教案吧 > 学科教案 > 数学教案 >

高中数学电子版教案

时间: 新华 数学教案

教案的编写应注重简洁明了、重点突出、条理清晰、可操作性强等特点,以便更好地指导教学工作。这里给大家分享高中数学电子版教案,方便大家写高中数学电子版教案时参考。

高中数学电子版教案篇1

1.如图,已知直线L:的右焦点F,且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E。

(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;

(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。

(文)若为x轴上一点,求证:

2.如图所示,已知圆定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。

(1)求曲线E的方程;

(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足的取值范围。

3.设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且

⑴求椭圆C的离心率;

⑵若过A、Q、F三点的圆恰好与直线

l:相切,求椭圆C的方程.

4.设椭圆的离心率为e=

(1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.

(2)求b为何值时,过圆x2+y2=t2上一点M(2,)处的切线交椭圆于Q1、Q2两点,而且OQ1OQ2.

5.已知曲线上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.

(1)求曲线的方程;

(2)设过(0,-2)的直线与曲线交于C、D两点,且为坐标原点),求直线的方程.

6.已知椭圆的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).

(Ⅰ)当m+n0时,求椭圆离心率的范围;

(Ⅱ)直线AB与⊙P能否相切?证明你的结论.

7.有如下结论:圆上一点处的切线方程为,类比也有结论:椭圆处的切线方程为,过椭圆C:的右准线l上任意一点M引椭圆C的两条切线,切点为A、B.

(1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积

8.已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(Ⅰ)求m的值与椭圆E的方程;

(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.

9.椭圆的对称中心在坐标原点,一个顶点为,右焦点与点的距离为。

(1)求椭圆的方程;

(2)是否存在斜率的直线:,使直线与椭圆相交于不同的两点满足,若存在,求直线的倾斜角;若不存在,说明理由。

10.椭圆方程为的一个顶点为,离心率。

(1)求椭圆的方程;

(2)直线:与椭圆相交于不同的两点满足,求。

11.已知椭圆的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作,其中圆心P的坐标为.

(1)若椭圆的离心率,求的方程;

(2)若的圆心在直线上,求椭圆的方程.

12.已知直线与曲线交于不同的两点,为坐标原点.

(Ⅰ)若,求证:曲线是一个圆;

(Ⅱ)若,当且时,求曲线的离心率的取值范围.

13.设椭圆的左、右焦点分别为、,A是椭圆C上的一点,且,坐标原点O到直线的距离为.

(1)求椭圆C的方程;

(2)设Q是椭圆C上的一点,过Q的直线l交x轴于点,较y轴于点M,若,求直线l的方程.

14.已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点的切线方程为为常数).

(I)求抛物线方程;

(II)斜率为的直线PA与抛物线的另一交点为A,斜率为的直线PB与抛物线的另一交点为B(A、B两点不同),且满足,求证线段PM的中点在y轴上;

(III)在(II)的条件下,当时,若P的坐标为(1,-1),求PAB为钝角时点A的纵坐标的取值范围.

15.已知动点A、B分别在x轴、y轴上,且满足AB=2,点P在线段AB上,且

设点P的轨迹方程为c。

(1)求点P的轨迹方程C;

(2)若t=2,点M、N是C上关于原点对称的两个动点(M、N不在坐标轴上),点Q

坐标为求△QMN的面积S的最大值。

16.设上的两点,

已知,,若且椭圆的离心率短轴长为2,为坐标原点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;

(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由

17.如图,F是椭圆(a0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为.点C在x轴上,BCBF,B,C,F三点确定的圆M恰好与直线l1:相切.

(Ⅰ)求椭圆的方程:

(Ⅱ)过点A的直线l2与圆M交于PQ两点,且,求直线l2的方程.

18.如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,且.

(1)求椭圆的标准方程;

(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

19.如图,已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点.直线交椭圆于两不同的点.

20.设,点在轴上,点在轴上,且

(1)当点在轴上运动时,求点的轨迹的方程;

(2)设是曲线上的点,且成等差数列,当的垂直平分线与轴交于点时,求点坐标.

21.已知点是平面上一动点,且满足

(1)求点的轨迹对应的方程;

(2)已知点在曲线上,过点作曲线的两条弦和,且,判断:直线是否过定点?试证明你的结论.

22.已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点.

(1)求椭圆的方程:

(2)若点D为椭圆上不同于、的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;

(3)若直线与椭圆交于、两点,证明直线与直线的交点在直线上.

23.过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点。

(1)用表示A,B之间的距离;

(2)证明:的大小是与无关的定值,

并求出这个值。

24.设分别是椭圆C:的左右焦点

(1)设椭圆C上的点到两点距离之和等于4,写出椭圆C的方程和焦点坐标

(2)设K是(1)中所得椭圆上的动点,求线段的中点B的轨迹方程

(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为试探究的值是否与点P及直线L有关,并证明你的结论。

25.已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.

(I)求椭圆的方程;

(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;

(III)设与轴交于点,不同的两点在上,且满足求的取值范围.

26.如图所示,已知椭圆:,、为

其左、右焦点,为右顶点,为左准线,过的直线:与椭圆相交于、

两点,且有:(为椭圆的半焦距)

(1)求椭圆的离心率的最小值;

(2)若,求实数的取值范围;

(3)若,,

求证:、两点的纵坐标之积为定值;

27.已知椭圆的左焦点为,左右顶点分别为,上顶点为,过三点作圆,其中圆心的坐标为

(1)当时,椭圆的离心率的取值范围

(2)直线能否和圆相切?证明你的结论

28.已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.

(I)证明:为定值;

(II)若△POM的面积为,求向量与的夹角;

(Ⅲ)证明直线PQ恒过一个定点.

29.已知椭圆C:上动点到定点,其中的距离的最小值为1.

