教案吧 > 学科教案 > 数学教案 >

表格教案模板初中数学

时间: 新华 数学教案

编写教案有助于教师规范教学流程,提高课堂教学的效率,避免随意性和盲目性。如何写出优秀的表格教案模板初中数学?下面给大家分享一些表格教案模板初中数学,希望对大家有所帮助。

表格教案模板初中数学篇1

教学目标

(1)认知目标

理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

(2)技能目标

经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

(3)情感态度与价值观

教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

教学重难点

重点:运用分式的乘除法法则进行运算。

难点:分子、分母为多项式的分式乘除运算。

教学过程

(一)提出问题,引入课题

俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:

问题1:求容积的高是,(引出分式乘法的学习需要)。

问题2:求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。

从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。

(二)类比联想,探究新知

从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。

解后总结概括:

(1)式是什么运算?依据是什么?

(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。

(分式的乘除法法则)

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(三)例题分析,应用新知

师生活动:教师参与并指导,学生独立思考,并尝试完成例题。

P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。

(四)练习巩固,培养能力

P13练习第2题的(1)、(3)、(4)与第3题的(2)。

师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。

(五)课堂小结,回扣目标

引导学生自主进行课堂小结:

1、本节课我们学习了哪些知识?

2、在知识应用过程中需要注意什么?

3、你有什么收获呢?

师生活动:学生反思,提出疑问,集体交流。

(六)布置作业

教科书习题6.2第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。

板书设计

在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。

表格教案模板初中数学篇2

一、教材分析

幂函数是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。因而本节课更是一个对学生研究函数的方法和能力的综合提升。从概念到图象(),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。

二、教学目标分析

依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:

[知识与技能]使学生了解幂函数的定义,会画常见幂函数的图象,掌握幂函数的图象和性质,初步学会运用幂函数解决问题,进一步体会数形结合的思想。

[过程与方法]引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;运用性质解决问题时,进一步强化数形结合思想。

[情感、态度与价值观]通过生活实例引出幂函数概念,使学生体会生活中处处有数学,激发学生的学习兴趣。通过本节课的学习,使学生进一步加深研究函数的规律和方法;提高学生的学习能力;养成积极主动,勇于探索,不断创新的学习习惯和品质;树立学科学,爱科学,用科学的精神。

三、重、难点分析

[教学重点]

(1)幂函数的定义与性质;

(2)指数α的变化对幂函数y=xα(α∈R)的影响。从知识体系看,前面有指数函数与对数函数的学习,后面有其他函数的研究,本节课的学习具有承上启下的作用;就知识特点而言,蕴涵丰富的数学思想方法;就能力培养来说,通过学生对幂函数性质的归纳,可培养学生类比、归纳概括能力,运用数学语言交流表达的能力。

[教学难点]

(1)指数α的变化对幂函数y=xα(α∈R)性态的影响。

(2)数形结合解决大小比较以及求参数的问题。从学生认知发展看,他们具备一定的学习新函数的能力,可以通过学习指数函数与对数函数的方法来类比,但毕竟幂函数在三种初等函数中是最难的,因为它分类的情况很多,且性质多而复杂,我采用让学生自己利用计算机作出函数的图像,从中归纳性质的方法来突破难点。

四、学情与教法分析

1.学情分析

从学生思维特点来和认知结构看,前面学生已经学习指数函数与对数函数,对新函数的学习已经有了一定的经验。一方面可以把本节课与前面的指数函数与对数函数进行类比学习,但另一方面本节课分类情况多,性质归纳困难,尤其是三个函数放在一起可能产生混淆。对进入高中半个学期的学生来说,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。

2.教法分析

学生思维活跃,求知欲强,但在思维习惯上还有待教师引导从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。采用引导发现式的教学方法,充分利用多媒体辅助教学。通过教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

3.教学构想

新课标的要求是通过实例,了解y=x,的图像,了解它们的变化情况。而原数学教学大纲要求掌握幂函数的概念及其图像和性质,在考查掌握函数性质和运用性质解决问题时,所涉及的幂函数f(x)=xα中α限于在集合{-2,-1,-,1,2,3}中取值。新课标无论从内容的容量和难度上都要远低于旧课标。而苏教版的教材严格按照新课标要求处理此部分内容,内容体系均未超出课标要求。所以我们应以新课标为准绳,控制难度与要求。由于本节课的难点在于指数α的变化对幂函数y=xα(α∈R)性态的影响,本身幂函数比较抽象,所以我采用在多媒体教室让学生用Excel来模拟得到图象,再从图象上观察、归纳函数的性质。从心理学上讲,自己经历知识的发生发展过程,印象更深刻,学生容易接受与理解。

表格教案模板初中数学篇3

【教学目标】

1、了解因式分解的概念和意义;

2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

【教学重点、难点】

重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

【教学过程】

㈠、情境导入

看谁算得快:(抢答)

(1)若a=101,b=99,则a2-b2=___________;

(2)若a=99,b=-1,则a2-2ab+b2=____________;

(3)若x=-3,则20x2+60x=____________。

㈡、探究新知

1、请每题答得最快的.同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;

(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)

3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)

板书课题:§6.1因式分解

因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

㈢、前进一步

1、让学生继续观察:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?

2、因式分解与整式乘法的关系:

因式分解

结合:a2-b2(a+b)(a-b)

整式乘法

说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

结论:因式分解与整式乘法的相互关系——相反变形。

㈣、巩固新知

1、下列代数式变形中,哪些是因式分解?哪些不是?为什么?

(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。

㈤、应用解释

例检验下列因式分解是否正确:

(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。

练习计算下列各题,并说明你的算法:(请学生板演)

(1)872+87×13

(2)1012-992

㈥、思维拓展

1.若x2+mx-n能分解成(x-2)(x-5),则m=,n=

2.机动题:(填空)x2-8x+m=(x-4)(),且m=

㈦、课堂回顾

今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

㈧、布置作业

作业本(1),一课一练

(九)教学反思:

表格教案模板初中数学篇4

一、教材分析

1、教材的地位和作用

本节教材是初中数学____年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了____的基础上,对____的进一步深入和拓展;另一方面,又为学习-__X等知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。

2、学情分析

学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

难点确定为:__

二、教学目标分析

根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

1.知识与技能目标:

2.过程与方法目标:

3.情感态度与价值目标:

三、教学方法分析

本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

四、教学过程分析

为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习就知,温故知新

设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

(3)发现问题,探求新知

设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解

设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

(5)强化训练,巩固双基

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6)小结归纳,拓展深化

小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.

(7)当堂检测对比反馈

(8)布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上是我对本节课的见解,不足之处敬请各位评委谅解!

表格教案模板初中数学篇5

一、教材分析

(一)、教材内容的地位和作用

《代数式的值》选自义务教育课程标准实验教科书(人教版)七年级数学(上)第二章,是我个人根据学生的知识基础较差、认知能力不强以及思维品质不够活跃等实际情况而在教学中加以补充的一节课。代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?

(二)、教学目标

根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:

知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。

情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。

(三)、教学重点、难点

教学重点:代数式求值的书写格式。

教学难点:代数式求值的书写格式,变式训练知识的运用。

二、教法、学法分析

本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果,而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。

三、教学程序设计

板书设计:

代数式的值

四、评价与反思

新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。

教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。

无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。

以上是我对《代数式的值》一课的说课,不当之处请各位评委、老师批评指正,谢谢。

表格教案模板初中数学篇6

一、一次函数

1、问题导入:

问题1:小明暑假第一次去北京、汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均速度是95千米/时、己知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离、

问题2:小张准备将平时的零用钱节约一些储存起来、他己存有50元,从现在起每个月节存12元、试写出小张的存款与从现在开始的月份数之间的函数关系式、

请同学们思考后回答:

(1)找出问题中的变量并用字母表示,列出函数关系式、

(2)这两个函数关系式有什么共同点?自变量的取值范围各有什么限制?

以上这些问题,请各小组讨论一下,派代表回答、引出课题(板书课题)教师最后总结一次函数的概念、(板书)

2、引导学生观察这两个函数关系式的结构特征,引出一次函数的一般形式(学生回答,且互相补充)老师最后归纳:一次函数通常可以表示为的形式,其中为常数,特别地,当时,一次函数(常数)也叫做正比例函数、

二、一次函数的图象是什么形状呢?

1、做一做:

我们已经学习了用描点法画函数的图象,请同学运用描点法画出下列函数的图象(老师用多媒体打出题目)。根据学生的动手实践、观察与讨论,得出结论:一次函数的图象是一条直线、特别地,正比例函数的图象是经过原点的一条直线。

2、接下来教师提问:

(1)观察所画出的四个一次函数的图象,比较各对一次函数的图象有什么共同点,有什么不同点。

(2)能否从中了现一些规律?对于直线(是常数),常数的取值对于直线的位置各有什么影响?

3、组织学生分小组讨论,相互交流、相互补充,最后总结出规律:当一样,不一样时,直线方向相同(平行),但没有相同点;当不一样,一样时,都经过(0,)点(相交),但直线方向不同、

4、巩固训练:

(1)在同一平面直角坐标系中画出下列函数的图象

教师提出问题:①画出图象,看看是否与上面的讨论结果一样;②你取的是哪几个点?和同学比较一下,怎样取比较简便?

(2)将直线向下平移2个单位,得到直线_______________________、

将直线向上平移5个单位,得到直线_______________________、

(由学生到前板演)、

5、对于教材中第42页例2处理,教师先用多媒体打出,并提出问题:平面直角坐标系中坐标轴上点的坐标有什么特征?在坐标轴上取点有什么好处?组织学生结合问题去分析,动手尝试,小组讨论交流,最后达成共识、对于教材第43页例3处理,教师可以提出以下几个问题讨论同学们讨论:①这里取的数悬殊较大怎么办?②这个函数是不是一次函数?③这个函数中自变量的取值范围是什么?函数的图象是什么?④在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他情形?你能不能找出几个例子加以说明?

三、一次函数的性质

函数反映了客观世界中量的变化规律,那么一次函数又有什么性质呢?

1、请同学们来一起观察大屏幕上函数图象(教师用多媒体演示函数的图象),并回答:当一个点在直线上从左右移动时,它的位置如何变化?你能从中得到函数值的变化与自变量的变化规律吗?(教师运用现代化的教学手段来演示点的移动情况,进一步促进了学生对一次函数的变化规律理解)由学生讨论出结果:也就是说,函数值随自变量的增大而增大、(教师板书)

2、请同学们画出函数的图象,然后教师可以提出问题:观察它们是否也有相应的性质,有什么不同你能否发现什么规律?让学生带着老师提出的问题进行分组讨论,相互交流,最后归纳出一次函数如下性质:(1)当时,随的增大而增大,这时函数的图象从左到右上升;(2)当时,随的增大而减小,这时函数的图象从左到右下降;

3、补充性质:(3)时,一次函数的图象经过一、二、三象限;(4)时,一次函数的图象经过一、三、四象限;(5)时,一次函数的图象经过一、二、四象限;(6)时,一次函数的图象经过二、三、四象限、

4、对于教材中第45页做一做处理,可以作为例题,引导学生动手操作,分组讨论,由学生自己得出结论,教师起着指导作用;对于教材中第45页例4的处理,教师可以先组织学生审题分析找出题中的己知量,并提示学生:要想求一次函数的关系式,关键是要确定和的值,那么,结合题中所给的己知条件,又怎样来确定和的值呢?组织学生讨论,结合学生得出的结论,教师再给出待定系数法的概念,这样学生马上就会理解,从而难点得以突破、在这里教师要提醒学生,注意实际问题有关函数的自变量的范围限制、

表格教案模板初中数学篇7

一元一次方程——初中数学第一册教案(精选2篇)

一元一次方程——初中数学第一册篇1

一元一次方程的复习

复习目标:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:

1.重点:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

会用一元一次方程解决实际问题。

2.难点:

一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

【典型例题】

例1.

分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:

例2.

分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm

解一:设车的速度为xm/s

经检验,符合题意。

答:车的速度为20m/s。

解二:设车身的长度为xm

经检验,符合题意。

答:车的速度为(1000+200)/60=20m/s

例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解:设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答:零售票价为19.2元。

【模拟试题】

一.填空题。

1.已知方程的解比关于x的方程的解大2,则_________。

2.关于x的方程的解为整数,则__________。

3.若是关于x的一元一次方程,则k=_________,x=_________。

4.若代数式与的值互为相反数,则m=_________。

5.一元一次方程的解为x=0,那么a、b应满足的条件是__________。

二.解方程。

1.

2.

3.

4.

三.列方程解应用题。

1.一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

2.分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

【试题答案】

一.填空题。

1.                   2.

3.1,1                    4.                 5.

二.解方程。

1.                    2.

3.                  4.

三.列方程解应用题。

1.买364个鸡蛋

2.戴红帽子4人,黄帽子3人

一元一次方程的复习

复习目标:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:

1.重点:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

会用一元一次方程解决实际问题。

2.难点:

一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

【典型例题】

例1.

分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:

例2.

分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:

将m=1代入关于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.

分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:

例5.

分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:

注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:

例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm

解一:设车的速度为xm/s

经检验,符合题意。

答:车的速度为20m/s。

解二:设车身的长度为xm

经检验,符合题意。

答:车的速度为(1000+200)/60=20m/s

例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

解:设团体票共2a张,零售票共a张,零售票价x元

经检验,符合题意。

答:零售票价为19.2元。

【模拟试题】

一.填空题。

1.已知方程的解比关于x的方程的解大2,则_________。

2.关于x的方程的解为整数,则__________。

3.若是关于x的一元一次方程,则k=_________,x=_________。

4.若代数式与的值互为相反数,则m=_________。

5.一元一次方程的解为x=0,那么a、b应满足的条件是__________。

二.解方程。

1.

2.

3.

4.

三.列方程解应用题。

1.一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

2.分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

【试题答案】

一.填空题。

1.                   2.

3.1,1                    4.                 5.

二.解方程。

1.                    2.

3.                  4.

三.列方程解应用题。

1.买364个鸡蛋

2.戴红帽子4人,黄帽子3人

一元一次方程——初中数学第一册教案篇2

一元一次方程

一、教学目标 :

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳一元一次方程的概念

3、积累活动经验。

二、重点和难点

重点:归纳一元一次方程的概念

难点:感受方程作为刻画现实世界有效模型的意义

三、教学过程 

1、课前训练一

(1)如果=9,则 =           ;如果2=9,则 =            

(2)在数轴上距离原点4个单位长度的数为                    

(3)下列关于相反数的说法不正确的是(    )

A、两个相反数只有符号不同,并且它们到原点的距离相等。

B、互为相反数的两个数的绝对值相等

C、0的相反数是0 

D、互为相反数的两个数的和为0(字母表示为、互为相反数则)

E、有理数的相反数一定比0小

(4)乘积为1的两个数互为倒数 ,如:

(5)如果,则(     )

A、,互为倒数  B、,互为相反数   C、,都是0   D、,至少有一个为0

(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程(    )

A、  B、  C、 D、00

2、由课本P149卡通图画引入新课

3、分组讨论P149两个练习

4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:(     )

A、+25=310  B、+(+25)=310  C、2[+(+25)]=310  D、[+(+25)]2=310

课本的宽为3厘米,长比宽多4厘米,则课本的面积为            平方厘米。

5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?

解:设每个练习本要元,则每个笔记本要        元,依题意可列得方程:

6、归纳方程、一元一次方程的概念

7、随堂练习PO151

8、达标测试

(1)下列式子中,属于方程的是(    )

A、  B、   C、 D、

(2)下列方程中,属于一元一次方程的是(      )

A、   B、   C、  D、

(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

解:设甲队胜了场,则平了         场,依题意可列得方程:                   

解得=                

答:甲队胜了       场,平了       场。

(4)根据条件“一个数比它的一半大2”可列得方程为                      

(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为              

四、课外作业 P151习题5.1 

一元一次方程

一、教学目标 :

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳一元一次方程的概念

3、积累活动经验。

二、重点和难点

重点:归纳一元一次方程的概念

难点:感受方程作为刻画现实世界有效模型的意义

三、教学过程 

1、课前训练一

(1)如果=9,则 =           ;如果2=9,则 =            

(2)在数轴上距离原点4个单位长度的数为                    

(3)下列关于相反数的说法不正确的是(    )

A、两个相反数只有符号不同,并且它们到原点的距离相等。

B、互为相反数的两个数的绝对值相等

C、0的相反数是0 

D、互为相反数的两个数的和为0(字母表示为、互为相反数则)

E、有理数的相反数一定比0小

(4)乘积为1的两个数互为倒数 ,如:

(5)如果,则(     )

A、,互为倒数  B、,互为相反数   C、,都是0   D、,至少有一个为0

(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程(    )

A、  B、  C、 D、00

2、由课本P149卡通图画引入新课

3、分组讨论P149两个练习

4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:(     )

A、+25=310  B、+(+25)=310  C、2[+(+25)]=310  D、[+(+25)]2=310

课本的宽为3厘米,长比宽多4厘米,则课本的面积为            平方厘米。

5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?

解:设每个练习本要元,则每个笔记本要        元,依题意可列得方程:

6、归纳方程、一元一次方程的概念

7、随堂练习PO151

8、达标测试

(1)下列式子中,属于方程的是(    )

A、  B、   C、 D、

(2)下列方程中,属于一元一次方程的是(      )

A、   B、   C、  D、

(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

解:设甲队胜了场,则平了         场,依题意可列得方程:                   

解得=                

答:甲队胜了       场,平了       场。

(4)根据条件“一个数比它的一半大2”可列得方程为                      

(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为              

四、课外作业 P151习题5.1 

表格教案模板初中数学篇8

相反数人教版数学七年级上册教案

一、学习目标

1.掌握相反数的概念;

2.会求一个已知数的相反数;

3.体验数形结合思想;

4.根据相反数的意义化简符号.

二、知识回顾

1.数轴的三要素是什么?在下面画出一条数轴:

原点、正方向和单位长度.

2.在上面的数轴上描出表示5、—2、—5、+2这四个数的点.

3.观察上图并填空:数轴上与原点的距离是2的点有2个,这些点表示的数是2、-2;与原点的距离是5的点有2个,这些点表示的数是5、-5.

三、新知讲解

1.相反数的几何意义

数轴上表示互为相反数的两个数的点关于原点对称.

2.相反数的概念

像2和—2、5和—5、3和—3这样,只有符号不同的两个数叫做互为相反数.把其中一个数叫做另一个数的相反数.特别地,0的相反数是0.

四、典例探究

1.相反数的几何意义(相反数的引入)

【例1】如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是,它们分别在原点的左边和右边,我们说,这两点关于.

a和互为相反数,也就是说,-a是的&39;相反数.

总结:互为相反数的两个数分别位于原点的两侧,且到原点的距离相等,我们也说数轴上表示互为相反数的两个数的点关于原点对称.

练1数轴上表示相反数的两个点和原点的距离.

2.相反数的概念辨析

【例2】判断下列说法正误.

(1)-5是相反数.

(2)-5是5的相反数,5不是-5的相反数.()

(3)符号相反的两个数叫做互为相反数.()

总结:理解相反数的定义,要注意以下几点:

1.相反数是成对出现的,是指两个数之间的特殊关系,它们不能单独存在,不能说“-2是相反数”;

2.是相反数的两个数之间的关系是相互的,如的相反数是,反之的相反数是;

3.“只有”指的是仅仅是符号不同,而数字(绝对值)是相同的,如-3和5不是相反数,因为它们的数字不同.

练2辨析:因为向东6米和向西3米是一对相反意义的量,如果规定向东是正方向,向东6米可以记作+6米,向西3米可以记作-3米,所以+6和-3互为相反数.()

3.求一个数的相反数

表格教案模板初中数学篇9

第6.4因式分解的简单应用

背景材料:

因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。

教材分析:

本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的.经验。

教学目标:

1、在整除的情况下,会应用因式分解,进行多项式相除。

2、会应用因式分解解简单的一元二次方程。

3、体验数学问题中的矛盾转化思想。

4、培养观察和动手能力,自主探索与合作交流能力。

教学重点:

学会应用因式分解进行多项式除法和解简单一元二次方程。

教学难点:

应用因式分解解简单的一元二次方程。

设计理念:

根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。

教学过程:

一、创设情境,复习提问

1、将正式各式因式分解

(1)(a+b)2-10(a+b)+25(2)-xy+2x2y+x3y

(3)2a2b-8a2b(4)4x2-9

[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]

教师订正

提出问题:怎样计算(2a2b-8a2b)÷(4a-b)

二、导入新课,探索新知

(先让学生思考上面所提出的问题,教师从旁启发)

师:如果出现竖式计算,教师可以给予肯定;可能出现(2a2b-8a2b)÷(4a-b)=ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2a2b-8a2b=2ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。

(2a2b-8a2b)÷(4a-b)

=-2ab(4a-b)÷(4a-b)

=-2ab

(让学生自己比较哪种方法好)

利用上面的数学解题思路,同学们尝试计算

(4x2-9)÷(3-2x)

学生总结解题步骤:1、因式分解;2、约去公因式)

(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合,[运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]

练习计算

(1)(a2-4)÷(a+2)

(2)(x2+2xy+y2)÷(x+y)

(3)[(a-b)2+2(b-a)]÷(a-b)

三、合作学习

1、以四人为一组讨论下列问题

若A?B=0,下面两个结论对吗?

(1)A和B同时都为零,即A=0且B=0

(2)A和B至少有一个为零即A=0或B=0

[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]

2、你能用上面的结论解方程

(1)(2x+3)(2x-3)=0(2)2x2+x=0

解:

∵(2x+3)(2x-3)=0

∴2x+3=0或2x-3=0

∴方程的解为x=-3/2或x=3/2

解:x(2x+1)=0

则x=0或2x+1=0

∴原方程的解是x1=0,x2=-1/2

[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]

3、练习,解下列方程

(1)x2-2x=04x2=(x-1)2

四、小结

(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。

(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。

设计理念:

根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。

表格教案模板初中数学篇10

首先我用苏轼的《题西林壁》巧妙地唤起学生的生活感受,让他们认识到视图的知识在生活中我们早有亲身体验,只是还没有形成概念,然后我再用“粉笔”这一简单的教具,让学生再次体会,加深认识,这样,教学与生活紧密相连,既有自然地导入课题,又消除学生对新知识的恐惧,同时还激发了学生浓厚的学习兴趣。

然后,我不适时地出示“三视图”这一概念,通过实验,让学生认识到视图就是由立体图形转化成的平面图形,并不断地训练、讨论、总结,得出画三视图的正确方法。这时教师要巧妙点拨,学生如何从正面、上面、侧面三个角度来观察,既体现了学生的主体地位,又突出了教师的主导作用,锻炼了学生的动手操能力。

由视图到立体图形与上面的过程恰恰相反,需要学生根据视图进行想象,在大脑中构建一个立体形象。我引导学生利用直观形象与生活中的实物进行联系,通过归纳、总结、对比的方法,有效的突破这一难点。

为了进一步地激发学生的学习兴趣,培养学生的想象能力和思维能力,可以让学生用一些小立方体随意摆出几种组合并描绘出它的视图,再由视图到立体图形的课堂训练。

最后,让学生归纳所学知识,进一步锻炼学生的概括能力,使知识系统化。

以上设计如有不妥之处,望老师们不吝赐教,我不胜感激。

评课记录

开发区李玉:于坤老师这节课有几个突出特点:

1、给学生创设了生动的问题情境。本节课用宋朝文学家苏轼的一首著名的诗《题西林壁》。“横看成岭侧成峰,远近高低各不同……”来引入课题,从横、侧、远、近、高、低等不同角度来观察庐山,引出如何观察生活中的立体图形,这个切入点非常好,一下子就能抓住学生的心,吸引学生的注意力。在平日的教学中,我们也应该多找这样的例子。如在教七年级《代数式》时,有的老师这样引入“童年是美好而幸福的,大家还记得那首“唱不完的儿歌吧”,然后同学们一起念“一只青蛙一张嘴,两只眼睛四条腿,扑腾一声跳下水;两只青蛙两张嘴,四只眼睛八条腿,扑腾两声跳下水;三只青蛙三张嘴,六只眼睛12条腿,扑腾三声跳下水……”,然后问:你能不能用一句话来唱完这首儿歌?引发学生思考的兴趣,有的学生通过思考得出:n只青蛙n张嘴,2n只眼睛4n条腿,扑腾n声跳下水,将字母表示数的优点一下子表现出来,令学生顿觉耳目一新。

2、注重过程教学和学法指导

在教学画圆柱体、长方体、球体和圆锥体的三视图时,老师不是直接给学生讲解它们的三视图是什么,然后让学生记忆、变式练习,而是引导学生通过看书、观察老师手中的教具、学生自己的学具或学生自制的模型,再找学生回答、小组讨论,然后教师和学生一起确定答案。这种教学模式:提出问题,创设问题情境———观察实物或学生看书、计算、画图、独立思考、猜想———小组讨论交流———让一个小组代表发言,其它小组补充说明———师生交流总结———拓展应用的模式,比较符合学生的认知规律,能让学生经历探索知识的发生发展过程及在合作学习中学会与他人交流,不仅学会了知识,而且能锻炼学生的各种能力。

3、体现学生主体地位,注重学法指导

教师在本节课上处处关注学生学习的主观能动性,学生自始至终处于被肯定、被激励之中,时时感受到自己是学习的主人,教师给学生留有较大的学习的空间:如观察、讨论、动手摆放学具等,提出问题后让学生充分思考并给予适时的点拨。

表格教案模板初中数学篇11

一、运用数形结合解答二次函数章节问题

“数形结合百般好,隔裂分家万事非.”数形结合思想抓住了数学学科数学语言的抽象性和平面图形的直观性特征,通过“数”“形”互补,使复杂问题简单化,抽象问题具体化.通过对二次函数章节内容的整体研析发现,二次函数章节知识点的抽象内容,通过图象的直观画面进行展示,同时借助图象反映出来的性质内容,进行二次函数问题的有效解答,达到变繁为简,优化解题途径的目的.

图1问题1:有一座抛物线型拱桥,桥下面在正常水位AB时宽20m.水位上升3m,就达到警戒线CD,这时,水面宽度为10m.若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?

在该问题的教学活动中,如果单纯对问题条件内容进行分析,学生在理解抽象性的数学语言符号时,解决问题就有一定的难度.此时,教师利用数形结合的解题思想,根据问题条件内容,采用“以形补数”的形式,做出如图1所示的图形,这样,学生可以借助于图形的直观性和语言的精确性等特性,在对问题条件及解题策略的分析和找寻中变得更加“简便”、“易行”.

二、运用分类讨论解题思想解答二次函数章节问题

分类讨论思想是解决问题的一种逻辑方法,本质就是“化整为零,积零为整”,增加题设条件的解题策略,它能够有效提升学生思维活动的严密性、科学性和全面性.在二次函数问题案例教学中,分类讨论的解题思想有着深刻的运用.如在确定二次函数一般式y=ax2+bx+c图象与x轴的交点个数时,就运用到了分类讨论的解题思想:Δ=b2-4ac,当Δ>0时,二次函数一般式图象与x轴交于两点;当Δ=0,图象与x轴交于一点;当Δ

图2问题2:如图2所示,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别是(6,0),(6,8),动点M,N分别从O,B同时出发,以每秒一个单位的速度前进,其中,点M沿OA向终点A运动,点N沿BC向终点C运动,过点N作NP垂直于BC,交AC于点P,连结MP,设运动时间为t秒.(1)求点P的坐标;(用含t的字母代数式表示);(2)试求MPA的面积最大值,并且求此时t的值;(3)请你探究:当t为何值时,MPA是一个等腰三角形?你发现了几种情况?写出你的探究成果.

分析:上述问题案例的第三小问题的解答过程中,实际就是蕴含了分类讨论的解题思想,需要对MPA的三边情况分类讨论,分别确定当MP=PA时、PA=AM时以及MP=AM时的三种情况下,t的取值范围.

三、利用函数特性,运用函数方程解题思想解答二次函数章节问题

二次函数章节作为函数教学的重要组成部分,它不仅是一次函数、反比例函数的有效延伸,更是三角函数、指数函数等高中阶段函数知识的有效基础.同时,通过对二次函数章节内容的整体分析,可以发现,二次函数与一元二次方程、二元一次不等式之间有着密切的联系.在解答该类型问题中,教师可以渗透函数方程解题思想策略进行解答问题活动.

问题3:设关于x的方程x2-mx+4=0在[-1,1]上有解,求实数m的取值范围.

分析:令f(x)=x2-mx+4,则问题转化为抛物线f(x)=x2-mx+4与x数轴在x∈[-1,1]上有交点的问题,将方程的问题转化为函数图象问题来解决的可将m看成x的函数.因为x≠0,所以有m=x+4/x,问题转化为求函数的值域问题.

解:因为x≠0,所以m=x+4/x此函数显然是奇函数,易证函数m在(0,1]上为减函数.所以当x∈(0,1]时,在x=1函数有最小值,m小=1+4=5,m∈[5,+∞)同理,当x∈[-1,0]时,在x=-1时,函数有最大值,m大=-5,m∈(-∞,-5].

故实数m的取值范围为(-∞,-5]∪[5,+∞).

问题4:若x、y∈R且(2x+y)13+x13+3x+y

证明:将条件化为(2x+y)13+(2x+y)

令f(t)=t13+t,则有f(2x+y)

又f(t)为奇函数,f(-x)=-f(t)

所以f(2x+y)

所以2x+y

评析:将方程的问题转化为函数图象或函数值域问题,可使方程问题迎刃而解.其中利用函数值域问题求解则更为简捷.

表格教案模板初中数学篇12

整式的加减——初中数学第一册教案(通用2篇)

整式的加减——初中数学第一册篇1

第9课3.4整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、 叙述合并同类项法则。

2、 练习题:(用投影仪显示、学生完成)

3、 叙述去括号与添括号法则。

4、 练习题:(用投影仪显示、学生完成)

5、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)(学生自学后,教师按以下提示点拔即可)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

提示:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

练习:P167 1、2

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)(口述:文字叙述的整式加减,对每个整式要添上括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

练习:P167 3

例3。(P166例3)(学生自学后,完成练习,教师矫正练习错误)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。(最好由学生归纳)

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B(视时间是否足够而定)

四、小结(用投影仪板演)

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 (可适当减少些)

整式的加减——初中数学第一册教案篇2

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

表格教案模板初中数学篇13

教材分析:

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:

1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:

1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

板书设计:

一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。

问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。

学生学习活动评价设计:

本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。

教学反思:

1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。

3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

表格教案模板初中数学篇14

学习目标

1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。

2、由坐标的变化探索新旧图形之间的变化。

重点

1、作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。

2、根据轴对称图形的`特点,已知轴一边的图形或坐标确定另一边的图形或坐标。

难点

体会极坐标和直角坐标思想,并能解决一些简单的问题

学习过程(导入、探究新知、即时练习、小结、达标检测、作业)

第一课时

学习过程:

一、旧知回顾:

1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。

2、坐标平面内点的坐标的表示方法____________。

3、各象限点的坐标的特征:

二、新知检索:

1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),

(3,0),(4,-2),(0,0)并用线段依次连接,观察形成了什么图形

三、典例分析

例1、

(1)将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?

(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?

例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?

(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?

四、题组训练

1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。

(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?

(2)纵、横分别加3呢?

(3)纵、横分别变成原来的2倍呢?

归纳:图形坐标变化规律

1、平移规律:2、图形伸长与压缩:

第二课时

一、旧知回顾:

1、轴对称图形定义:如果一个图形沿着对折后两部分完全重合,这样的图形叫做轴对称图形。

中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形

二、新知检索:

1、如图,左边的鱼与右边的鱼关于y轴对称。

1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?

2、各个对应顶点的坐标有怎样的关系?

3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?

三、典例分析,如图所示,

1、右图的鱼是通过什么样的变换得到左图的鱼的。

2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。

3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系

四、题组练习

1、将坐标作如下变化时,图形将怎样变化?

①(x,y)(x,y+4)②(x,y)(x,y-2)③(x,y)(1/2x,y)

④(x,y)(3x,y)⑤(x,y)(x,1/2y)⑥(x,y)(3x,3y)

2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。

3、如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。

4、描出下图中枫叶图案关于x轴的轴对称图形的简图。

表格教案模板初中数学篇15

教学目标

1、了解数轴的概念和数轴的画法,掌握数轴的三要素;

2、会用数轴上的点表示有理数,会利用数轴比较有理数的大小;

3、使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议

一、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

二、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下表:

定义三要素应用

数形结合

规定了原点、正方向、单位长度的直线叫数轴原点

正方向

单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

三、教法建议

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、数轴的相关知识点

1、数轴的概念

(1)规定了原点、正方向和单位长度的直线叫做数轴。

这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的思想。另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对数轴的学习。

2、数轴的画法

(1)画直线(一般画成水平的)、定原点,标出原点“O”。

(2)取原点向右方向为正方向,并标出箭头。

(3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3。用数轴比较有理数的大小

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、数轴定义的理解

表格教案模板初中数学篇16

学习目标:

1、会推导完全平方公式,并能用几何图形解释公式;

2、利用公式进行熟练地计算;

3、经历探索完全平方公式的推导过程,发展符号感,体会特殊一般特殊的认知规律。

学习过程:

(一)自主探索

1、计算:(1)(a+b)2(2)(a-b)2

2、你能用文字叙述以上的结论吗?

(二)合作交流:

你能利用下图的面积关系解释公式(a+b)2=a2+2ab+b2吗?与同学交流。

(三)试一试,我能行。

1、利用完全平方公式计算:

(1)(x+6)2(2)(a+2b)2(3)(3s-t)2[来源:中.考.资.源.网]

(四)巩固练习

利用完全平方公式计算:

A组:

(1)(x+y)2(2)(-2m+5n)2

(3)(2a+5b)2(4)(4p-2q)2

B组:

(1)(x-y2)2(2)(1.2m-3n)2

(3)(-a+5b)2(4)(-x-y)2

C组:

(1)1012(2)542(3)9972

(五)小结与反思

我的.收获:

我的疑惑:

(六)达标检测

1、(a-b)2=a2+b2+.

2、(a+2b)2=.

3、如果(x+4)2=x2+kx+16,那么k=.

4、计算:

(1)(3m-)2(2)(x2-1)2

(2)(-a-b)2(4)(s+t)2

表格教案模板初中数学篇17

教学目标

1、使学生能说出有理数大小的比较法则

2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。

三、教学重点与难点

重点:运用法则借助数轴比较两个有理数的大小。

难点:利用绝对值概念比较两个负分数的大小。

四、教学准备

多媒体课件

五、教学设计

(一)交流对话,探究新知

1、说一说

(多媒体显示)某一天我们5个城市的最低气温    从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")

广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?

(3)温度的高低与相应的数在数轴上的位置有什么?

(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:

在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

(二)应用新知,体验成功

1、练一练(师生共同完成例1后,学生完成随堂练习1)

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)

分析:本题意有几层含义?应分几步?

要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。

随堂练习: P19 T1

2、做一做

(1)在数轴上表示下列各对数,并比较它们的大小

①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

(2)求出图中各对数的绝对值,并比较它们的大小。

(3)由①、②从中你发现了什么?

(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)

要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

在学生讨论的基础上,由学生总结得出有理数大小的比较法则。

(1)正数都大于零,负数都小于零,正数大于负数。

(2)两个正数比较大小,绝对值大的数大。

(3)两个负数比较大小,绝对值大的数反而小。

3、师生共同完成例2后,学生完成随堂练习2、3、4。

例2比较下列每对数的大小,并说明理由:(师生共同完成)

(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|

分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。

注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。

两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。

思考:还有别的方法吗?(分组讨论,积极思考)

4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?

由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。

练一练:P19 T2、3、4

5、考考你:请你回答下列问题:

(1)有没有的有理数,有没有最小的有理数,为什么?

(2)有没有绝对值最小的有理数?若有,请把它写出来?

(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。

(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)

(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)

6、议一议,谈谈本节课你有哪些收获

(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。

六、布置作业:P19 A组、B组

基础好的A、B两组都做

基础较差的同学选做A组。

表格教案模板初中数学篇18

12.6一元二次方程的应用(三)

一、素质教育目标

(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.

二、教学重点、难点

1.教学重点:学会用列方程的方法解决有关增长率问题.

2.教学难点 :有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.

三、教学步骤 

(一)明确目标.

(二)整体感知

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)原产量+增产量=实际产量.

(2)单位时间增产量=原产量×增长率.

(3)实际产量=原产量×(1+增长率).

2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?

分析:设平均每月的增长率为x.

则2月份的产量是5000+5000x=5000(1+x)(吨).

3月份的产量是[5000(1+x)+5000(1+x)x]

=5000(1+x)2(吨).

解:设平均每月的增长率为x,据题意得:

5000(1+x)2=7200

(1+x)2=1.44

1+x=±1.2.

x1=0.2,x2=-2.2(不合题意,舍去).

取x=0.2=20%.

教师引导,点拨、板书,学生回答.

注意以下几个问题:

(1)为计算简便、直接求得,可以直接设增长的百分率为x.

(2)认真审题,弄清基数,增长了,增长到等词语的关系.

(3)用直接开平方法做简单,不要将括号打开.

练习1.教材P.42中5.

学生分析题意,板书,笔答,评价.

练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程.

(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率.

(1+x)2=b(把原来的总产值看作是1.)

(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数.

(a(1+x)2=b)

(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.

((1+x)2=b+1把原来的总产值看作是1.)

以上学生回答,教师点拨.引导学生总结下面的规律:

设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2,…………增长n次后的产值为S=a(1+x)n.

规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.

例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?

分析:设每次降价为x.

第一次降价后,每件为600-600x=600(1-x)(元).

第二次降价后,每件为600(1-x)-600(1-x)•x

=600(1-x)2(元).

解:设每次降价为x,据题意得

600(1-x)2=384.

答:平均每次降价为20%.

教师引导学生分析完毕,学生板书,笔答,评价,对比,总结.

引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).

(四)总结、扩展

1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.

2.在解方程时,注意巧算;注意方程两根的取舍问题.

3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.

四、布置作业 

教材P.42中A8

五、板书设计 

12.6 一元二次方程应用(三)

1.数量关系: 例1…… 例2……

(1)原产量+增产量=实际产量 分析:…… 分析……

(2)单位时间增产量=原产量×增长率 解…… 解……

(3)实际产量=原产量(1+增长率)  

2.最后产值、基数、平均增长率、时间  

的基本关系:  

M=m(1+x)n n为时间  

M为最后产量,m为基数,x为平均增长率  

12.6一元二次方程的应用(三)

一、素质教育目标

(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.

二、教学重点、难点

1.教学重点:学会用列方程的方法解决有关增长率问题.

2.教学难点 :有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.

三、教学步骤 

(一)明确目标.

(二)整体感知

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)原产量+增产量=实际产量.

(2)单位时间增产量=原产量×增长率.

(3)实际产量=原产量×(1+增长率).

2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?

分析:设平均每月的增长率为x.

则2月份的产量是5000+5000x=5000(1+x)(吨).

3月份的产量是[5000(1+x)+5000(1+x)x]

=5000(1+x)2(吨).

解:设平均每月的增长率为x,据题意得:

5000(1+x)2=7200

(1+x)2=1.44

1+x=±1.2.

x1=0.2,x2=-2.2(不合题意,舍去).

取x=0.2=20%.

教师引导,点拨、板书,学生回答.

注意以下几个问题:

(1)为计算简便、直接求得,可以直接设增长的百分率为x.

(2)认真审题,弄清基数,增长了,增长到等词语的关系.

(3)用直接开平方法做简单,不要将括号打开.

练习1.教材P.42中5.

学生分析题意,板书,笔答,评价.

练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程.

(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率.

(1+x)2=b(把原来的总产值看作是1.)

(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数.

(a(1+x)2=b)

(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.

((1+x)2=b+1把原来的总产值看作是1.)

以上学生回答,教师点拨.引导学生总结下面的规律:

设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2,…………增长n次后的产值为S=a(1+x)n.

规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.

例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?

分析:设每次降价为x.

第一次降价后,每件为600-600x=600(1-x)(元).

第二次降价后,每件为600(1-x)-600(1-x)•x

=600(1-x)2(元).

解:设每次降价为x,据题意得

600(1-x)2=384.

答:平均每次降价为20%.

教师引导学生分析完毕,学生板书,笔答,评价,对比,总结.

引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).

(四)总结、扩展

1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.

2.在解方程时,注意巧算;注意方程两根的取舍问题.

3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.

四、布置作业 

教材P.42中A8

五、板书设计 

12.6 一元二次方程应用(三)

1.数量关系: 例1…… 例2……

(1)原产量+增产量=实际产量 分析:…… 分析……

(2)单位时间增产量=原产量×增长率 解…… 解……

(3)实际产量=原产量(1+增长率)  

2.最后产值、基数、平均增长率、时间  

的基本关系:  

M=m(1+x)n n为时间  

M为最后产量,m为基数,x为平均增长率  

表格教案模板初中数学篇19

一、课题引入

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

二、课题研究

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

三、巩固练习

例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

日期周二周三周四周五

开盘+0.16+0.25+0.78+2.12

收盘-0.23-1.32-0.67-0.65

当日收盘价

试在表中填写周二到周五该股票的收盘价.

思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

表格教案模板初中数学篇20

一、教学案例的特点

1、案例与论文的区别

从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。

从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。

2、案例与教案、教学设计的区别

教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。

3、案例与教学实录的区别

案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。

4、教学案例的特点是

——真实性:案例必须是在课堂教学中真实发生的事件;

——典型性:必须是包括特殊情境和典型案例问题的故事;

——浓缩性:必须多角度地呈现问题,提供足够的信息;

——启发性:必须是经过研究,能够引起讨论,提供分析和反思。

二、数学案例的结构要素

从文章结构上看,数学案例一般包含以下几个基本的元素。

(1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。

(2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。

(3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。

(4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。

(5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。

三、初中数学教学案例主题的选择

新课程理念下的初中数学教学案例,可从以下六方面选择主题:

(1)体现让学生动手实践、自主探究、合作交流的教学方式;

(2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;

(3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;

(4)体现数学与信息技术整合的教学方法;

(5)体现教师在教学过程中的组织者、引导者与合作者的作用;

(6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。

31566