推导等比数列的前n项和公式以及公式应用中对q与1的讨论。本节课我注重从“知识传授”的传统模式转变为“以学生为主体”的参与模式,注重数学思想方法的渗透和良好的思维品质的养成,注重学生创造精神和实践能力的培养,这在一定的程度上,激活了学生的思维,但对教师的挑战也是不言而喻的,不仅要透彻理解教材的意图,还要有宽厚的知识积累和深厚的自学功底。
在等比数列求和的教学时,开始我给同学们说了一个故事,“在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。”为什么呢?同学们很好奇,于是有计算器的同学拿出了计算器,结果没有计算完,计算器就算不出来了。激发学生的兴趣,调动学习的积极性,于是引入主题,等比数列求和。
首先让学生回忆等差数列的求和公式的推导方法,结合自己的预习谈谈自己对课本上等比数列求和公式推导过程的理解,其本质是什么?这样做的目的是什么?此时教师根据学生们的讨论和展示,适时点拨,指出问题的关键。在用错位相减法推出等比数列前n项和公式过程中,做差后提醒同学们,接下来要做什么工作,注意什么,学生们自然知道分母不能为零,因而知道了等比数列前n项和公式是分情况讨论的,为什么会有公比为1和公比不为1两种情况。此时再提醒学生等差数列求和公式是一个公式的两种形式,而等比数列求和公式是两种不同情况下的公式。然后是对求和公式的简单应用。所以让学生经历等比数列前n项和公式的推导过程成了本节课的重点与难点,在改善学生的学习方式上,是让学生提出问题并解决问题来进行自主学习、合作学习与探究学习。
在教学环节上我利用小组合作学习、学生自主学习、小组讨论、学生展示、师生点评,教师总结升华,当堂检测等环节,有效地实现本节课的教学目标。在教学评价上我关注学生,不单纯看学生是否会解题,关键是看学生是否动脑,看学生的思维过程来肯定和鼓励,如在解决情景问题的过程中,学生跃跃欲试、情绪高涨、讨论激烈,可能会探究出多种解决方案,适时地鼓励与评价,使学生的进取心得到增强,是激发学生学习数学兴趣的有效途径。我通过对学生的评价,将知识点和思想方法又得到强化。
总之,这节课也有不足,容量大,知识丰富,渗透归纳与推理、错位相减法、从特殊到一般、类比推理、分类讨论等数学思想,对学生要求高。但通过课堂反应,教学效果好,这是我感到欣慰的地方。
教案高中数学怎么写篇17
教学内容背景材料:
义务教育课程标准实验教科书(人教版)二年级上册第八单元的排列与组合
教学目标:
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。
教学重点:
经历探索简单事物排列与组合规律的过程。
教学难点:
初步理解简单事物排列与组合的不同。
教具准备:
乒乓球、衣服图片、纸箱、每组三张数字卡片、吹塑纸数字卡片。
一、情境导入,展开教学
今天,王老师要带大家去“数学广角”里做游戏,可是,我把游戏要用的材料都放在这个密码包里。你们想解开密码取出游戏材料吗?(想)我给大家提供解码的3个信息。
1.好,接下来老师提供解码的第一个信息:密码是一个两位数。(学生在两位数里猜)(你们猜的对不对呢?请听第二个解码信息)
2.下面,提供解码的第二个信息:密码是由2和7组成的(学生说出27和72)。能说说看你是怎么想的吗?
3.下面,提供解码的第三个信息:刚才说了密码可能是27也可能是72。其实这个密码和老师的年龄有关。哪个才是真正的密码是?(学生说出是27)到底是不是27呢?请看(教师出示密码)。真的是27,恭喜大家解码成功!
二、多种活动,体验新知
1、感知排列
师:请小朋友先到“数字宫”做个排数字游戏,好吗?这有两张数字卡片(1、2)(老师从密码包里拿出),你能摆出几个两位数?(用数字卡摆一摆)
生:我摆了两个不同的数字12和21。(教师板书)
师:同学们想得真好。我又请来了一位好朋友数字3,现在有三个数字1、2、3,让大家写两位数,你们不会了吧?(会)别吹牛!(真的会)好,下面大家分组合作,组长记录。看看你们能够写出几个不同的两位数,注意不要重复,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。好,开始。
学生活动教师巡视并参与学生活动。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)哪组同学来给大家汇报一下。(教师板书结果。)有没有需要补充的呀?
2、探讨排列方法。
有的小组摆出4个不同的两位数,有的小组摆出6个不同的两位数,有什么好的方法能保证既不重复,也不漏掉数呢?还请大家分组讨论。看一看哪组同学的方法最好!(小组讨论,分组交流,学生总结方法。)哪组同学来给大家汇报一下你们的想法?
方法1:我摆出12,然后再颠倒就是21,再摆23,颠倒后就是32,再摆13,颠倒后就是31,一共可以摆出6个两位数。
方法2:我先把数字1放在十位上,然后把数字2和3分别放在个位组成12和13;我再把数字2放在十位上,然后把数字1和3分别放在个位组成21和23;我再把数字3放在十位上,然后把数字1和2分别放在个位上组成31和32,一共摆出了6个两位数。3、老师和学生共同评议方法:让学生选择自己喜欢的方法再摆一摆,学生试着总结。(如果学生说不出方法2,老师就直接告诉学生)
3、感知组合。
①师:你们真是一群善于动脑的好孩子。来,咱们握握手,祝贺祝贺!加油!123
②提出问题:从大家刚才握手,老师想出了一个数学问题:三个小朋友,每两个人只能握一次手,一共要握几次手呢?想一想!
生1:6次!
生2:4次!
师:到底是几次呢?请小组长作裁判,小组内的三个同学,试一试,到底是几次?
③学生汇报表演。小组长指挥说明。哪组同学愿意给大家表演一下?他们握手,咱们一起来数吧!教师引导学生一起数握手的次数。(注意握过小朋友一边休息)
④师问:A和B握手了吗?B和A握手了吗?这算一次还是两次呀?
⑤小结:看来,两个人相互握手,只能算一次,和顺序无关。刚才排数,交换数的位置,就变成另一个数了,这和顺序有关。
三、反馈练习,加深理解
下面大家看这是什么呀?(老师从密码包里拿出一个乒乓球)(乒乓球)这个是我昨天专门买来的。定价5角。当时我的口袋里有1张5角的、2张2角,还有5个1角的硬币。(师出示所述人民币)大家想一想我有多少种方法付给老板钱呢?(老师引导学生有序的说出付钱的四种方法)
有了乒乓球,老师就可以教大家打乒乓球了。不过我要先考考大家。每两个人进行一场比赛,三个人要比几场?(指名答。)好的,大家真能干。下课老师就教你们的乒乓球好吗?(好)。
今天是几月几日?(12月1日)哦!快到元旦了。小明准备在数学广角举办的元旦晚会上露一手。来一个时装表演。他准备了4件衣服(教师贴出2件上衣和2件裤子),请你帮他设计一下,有几种穿法?谁来说一说?(指名答出四种穿法并演示)
大家感觉一下只有4种穿法,是不是有点少了呀?(是)小明也和大家想到一块去了。于是他又用自己的零花钱买了一条黑裤子(贴出)。大家再想一想现在一共有多少种穿法了呀?(6种)除了刚才的4种,还有哪2种,谁来说一说?(生答完后,老师再引导学生有序地回忆6种穿法)同学们真聪明。我在这里代表小明向大家说一声:谢谢了!(没关系)。对了。到时候我们一定要去看小明的精彩表演!好不好?(好)
四、游戏活动,拓展应用
1、老师看大家学得这么开心,我们来做个抽奖游戏,想参加吗?每个小朋友都有中奖的机会哦。
①教师出示4个号球:老师这这里有四个号球:2、5、7、8。
②什么样的号码能中奖呢?我给你们透露点信息:中奖号码就是从这4个数中选出的两个数组成的两位数。猜猜,什么号码可能中奖?这个号码可能中奖。再猜?你这个号码也可能中奖。看来,可能中奖的号码有很多个。有什么好办法肯定能中奖?(把你认为能中奖的号码都写出来吧)(把用这四个数能组成的所有两位数都写出来,教师巡视,有的孩子写出来8个两位数,她还在继续写,看来不止8个。你写得越多你中奖的可能就越大)
③写好了吗?大家推举一个人来摸奖吧。老师来当公证员行不行?学生先摸出一个球。中奖号码的最前面一个数出来了,是2,那中奖号码可能是?25、27、28。再摸一个球。中奖号码是?
④你中奖了吗?把你写出的这个数圈出来。同桌互相看看,如果你同位中奖了,请你给他画一面小红旗。
⑤出示所有结果:孩子们,你刚才一共写出了多少个两位数?用2、5、7、8能组成的两位数究竟有多少个呢?咱们用刚才先固定最前面一位数的办法把这些数都排出来吧!老师写,你们说,好吗?
2、老师给今天这节课表现最好的三位同学一张合影,请同学们想一想,三个人站成一行,一共有多少种不同的排法?(指名答,教师总结)
这种排法刚才有没有呀?我也糊涂了。怎样才能搞清楚呢?对了,我们也可以用刚才先固定最前面一位数的方法来排一排。(教师引导学生有顺序的排一排)这样有顺序的排一下,我们都清楚了。看来我们以后,不管在生活和学习中,做什么事情,想什么问题都要有顺序的思考,这样才能考虑全面。其实生活中有许多有趣的数学问题,不管有多难,只要大家肯动脑筋,就一定能解决。对不对?(对)
五、全课总结,升华情感
在数学广角中还有许多地方等着大家去游玩,由于时间关系,今天我们大家就玩到这里。今天你这节课最高兴的是什么事?
六、板书设计
排列组合
121232578
1221122331252728
213213525758
727578
828587
教案高中数学怎么写篇18
1.树立新型的数学教学观念,明确数学的实用意义
高中数学是人类对社会认识的重要方面,也是一门极具实用性的基础性学科。教师在进行数学教学的过程中,要将数学知识背后蕴含的文化背景与文化知识传达给学生,让学生从基础的数学知识中掌握真正的数学思维,学会运用数学技巧解决生活中的实际问题,要让学生明确数学所蕴含的社会意义,以更好地培养数学理念,使学生更好地运用数学,对数学产生真正的兴趣。
2.提升教师的教学素质,转变教师角色定位
在新课程标准下,教师在数学教学中的角色由控制者转变为引导者。因此,教师必须要学会提升自身的素质,转变教学观念,通过良好的师风师德引导学生积极投入到学习过程中。学校要定期进行培训,加强学校之间的交流,通过互相学习、合作提升教师的素质,促进教师角色的转变。教师要在教学的过程中重视对学生个性的激发以及学生创新精神的鼓励,教师要引导学生主动发表自身对学习问题的看法,要让学生成为真正的主人,促进学生多元思维的发展。
3.合理运用信息技术,培养学生的科学思维
高中数学教学过程中,信息技术的应用必不可少,但是也不能过分强调信息技术的作用。教师在教学过程中,要充分把握数学知识的特点,要将抽象的数学概念、知识框架等内容通过多媒体技术转化为形象具体的画面以利于学生的理解和吸收,但是对于那些需要进行基础性训练、推理论证的问题,要让学生亲手进行实践分析。教师可以利用科学性的计算器或者技术教育平台,推广计算机技术在数学领域的运用,要充分重视学生的地域性特征,在学生对计算机技术已经形成基本认识的基础上进行新课标内容的讲解和分析,防止出现盲目追求进度,忽视学生基础等问题的发生。
教案高中数学怎么写篇19
【教学目标】
1、知识与技能:
(1)掌握圆的标准方程。
(2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。
(3)会判断点与圆的位置关系。
2、过程与方法:
(1)进一步培养学生用代数方法研究几何问题的能力。
(2)加深对数形结合思想的理解和加强待定系数法的运用。
3、情感、态度与价值观:
(1)培养学生主动探究知识、合作交流的意识。
(2)让学生感受数学,体验数学;从走入数学到走出数学,生活处处有数学,数学就在我身边,体会到数学知识、思想方法和精神来源于生活,还要服务于生活;寓思想教育于教学。让学生体会到数学的美以及数学的价值与魅力。
【学情分析】
对圆的方程有个初步的认识以及在上章学习了直线与方程的基础上,学习圆的方程,学生还是可以接受。在教学过程中,主要采用启发性原则,并且与已经学过的直线方程进行类比,发挥学生的思维能力、想象能力,由易到难,逐步加深。
【重点难点】
重点:圆的标准方程和圆的标准方程特点的明确。
难点:会根据不同的条件写出圆的标准方程。
【教学过程】
第一学时评论(0)教学目标
教学活动活动1【导入】新闻联播片段
请结合数学中圆知识,谈谈你对这句话的理解?
活动2【讲授】问题1.
在直角坐标系中,以A(a,b)为圆心,r为半径的圆上的动点M(x,y)满足怎样的关系式?
活动3【活动】想一想!
圆心在坐标原点,半径长为r的圆的方程是什么?
活动4【导入】试试你的眼力!判断下列方程是否为圆的标准方程:
(x-2)2+y=8;
(x-2)2-y2=8;
(2x-2)2+y2=8;
(x-2)2+y2=0;
(x-2)2+y2=a;
(2x-2)2+(2y-4)2=8。
答案:都不是,第6个可以化为圆的标准方程。
活动5【活动】再试一下!
圆(x1)2+(ay2)2=1a的圆心坐标和半径分别是什么?
答案:圆心坐标为(1,—2),半径是√2
活动6【活动】问题2.
要写出圆的标准方程,只需知道圆的哪些量?
怎样判断一点是否在一个圆上?
学生回答,教师点评.
活动7【活动】例1
写出圆心为A(2,-3),半径长为5的圆的方程,并判断点M1(5,7),M2((√5,1)是否在这个圆上。
学生回答,教师点评后,学生阅读教科书上本题解法.
活动8【活动】探究
你能判断点M2在圆内还是在圆外吗?
学生回答,教师点评。
点与圆心距离比半径大等价于点在圆外。
点与圆心距离比半径小等价于点在圆内。
点与圆心距离等于半径等价于点在圆外等价于点的坐标满足方程。
活动9【讲授】解题收获
1.从确定圆的两个要素即圆心和半径入手,直接写出圆的标准方程——直接法。
2.类似于点与直线方程的关系:点在圆上等价于点坐标满足圆方程活动10【活动】试一试!
例2△ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.
师:△ABC的外接圆的圆心简称什么?
学生回答
师:△ABC的外心是什么的交点?
学生回答
师:求圆的标准方程,只需知道圆心坐标和圆的半径。这三点都在圆上,其坐标一定是满足所求圆的方程。这样就可以设出圆的标准方程。
学生阅读教材例2解法。
师:提示:方程组中
(1)(2)得到什么?
(1)(3)得到什么?
然后,怎样就可以求出圆心坐标和半径。
活动11【讲授】解题收获
先设出圆的标准方程,再根据已知条件建立方程组,从而求出圆心坐标和半径的方法——待定系数法。
活动12【活动】动手折一折
请同学们准备一个锐角三角形纸片,能否用手工的方法找到此三角形外接圆的圆心?
学生回答过程.
把三角形的任意两个顶点重合进行对折,就可以得到边的垂直平分线,垂直平分线的交点即是三角形的外心。
师:把圆的弦对折,折线一定经过圆心。即圆心一定在弦的垂直平分线上。
活动13【活动】Let’stry
例3已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线m:x-y+1=0上,求圆心为C的圆的标准方程。
由学生阅读例3,学生总结解题步骤。
活动14【讲授】解题收获
由圆的几何性质直接求出圆心坐标和半径,然后写出标准方程——几何性质法。
活动15【活动】小结
一个方程
三种方法
一种思想
活动16【讲授】作业布置
作业:教材P124习题A组第2题和第3题.
课下探究:
(1)平面内到一定点的距离等于定长的点轨迹是圆。点的轨迹是圆的方法很多,请试着找出来,并和其他同学交流。
(2)直线方程有五种形式,圆除了标准方程,还有其它形式吗?
活动17【导入】结束语
圆心半径确定圆,
待定系数很普遍;
大家站在同一圆,
彰和谐平等友善;
半径就像无形线,
把大家心聚一点;
垂直平分折中线,
就能折出同心愿;
中国腾飞之梦圆。
活动18【测试】课堂测试
1.圆C:(x2)2+(y+1)2=3的圆心坐标为()
A(2,1)B(2,—1)C(—2,1)D(—2,—1)
2.以原点为圆心,2为半径的圆的标准方程是()
Ax2+y2=2Bx2+y2=4
C(x2)2+(y2)2=8Dx2+y2=√2
3圆心为(1,1)且与直线x+y=4相切的圆的方程是()
A(x1)2+(y1)2=2B(x1)2+(y1)2=4
C(x+1)2+(y+1)2=2D(x+1)2+(y+1)2=4
4圆A:(ax+2)2+y2=a+3,则此圆的半径为______________。
5已知一个圆的圆心在点C(—3,—4),且经过原点。
(1)求该圆的标准方程;
(2)判断点M(—1,0),N(1,—1),P(3,—4)和圆的位置关系。
6.已知△AOB的顶点坐标分别是A(8,0),B(0,6),O(0,0),求△AOB外接圆的方程.
7求过点A(1,—1)B(—1,1)且圆心在直线x+y2=0上的圆方程
参考答案:1B2B3A42或√2
5(1)(x+3)2+(y+4)2=25
(2)M在圆内,N在圆上,P在圆外。
6(x4)2+(y3)2=25。
7(x1)2+(y1)2=4
教案高中数学怎么写篇20
教学内容:习惯的养成(养成教育)
教学目标:
1.用轻松亲切的语调,让孩子们对小学生活有一个感性的认识。
2.培养卫生习惯、生活习惯、学习习惯、爱护公物的习惯。
3.通过学习,让孩子们对小学生活满怀美好的憧憬。
教学过程:
师:小朋友们好!首先祝贺小朋友们光荣地成为了一名小学生!老师看到每一个孩子的笑脸,真高兴啊,你们就像花儿一样,老师非常喜欢你们!
(在黑板上写一个大大的“聪”字)
师:认识这个字吗?
生:聪!
师:对,聪明的聪。你们想不想成为一个聪明的孩子?
生:想!
师:怎么样才能成为聪明的孩子呢?我们来看,“聪”字是由耳朵、眼睛、嘴巴,还有一个“心”字组成的。小朋友们,我们只要会用耳朵听,会用眼睛看,会用嘴巴说,再会用心去做,你就一定会是一个聪明的好孩子。你能做到吗?下面我们开始试一试啦!
首先是会用耳朵听。听老师说话要专心,不能东张西望,听同学发言,要注意听他回答对了没有,如果你还有想法,就举手说出你的想法。谁听懂了?(试问学生)
第二要会用眼睛看。你看到我们的教室干净吗?那是昨天我和曾老师花了很长时间打扫的。那绿色的很新的墙群是我和曾老师亲自粉刷的。所以,请同学们不要用手去摸,更不要用脚去踢,就像爱护我们的眼睛一样地去爱护它,谁能做得到?
第三要会用嘴巴说话。上课时,老师提问后,请你把小手举起来,回答问题要响亮,让全班小朋友都听得到,每个小朋友都要会用你的小嘴巴表达哦!
我们会用耳朵听,会用眼睛看,会用嘴巴说,是不是就很聪明了呢?不,最重要的是要会用心去听,会用心去看,会用心去说,一句话,就是做什么事都要用心去做,才是真正聪明的孩子。
聪明的孩子要做到以下几点:
一、爱护公物。学校的一草一木,一桌一椅,学校里所有的东西都要爱护。不踩花,不摘花,不踩草坪,不摘树叶,不在桌子上乱刻乱画,不在教室里追逐打闹。我们学校的操场正在施工,请小朋友们不要到操场上玩耍。
二、讲究卫生。上厕所时,不能在厕所外面随处大小便,要进到厕所里指定的位置,你能做到了吗?(课后,带队去看男女厕所的位置)在家里,每天早晚要刷牙,勤洗澡,勤换衣服,勤剪指甲。不随地吐痰,预防传染病。
三、爱惜粮食。早餐要吃完,午托的中餐要吃完,要多少就吃多少。今天,老师想看看谁是最爱惜粮食的好孩子。(放晚学前总结)
四、排路队时要做到快、静、齐。教给大家我编的儿歌:“排路队,手牵手,不说话,排整齐。”走出校门后,如果找不到家长,不要自己回,要找到老师,或者回到校门口等家长来接。
五、我们是小学生了,不能带玩具来学校玩,也不要带钱来买零食吃。现在天气炎热,我们每天要从家里自己带来一瓶水,多喝水,既清嗓来又防病,听明白了吗?我相信我们一(7)班的小朋友一定会成为一个聪明的讲文明的小学生。
后记:今天加班打印各种材料,包括开学初的养成教案。不知不觉已到教师节。祝各位同行教师节快乐!天天开心!