(1)请确定M点的坐标

(2)试问是否存在经过M点的直线,使与椭圆C的两个交点A、B满足条件(O为原点),若存在,求出的方程,若不存在请说是理由。

30.已知椭圆,直线与椭圆相交于两点.

(Ⅰ)若线段中点的横坐标是,求直线的方程;

(Ⅱ)在轴上是否存在点,使的值与无关?若存在,求出的值;若不存在,请说明理由.

31.直线AB过抛物线的焦点F,并与其相交于A、B两点。Q是线段AB的中点,M是抛物线的准线与y轴的交点.O是坐标原点.

(I)求的取值范围;

(Ⅱ)过A、B两点分剐作此撒物线的切线,两切线相交于N点.求证:∥;

(Ⅲ)若P是不为1的正整数,当,△ABN的面积的取值范围为时,求该抛物线的方程.

32.如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.

(Ⅰ)当时,求椭圆的方程及其右准线的方程;

(Ⅱ)在(Ⅰ)的条件下,直线经过椭圆的右焦点,与抛物线交于、,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;

(Ⅲ)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.

33.已知点和动点满足:,且存在正常数,使得。

(1)求动点P的轨迹C的方程。

(2)设直线与曲线C相交于两点E,F,且与y轴的交点为D。若求的值。

34.已知椭圆的右准线与轴相交于点,右焦点到上顶点的距离为,点是线段上的一个动点.

(I)求椭圆的方程;

(Ⅱ)是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由.

35.已知椭圆C:(.

(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;

(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率k的取值范围;

(3)如图,过原点任意作两条互相垂直的直线与椭圆()相交于四点,设原点到四边形一边的距离为,试求时满足的条件.

36.已知若过定点、以()为法向量的直线与过点以为法向量的直线相交于动点.

(1)求直线和的方程;

(2)求直线和的斜率之积的值,并证明必存在两个定点使得恒为定值;

(3)在(2)的条件下,若是上的两个动点,且,试问当取最小值时,向量与是否平行,并说明理由。

37.已知点,点(其中),直线、都是圆的切线.

(Ⅰ)若面积等于6,求过点的抛物线的方程;

(Ⅱ)若点在轴右边,求面积的最小值.

38.我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。

(1)设F1、F2是椭圆的两个焦点,点F1、F2到直线的距离分别为d1、d2,试求d1d2的值,并判断直线L与椭圆M的位置关系。

(2)设F1、F2是椭圆的两个焦点,点F1、F2到直线

(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1d2的值。

(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。

(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。

39.已知点为抛物线的焦点,点是准线上的动点,直线交抛物线于两点,若点的纵坐标为,点为准线与轴的交点.

(Ⅰ)求直线的方程;(Ⅱ)求的面积范围;

(Ⅲ)设,,求证为定值.

40.已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.

(I)求椭圆的方程;

(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;

(III)设与轴交于点,不同的两点在上,且满足求的取值范围.

41.已知以向量为方向向量的直线过点,抛物线:的顶点关于直线的对称点在该抛物线的准线上.

(1)求抛物线的方程;

(2)设、是抛物线上的两个动点,过作平行于轴的直线,直线与直线交于点,若(为坐标原点,、异于点),试求点的轨迹方程。

42.如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.

(Ⅰ)当时,求椭圆的方程及其右准线的方程;

(Ⅱ)在(Ⅰ)的条件下,直线经过椭圆的右焦点,

与抛物线交于、,如果以线段为直径作圆,

试判断点与圆的位置关系,并说明理由;

(Ⅲ)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.

43.设椭圆的`一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.

(Ⅲ)若AB是椭圆C经过原点O的弦,MNAB,求证:为定值.

44.设是抛物线的焦点,过点M(-1,0)且以为方向向量的直线顺次交抛物线于两点。

(Ⅰ)当时,若与的夹角为,求抛物线的方程;

(Ⅱ)若点满足,证明为定值,并求此时△的面积

45.已知点,点在轴上,点在轴的正半轴上,点在直线上,且满足.

(Ⅰ)当点在轴上移动时,求点的轨迹的方程;

(Ⅱ)设、为轨迹上两点,且0,,求实数,

使,且.

46.已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切。

(1)已知椭圆的离心率;

(2)若的最大值为49,求椭圆C的方程.

高中数学电子版教案篇2

近期,我开设了一节公开课《椭圆的几何性质1》。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。

一、要有明确的教学目标

教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。

二、要能突出重点、化解难点

每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备例2时,就设置了三个小题,从易到难,便于学生理解接受。

三、要善于应用现代化教学手段

在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如解析几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。

四、根据具体内容,选择恰当的教学方法

每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。这节课是高三的复习课,我采取了让学生自己回忆讲述椭圆的几何性质,教师补充的方法,改变了传统的教师讲,学生听的模式,调动了学生的积极性。在例题的解决过程中,我也尽量让学生多动手,多动脑,激发学生的思维。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。

五、关爱学生,及时鼓励

高中新课程的&39;宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

六、切实重视基础知识、基本技能和基本方法

众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解

决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。

七、渗透教学思想方法,培养综合运用能力

常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。

高中数学电子版教案篇3

一、学情分析

本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

二、考纲要求

1.会用坐标表示平面向量的加法、减法与数乘运算.

2.理解用坐标表示的平面向量共线的条件.

3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.

4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.

三、教学过程

(一) 知识梳理:

1.向量坐标的求法

(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.

(2)设A(x1,y1),B(x2,y2),则

=_________________

| |=_______________

(二)平面向量坐标运算

1.向量加法、减法、数乘向量

设 =(x1,y1), =(x2,y2),则

+ = - = λ = .

2.向量平行的坐标表示

设 =(x1,y1), =(x2,y2),则 ∥ ