高中数学教案大全
好的教案应该包括合理的教学过程,包括导入新课、讲授新课、巩固练习、课堂小结、布置作业等环节。这里分享一些高中数学教案大全下载,供大家写高中数学教案大全参考。
高中数学教案大全篇1
教学内容:
简单的排列组合
教学目标:
1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。
2.培养学生有序地、全面地思考问题的意识和习惯。
教学过程:
1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。
2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。
3、出示练习二十五第3题。
学生看题后,四人小组讨论出有多少种求组合数的方法。
4、学生汇报。
(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。
(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。
(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。
(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。
2.“做一做”
(1)练习二十五第7题。
通过活动的方式让学生不重不漏地把所有取钱的情况写出来。
(2)练习二十五第9题。
用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。
高中数学教案大全篇2
一、设计思想
本节课是数列的起始课,着重研究数列的概念,明确数列与函数的关系,用函数的思想看待数列。通过引导学生通过对实例的分析体会数列的有关概念,并与集合类比,通过类比,学生能认识到数列的明确性、有序性和可重复性的特点。在体会数列与集合的区别中,学生意识到数列中的每一项与所在位置有关,并通研究数列的表示法,学生意识到数列中还有潜在的自变量——序号,从而发现数列也是一种特殊的函数,能用函数的观点重新看待数列。
二、教学目标
1.通过自然界和生活中实例,学生意识到有序的数是存在的,能概况出数列的概念,并能辨析出数列和集合的区别;
2.通过思考数列的表示,学生意识到可以用表达式简洁的表达数列,能分析出数列的项是与序号相关,需要借助于序号来表示数列的项;
3.在用表达式表示数列的过程中,学生发现项与序号的对应关系,认识到数列是一种特殊的函数,能用函数的观点重新研究数列;
4.通过对一列数的观察,能用联系的观点看待数列,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
5.从现实出发,学生能抽象出现实生活中的数列
重点:理解数列的概念,认识数列是反映自然规律的基本数学模型难点:认识数列是一种特殊的函数,发现数列与函数之间的关系
三、教学过程
活动一:生活中实例,概括出数列的概念
1.背景引入:
观察以下情境:
情境1:各年树木的枝干数:1,1,2,3,5,8,...情境2:某彗星出现的年份:1740,1823,1906,1989,2072,...
情境3:细胞分裂的个数:1,2,4,8,16,...情境4:A同学最近6次考试的名次17,18,5,8,10,8
情境5:奇虎360最近一个周每日的收盘价:
问题1:以上各情境中都有一系列的数,你看了这些数,有什么感受?
或者有什么共同特征?
共同特点:
(1)排成一列,可以表达信息
(2)顺序不能交换,否则意义不一样.
设计思想:通过例子,学生感受到数列在现实生活中是大量存在的,一列数的顺序是蕴含信息的,从而感受到数列的有序性。
2.数列的概念
(1)数列、项的定义:
通过上述的例子,让学生思考以上一列数据共同的特征,从而归纳出数列的定义:
按照一定次序排列的一列数称为数列,数列中的每一个数叫做这个数列的项。问题2:能否用准确的语言给我描述一下情境4中的数列?
设计思想:通过让学生描述,学生再次体会数列中除了数之外,还蕴含着重要的信息:序号。
问题3:这两个数都是8,表示的含义是否一样?
不一样,第四项,第六项,即每一项结合序号才有意义,所以,描述数列的项时必须包含位置信息,即序号。
排在第一位的叫首项,排在第二位的叫第二项……排在第n位的数
问题4:根据对数列的理解,你能否举出数列的例子?
答:我校高一年级各班的人数。
问题5:能否抽象出数列的一般形式?
a1,a2,a3,...,an,...,记为?an?
(2)数列与集合的区别
问题6:数列是集合吗?
通过与集合的特点进行对比,更清楚的数列的特点。
让学生与前一章学习的集合做比较,可以更清楚的了解到数列的本质性的定义。也符合建构主义的旧知基础上形成新知的有效学习。
(3)数列的分类?能不能不讲?
活动二:思考数列的表示——通项公式
3.通项公式的概念
问题7:对于上述情境中的数列,有没有更简洁的表示方式?
学生活动:学生可能会用序号n来表示,问学生为什么用n来表示,引出通项公式的概念
一般地,如果数列?an?的第n项与序号n之间的关系可以用一个公式来表示.那么这个公式叫做这个数列的通项公式.
4.通项公式的存在性
问题8:是否任意一个数列都能写出通项公式?
写出通项公式
活动三:用函数的观点看待数列
5.数列也是函数
问题9:在数列?an?中,对于每一个正整数n(或n??1,2,...,k?),是不是都有一个数an与之对应?
问题10:数列是不是函数?
通过前铺垫,学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是函数。
把序号看作看作自变量,数列中的项看作随之变动的量,用函数的观点来深化数列的概念。
6.用函数的观点看待数列
问题11:所以,除了用解析式表示数列,还有哪些方法?
再从函数的表示方法过渡到数列的三种表示方法:列表法,图象法,通项公式法。学生通过观察发现数列的图象是一些离散的点。
例2.已知数列?an?的通项公式,写出这个数列的前5项,并作出它的图象:(?1)nn(1)an?;(2).an?nn?12
问题12:数列的图象的特点是什么?
数列的图象是一些孤立的点。
通过学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是以特殊的函数,再从函数的表示方法过度到数列的三种表示方法:列表法,图象法,数列的通项。学生通过观察发现数列的图象是一些离散的点。最后通过通项求数列的项,进而升华到观察数列的前几项写出数列的通项。
【课堂小结】
1.数列的概念;
2.求数列的通项公式的要领.
高中数学教案大全篇3
教学内容背景材料:
义务教育课程标准实验教科书(人教版)二年级上册第八单元的排列与组合
教学目标:
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有顺序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,激发学生学好数学的信心。
教学重点:经历探索简单事物排列与组合规律的过程
教学难点:初步理解简单事物排列与组合的不同
教具准备:教学课件
学具准备:每生准备3张数字卡片,学具袋
教学过程:
一、创设问题情境:
师:森林学校的数学课上,猴博士出了这样一道题(课件出示)用数字1、2能写出几个两位数?问题刚说完小动物们都纷纷举手说能写成两个数:12、21。接着猴博士又加上了一个数字3,问:“用数字1、2、3能写出几个两位数呢?”小猪站起来说能写成3个,小熊说5个,小狗说7个,到底能写出几个呢?用学生感兴趣的童话故事引入,易于激发起学生探究的兴趣,同时也向学生渗透助人为乐的品德教育。
1.自主合作探索新知
试一试
师:请同学们也试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。
学生活动教师巡视。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)引导学生根据自己的实际情况选择不同的方法探究新知,体现了不同的孩子用不同的方式学习数学这一新的教学理念,易于吸引不同层次的学生积极主动的参与到活动中来。
2.发现问题
学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复写了,有的漏写了。
引导学生发现写数过程中出现的问题,并就此展开讨论、交流,遵循了学生的认知特点。学生在交流的过程中体验到解决问题方法的多样性,并根据自己的实际选择不同的方法,尊重了学生的主体地位。在此过程中学生收获的不仅是知识本身,更多的是能力、情感。
3.小组讨论
师:每个同学写出的个数不同,怎样才能很快写出所有的用数字1、2、3组成的两位数,并做到不重复不遗漏呢?
学生以小组为单位交流讨论。
4.小组汇报
汇报时可能会出现下面几种情况:
1、无序的。
2、先写出1在十位上的有12、13;再写出2在十位上的有21、23;再写出3在十位上的有31、32。
3、用数字1、2能写出12、21;用数字2、3能写出23、32;用数字1、3能写出13、31。
4、引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。
5.小结
教师简单小结学生所想方法引出练习内容。
6、拓展应用
数字2、3、4、5、出个两位数?写完交流。(或者也可用这样一道题:用△○□能摆成6种排法,例如:□○△
请你试着摆出其他几种排法。学习的目的是为了应用,让学生自主的选择方法进行练习,有利于培养学生的自主学习的能力。
二、组合
故事引入
师:下课了小狗、小熊、小猪做“找朋友”的游戏,好朋友见面之后要握握手,每两只小动物握一次手,小狗、小熊、小猪一共握几次手?怎样握?用同一条故事主线贯穿整节课的始终,以问题串的形式展开全课,能让学生始终保持浓厚的学习兴趣,充分体验到数学与生活的联系。
探索新知
学生在充分独立思考的基础上展开小组交流,并3人一组亲身实践一下。
汇报思考的过程。
三、比较
师:刚才我们帮森林学校的小动物们解决了用数字1、2、3能写几个两位数;3只小动物每两个握一次手共握几次手的问题,森林学校的小动物们直夸同学们聪明呢!通过解决这两个问题你发现了什么?
生可能说用3个数字能写出6个两位数,3只小动物每两人握一次手共握3次。
引导学生明确排列与顺序有关而组合与顺序无关。两只小动物握一次手个?通过比较明确两种问题的同与不同,便于建立起清晰的知识结构,进一步深化学生的认识。
四、拓展应用
1.小狗要参加学校的时装表演,妈妈为它准备了4件衣服(课件出示2件上衣、2件裤子的图片),请你帮小狗设计一下共有多少种穿法。如果需要的话可以用学具摆一摆。
交流想法。在儿童的生活经验里积累了一些搭配衣服,购物花钱的知识经验,所以学生乐于参与。
2.完成课本99页的第2题
五、课堂总结
高中数学教案大全篇4
教学目标
(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;
(2)能结合树形图来帮助理解加法原理与乘法原理;
(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;
(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;
(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。
教学建议
一、知识结构
二、重点难点分析
本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。
两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是, 做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。
三、教法建议
关于两个计数原理的教学要分三个层次:
第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).
第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):
①用0,1,2,……,9可以组成多少个8位号码;
②用0,1,2,……,9可以组成多少个8位整数;
③用0,1,2,……,9可以组成多少个无重复数字的4位整数;
④用0,1,2,……,9可以组成多少个有重复数字的4位整数;
⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;
⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.
第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理.
教学设计示例
加法原理和乘法原理
教学目标
正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.
教学重点和难点
重点:加法原理和乘法原理.
难点:加法原理和乘法原理的准确应用.
教学用具
投影仪.
教学过程设计
(一)引入新课
从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.
今天我们先学习两个基本原理.
(二)讲授新课
1.介绍两个基本原理
先考虑下面的问题:
问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?
因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.
这个问题可以总结为下面的一个基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.
请大家再来考虑下面的问题(打出片子——问题2):
问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?
这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法.
2.浅释两个基本原理
两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.
比较两个基本原理,想一想,它们有什么区别?
两个基本原理的区别在于:一个与分类有关,一个与分步有关.
看下面的分析是否正确(打出片子——题1,题2):
题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.
1~10中一共有N=4+2+1=7个合数.
题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?
第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.
题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.
从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.
(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)
进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.
也就是说:类类互斥,步步独立.
(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)
(三)应用举例
现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.
例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?
(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)
(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是
N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.
(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原理,得到不同的取法种数是N=m1×m2×m3=3×5×6=90.故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法.
(3)从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有3×5种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有3×6种方法;第三类办法是语文书、英语书各取1本,有5×6种方法.一共得到不同的取法种数是N=3×5+3×6+5×6=63.即,从书架任取不同科目的书两本的不同取法有63种.
例2 由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?
解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是N=4×5×5=100.
答:可以组成100个三位整数.
教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础.
(四)归纳小结
归纳什么时候用加法原理、什么时候用乘法原理:
分类时用加法原理,分步时用乘法原理.
应用两个基本原理时需要注意分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.
(五)课堂练习
P222:练习1~4.
(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)
(六)布置作业
P222:练习5,6,7.
补充题:
1.在所有的两位数中,个位数字小于十位数字的共有多少个?
(提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)
2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.
(提示:需要按三个志愿分成三步,共有m(m-1)(m-2)种填写方式)
3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?
(提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)
4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?
(提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语.
(1)N=5+2+3;(2)N=5×2+5×3+2×3)
高中数学教案大全篇5
说教材:
1、地位、作用和特点:
《》是高中数学课本第册(修)的第章“”的第节内容,高中数学课本说课稿。
本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是本章的重要内容。此外,《》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。
教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:A、B、C
(2)能力目标:A、B、C
(3)德育目标:A、B
教学的重点和难点:
(1)教学重点:
(2)教学难点:
二、说教法:
基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:
导入新课新课教学
反馈发展
三、说学法:
学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。
1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。
本节教师通过列举具体事例来进行分析,归纳出,并依
据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。
2、让学生亲自经历运用科学方法探索的过程。主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授时,可通过
演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。
3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。
4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。
四、教学过程:
(一)、课题引入:
教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。
(二)、新课教学:
1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。
2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。
(三)、实施反馈:
1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。
2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。
五、板书设计:
在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。
六、说课综述:
以上是我对《》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。
总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。
高中数学教案大全篇6
第二教时教材:
1、复习
2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:
一、复习:(结合提问)
1.集合的概念含集合三要素
2.集合的表示、符号、常用数集、列举法、描述法
3.集合的分类:有限集、无限集、空集、单元集、二元集
4.关于“属于”的概念
二、例一用适当的方法表示下列集合:
1.平方后仍等于原数的数集解:{x x2=x}={0,1}
2.比2大3的数的集合解:{x x=2+3}={5}
3.不等式x2-x-6<0的整数解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}
4.过原点的直线的集合解:{(x,y)y=kx}
5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}
6.使函数y=有意义的实数x的集合解:{x x2+x-60}={x x2且x3,xR}
三、处理苏大《教学与测试》第一课含思考题、备用题
四、处理《课课练》
五、作业《教学与测试》第一课练习题
高中数学教案大全篇7
一:说教材
平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。
二:说学习目标和要求
通过本节的学习,要让学生掌握
(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三:说教法
在教学过程中,我主要采用了以下几种教学方法:
(1)启发式教学法
因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法
主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!
主要辅助教学的手段(powerpoint)
(3)讨论式教学法
主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四:说学法
学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!
五:说教学过程
这节课我准备这样进行:
首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?
继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?
引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:
(1) 模的计算公式
(2)平面两点间的距离公式。
(3)两向量夹角的余弦的坐标表示
(4)两个向量垂直的标表示的充要条件
第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。
例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。
例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。
再配以练习,让学生能熟练的应用公式,掌握今天所学内容。
高中数学教案大全篇8
一.教学目标:
1.知识与技能:认识正弦、余弦定理,了解三角形中的边与角的关系。
2.过程与方法:通过具体的探究活动,了解正弦、余弦定理的内容,并从具体的实例掌握正弦、余弦定理的应用。
3.情感态度与价值观:通过对实例的探究,体会到三角形的和谐美,学会稳定性的重要。
二.教学重、难点:
重点:
正弦、余弦定理应用以及公式的变形
难点:
运用正、余弦定理解决有关斜三角形问题。
知识梳理
1.正弦定理和余弦定理
在△ABC中,若角A,B,C所对的边分别是a,b,c,则
(1)S=2ah(h表示边a上的高)
(2)S=2bcsinA=2sinC=2acsinB
(3)S=2r(a+b+c)(r为△ABC内切圆半径)
问题1:在△ABC中,a=3,b2,A=60°求c及BC问题2在△ABC中,c=6A=30°B=120°求ab及C
问题3在△ABC中,a=5,c=4,cosA=16,则b=
通过对上述三个较简单问题的解答指导学生总结正余弦定理的应用;正弦定理可以解决
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边和其他两角
余弦定理可以解决
(1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两角
我们不难发现利用正余弦定理可以解决三角形中“知三求三”知三中必须要有一边
应用举例
【例1】(1)(2013·湖南卷)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB3b,则角A等于()
A.3B.4C.6
(2)(20__·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=2,B=45°,则sinC=______.
解析(1)在△ABC中,由正弦定理及已知得2sinA·sinB=3sinB,∵B为△ABC的内角,∴sinB≠0.3
∴sinA=2又∵△ABC为锐角三角形,
∴A∈02,∴A=3
(2)由余弦定理,得b2=a2+c2-2accosB=1+32-2×2=25,即b=5.c·sinB
所以sinCb4
答案(1)A(2)5
【训练1】(1)在△ABC中,a=3,c=2,A=60°,则C=
A.30°B.45°C.45°或135°D.60°
(2)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sinC=3sinB,则A=
A.30°B.60°C.120°D.150°
解析(1)由正弦定理,得sin60°sinC,解得:sinC=2,又c<a,所以C<60°,所以C=45°
(2)∵sinC=23sinB,由正弦定理,得c=23b,b2+c2-a2-3bc+c2-3bc+3bc3∴cosA=2bc==2bc2bc2,又A为三角形的内角,∴A=30°.
答案(1)B(2)A
规律方法
已知两角和一边,该三角形是确定的,其解是唯一的;
已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断。
【例2】(20__·临沂一模)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC.(1)求角A的大小;
(2)若sinB+sinC=3,试判断△ABC的形状。
解(1)由2asinA=(2b-c)sinB+(2c-b)sinC,
得2a2=(2b-c)b+(2c-b)c,
即bc=b2+c2-a2,b2+c2-a21
∴cosA=2bc=2,
∴A=60°.
(2)∵A+B+C=180°,
∴B+C=180°-60°=120°
由sinB+sinC=3,
得sinB+sin(120°-B)=3,
∴sinB+sin120°cosB-cos120°sinB=3.33
∴2sinB+2B=3,
即sin(B+30°)=1.∵0°<b<120°,<p="">
∴30°<b+30°<150°.<p="">
∴B+30°=90°,B=60°.
∴A=B=C=60°,
△ABC为等边三角形.
规律方法
解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;
或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系。另外,在变形过程中要注意A,B,C的范围对三角函数值的影响。
课堂小结
1.在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解。
2.正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化.如a2=b2+c2-2bccosA可以转化为sin2A=sin2B+sin2C-2sinBsinCcosA,利用这些变形可进行等式的化简与证明。
高中数学教案大全篇9
六年级,让好习惯不离身
一、目标
“要做事,先做人”,“好习惯使人终生收益”。
二、数学学科行为训导内容
1、专心听
讲的习惯。
2、勤思好问的习惯。
3、预习习惯。
4、主动探究的习惯。
5、自觉作笔记的习惯。
6、独立完成作业的习惯。
三、教学过程
“同学们,为了能在20__年6月顺利毕业,你准备好了吗?”
老师知道,你们都是很优秀的,相信你们以后会做得更优秀。有没有信心?
(一)讲故事,感悟
第一个故事:一个人在高山之巅的鹰巢里,抓到了一只幼鹰,他把幼鹰带回家,养在鸡笼里。这只幼鹰和鸡一起啄食、嬉闹和休息,它以为自己是一只鸡。这只鹰渐渐长大,羽翼丰满了,主人想把它训练成猎鹰,可是由于终日和鸡混在一起,它已经变得和鸡完全一样,根本没有飞的愿望了。主人试了各种办法,都毫无效果,最后把它带到山顶上,一把将它扔了出去。这只鹰像块石头似的,直掉下去,慌乱之中它拼命地扑打翅膀,就这样,它终于飞了起来!(——相信自己是一只雄鹰,勇敢面对一切挑战和失败。)
第二个故事:开学第一天,大哲学家苏格拉底对学生们说:“今天,我们只做一件最简单也是最容易做的事儿:每个人把胳膊尽量都往前甩,然后再尽量往后甩。”说着,苏格拉底示范了一遍,“从今天开始,每天做300下,大家能做到吗?”学生们都笑了,这么简单的事情,有什么做不到的?过了一个月,苏格拉底问学生们:“每天甩手300下,哪些同学坚持了?”有90%的同学骄傲地举起了手。又过了一个月,苏格拉底再问,这回,坚持下来的同学只剩下了八成。一年过后,苏格拉底再一次问大家:“请大家告诉我,最简单的甩手运动,还有哪几位同学坚持了?”这时候,整个教室里,只有一个人举起了手。这个学生就是后来成为古希腊另一位大哲学家的柏拉图。(——成功在于坚持,这是一个并不神秘的秘诀。)
第三个故事:有个老人在河边钓鱼,一个小孩走过去看他钓鱼,老人技巧纯熟,所以没多久就钓上了满篓的鱼,老人见小孩很可爱,要把整篓的鱼送给他,小孩摇摇头,老人惊异的问道你为何不要?小孩回答:“我想要你手中的钓竿。”老人问:“你要钓竿做什么?小孩说:“这篓鱼没多久就吃完了,要是我有钓竿,我就可以自己钓,一辈子也吃不完。”你们说,这个小孩是不是很聪明?(——重要的还在钓技。学习,不能只记住知识,更重要的是掌握方法,形成能力。)
第四个故事:某人在屋檐下躲雨,看见观音正撑伞走过。这人说:“观音菩萨,普度一下众生吧,带我一段如何?”观音说:“我在雨里,你在檐下,而檐下无雨,你不需要我度。”这人立刻跳出檐下,站在雨中:“现在我也在雨中了,该度我了吧?”观音说:“你在雨中,我也在雨中,我不被淋,因为有伞;你被雨淋,因为无伞。所以不是我度自己,而是伞度我。你要想度,不必找我,请自找伞去!”说完便走了。第二天,这人遇到了难事,便去寺庙里求观音。走进庙里,才发现观音的像前也有一个人在拜,那个人长得和观音一模一样,丝毫不差。这人问:“你是观音吗?”那人答道:“我正是观音。”这人又问:“那你为何还拜自己?”观音笑道:“我也遇到了难事,但我知道,求人不如求己。”第五个故事:一头驮着沉重货物的驴,气喘吁吁地请求只驮了一点货物的马:“帮我驮一点东西吧。对你来说,这不算什么;可对我来说,却可以减轻不少负担。”马不高兴地回答:“你凭什么让我帮你驮东西,我乐得轻松呢。”不久,驴累死了。主人将驴背上的所有货物全部加在马背上,马懊悔不已。
膨胀的自我使我们忽略了一个基本事实,那就是:我们同在生活这条大船上,别人的好坏与我们休戚相关。别人的不幸不能给我们带来快乐,相反,在帮助别人的时候,其实也是在帮助我们自己。一位信佛的老人告诉我,人好比一只空杯,里面的水满了,你得施一半给人家,待杯子里又满了,再施一半给人家。只有不断进、不断出,你这个杯子才会有价值,你这里的水才会是活水。如果只进不出,你那只杯子也就再也装不进了。当你得到一杯水的时候,你别忘记,其中的一半是奉献。假如你不愿奉献,你就再也得不到了。
小结:
第一,相信自己,勇敢面对
第二、养成习惯,重在坚持
第三、注重方法,培养能力
第四、求人不如求己
第五、帮助别人,追求双蠃
(二)六年级学生必须养成的学习习惯
1、专心听讲的习惯
课堂上全神贯注、静心聆听、积极思考、勇于发言是学习高效的前提条件,希望各位同学能够充分利用每天课堂上的40分钟时间漂亮地完成当天的学习任务。让自己的课余时间更轻松、更自由。
2、勤思好问的习惯
在课堂上除了认真听讲以外,还要勤于思考,善于提问,这样的学习才是更有效的学习,学习能力才会提升,学习成绩才会提高。
3、预习习惯。
预习可以培养和提高我们的自学能力、提高听课效率。学习新知识以前,老师会设计几个问题,让大家带着问题去预习。我们可用彩笔勾划出书中的重要内容,在不理解的地方标上记号,
(1)通过自学,将自己看到的,想到的用笔在书中某个地方规范地记录下来,能初步理解书中的概念,并能举例说明。
(2)会叙述书中阐明的算理,并尝试完成“做一做”中的习题。
(3)自拟思考题,在小组内交流并讨论。
4、主动探究的习惯。
(1)观察:观察要仔细、全面,要有目的、有条理,通过观察发现问题并提出问题、讨论问题、解决问题;
(2)在老师指导下画图分析或动手操作的习惯。
5、自觉作笔记的习惯。
在课堂上要养成记笔记的好习惯,可以记录在数学书上,但一定要规范,如可在书中某些空白地方画上一些条形格子,然后用工整的书写记录下每节课知识重点和要点,记知识结构与规律,记公式,记补充内容等。
6、独立完成作业的习惯。
(1)细心审题,弄清题目的要求,思考解题的方法
(2)独自去解决问题。
(3)书写格式符合要求。
(4)当天的作业当天完成。
(5)每天作业及时清理、每单元进行评比。
(6)每单元检测后自我查漏补缺的习惯。
高中数学教案大全篇10
一、教学目标
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
二、教学重、难点
1.教学重点:通过探索得到两角差的余弦公式;
2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.
三、学法与教学用具
1.学法:启发式教学
2.教学用具:多媒体
四、教学设想:
(一)导入:我们在初中时就知道?,,由此我们能否得到大家可以猜想,是不是等于呢?
根据我们在第一章所学的&39;知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式
(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)
展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与__之间的关系,由此得到,认识两角差余弦公式的结构.
思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?
提示:
1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?
2、怎样利用向量的数量积的概念的计算公式得到探索结果?
展示多媒体课件
比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.
思考:再利用两角差的余弦公式得出
(三)例题讲解
例1、利用和、差角余弦公式求、的值.
解:分析:把、构造成两个特殊角的和、差.
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.
例2、已知,是第三象限角,求的值.
解:因为,由此得
又因为是第三象限角,所以
所以
点评:注意角、的象限,也就是符号问题.
(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.
高中数学教案大全篇11
[课程目标]
1.掌握集合的两种表示方法(列举法和描述法);
2.掌握用区间表示数集;
3.能够运用集合的两种表示方法表示一些简单集合,正确运用区间表示一些数集。
知识点一列举法表示集合
[填一填]
列举法
把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法叫做列举法。
[答一答]
1.什么类型的集合适合用列举法表示?
提示:当集合中的元素较少时,用列举法表示方便。
2.用列举法表示集合的优点与缺点是什么?
提示:用列举法表示集合的优点是元素清晰明确、一目了然;缺点是不易看出元素所具有的属性。
知识点二描述法表示集合
[填一填]
描述法
(1)集合的特征性质:
一般地,如果属于集合A的任意一个元素-都具有性质p(-),而不属于集合A的元素都不具有这个性质,则性质p(-)叫做集合A的一个特征性质。
(2)特征性质描述法:
集合A可以用它的特征性质p(-)描述为{-p(-)},这种表示集合的方法,叫做特征性质描述法,简称描述法。
[答一答]
3.什么类型的集合适合用描述法表示?
提示:描述法多用于集合中的元素有无限多个的无限集或元素个数较多的有限集。
4.集合{-->3}与集合{tt>3}表示同一个集合吗?
提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合。
知识点三区间及其表示
[填一填]
研究函数常常用到区间的概念,设a、b是两个实数,且a<b,我们规定:
(1)满足a≤-≤b的全体实数-的集合简写为[a,b],称为闭区间。
(2)满足a<-<b的全体实数-的集合简写为(a,b),称为开区间。
(3)满足a≤-<b的全体实数-的集合简写为[a,b),称为半开半闭区间。
(4)满足a
高中数学教案大全篇12
数列的相关概念
1.数列概念
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N--或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
高中数学教案大全篇13
一、教学设计
1、教学背景
在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题,这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在2009级进行了“创设数学情境与提出数学问题”的以学生为主的“生本课堂”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。
2、教材分析
“余弦定理”是高中数学的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
3、设计思路
建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。
为此我们根据“情境—问题”教学模式,沿着“设置情境—提出问题—解决问题—反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境—问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:
①创设一个现实问题情境作为提出问题的背景;
②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边。
③为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点;二是如何将向量关系转化成数量关系。
④由学生独立使用已证明的结论去解决中所提出的问题。
二、教学反思
本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。
例如,新课的引入,我引导学生从向量的模下手思考:
生:利用向量的模并借助向量的数量积。
教师:正确!由于向量的模长,夹角已知,只需将向量用向量来表示即可。易知,接下来只要把这个向量等式数量化即可。如何实现呢
学生8:通过向量数量积的运算。
通过教师的引导,学生不难发现还可以写成,不共线,这是平面向量基本定理的一个运用。因此在一些解三角形问题中,我们还可以利用平面向量基本定理寻找向量等式,再把向量等式化成数量等式,从而解决问题。
(从学生的“最近发展区”出发,证明方法层层递进,激发学生探求新知的欲望,从而感受成功的喜悦。)
创设数学情境是“情境·问题·反思·应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。
从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材解三角形应用举例的例1实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。
“情境·问题·反思·应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程。把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。
高中数学教案大全篇14
椭圆的简单几何性质中的考查点:
(一)、对性质的考查:
1、范围:要注意方程与函数的区别与联系;与椭圆有关的求最值是变量的取值范围;作椭圆的草图。
2、对称性:椭圆的中心及其对称性;判断曲线关于x轴、y轴及原点对称的依据;如果曲线具有关于x轴、y轴及原点对称中的任意两种,那么它也具有另一种对称性;注意椭圆不因坐标轴改变的固有性质。
3、顶点:椭圆的顶点坐标;一般二次曲线的顶点即是曲线与对称轴的交点;椭圆中a、b、c的几何意义(椭圆的特征三角形及离心率的三角函数表示)。
4、离心率:离心率的定义;椭圆离心率的取值范围:(0,1);椭圆的离心率的变化对椭圆的影响:当e趋向于1时:c趋向于a,此时,椭圆越扁平;当e趋向于0时:c趋向于0,此时,椭圆越接近于圆;当且仅当a=b时,c=0,两焦点重合,椭圆变成圆。
(二)、课本例题的变形考查:
1、近日点、远日点的概念:椭圆上任意一点p(x,y)到椭圆一焦点距离的最大值:a+c与最小值:a-c及取最值时点p的坐标;
2、椭圆的第二定义及其应用;椭圆的准线方程及两准线间的距离、焦准距:焦半径公式。
3、已知椭圆内一点m,在椭圆上求一点p,使点p到点m与到椭圆准线的距离的和最小的求法。
4、椭圆的参数方程及椭圆的离心角:椭圆的参数方程的简单应用:
5、直线与椭圆的位置关系,直线与椭圆相交时的弦长及弦中点问题。
高中数学教案大全篇15
一、教学目标
(一)知识与技能
1、进一步熟练掌握求动点轨迹方程的基本方法。
2、体会数学实验的直观性、有效性,提高几何画板的操作能力。
(二)过程与方法
1、培养学生观察能力、抽象概括能力及创新能力。
2、体会感性到理性、形象到抽象的思维过程。
3、强化类比、联想的方法,领会方程、数形结合等思想。
(三)情感态度价值观
1、感受动点轨迹的动态美、和谐美、对称美
2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气
二、教学重点与难点
教学重点:运用类比、联想的方法探究不同条件下的轨迹
教学难点:图形、文字、符号三种语言之间的过渡
三、、教学方法和手段
【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。
【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。
【教学模式】重点中学实施素质教育的课堂模式"创设情境、激发情感、主动发现、主动发展"。
四、教学过程
1、创设情景,引入课题
生活中我们四处可见轨迹曲线的影子
【演示】这是美丽的城市夜景图
【演示】许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多
【演示】建筑中也有许多美丽的轨迹曲线
设计意图:让学生感受数学就在我们身边,感受轨迹曲线的动态美、和谐美、对称美,激发学习兴趣。
2、激发情感,引导探索
靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;
例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。
第一步:让学生借助画板动手验证轨迹
第二步:要求学生求出轨迹方程
法一:设,则
由得,
化简得
法二:设,由得
化简得
法三:设, 由点到定点的距离等于定长,
根据圆的定义得;
第三步:复习求轨迹方程的一般步骤
(1)建立适当的坐标系
(2)设动点的坐标M(x,y)
(3)列出动点相关的约束条件p(M)
(4)将其坐标化并化简,f(x,y)=0
(5)证明
其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化
设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。
3、主动发现、主动发展
由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。
第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)
设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。
第二步:分解动作,向学生提出3个问题:
问题1:当M位置不同时,线段BM与MA的大小关系如何?
问题2、体现BM与MA大小关系还有什么常见的形式?
问题3、你能类比例1把这种数量关系表达出来吗?
第三步:展示学生归纳、概括出来的数学问题
1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。
2、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。
3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。(说明是什么轨迹)
第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成
4、合作探究、实现创新
改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展
1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。
2、已知A(4,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。
3、已知A(2,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。
4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。
以下是学生课后探究得到的一些轨迹图形
课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?
可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。
以下是X轴和Y轴不垂直时的轨迹图形
五、教学设计说明:
(一)、教材
《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。
(二)、校情、学情
校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子阅室,并且能随时上网。
学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。
(三)学法
观察、实验、交流、合作、类比、联想、归纳、总结
(四)、教学过程
1、创设情景,引入课题
2、激发情感,引导探索
由梯子滑落问题抽象、概括出数学问题
第一步:让学生借助画板动手验证轨迹
第二步:要求学生求出轨迹方程
第三步:复习求轨迹方程的一般步骤
3、主动发现、主动发展
探究M不是中点时的轨迹
第一步:利用网络平台展示学生得到的轨迹
第二步:分解动作,向学生提出3个问题:
第三步:展示学生归纳、概括出来的数学问题
4、合作探究、实现创新
改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展
(五)、教学特色:
借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。
整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。
本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。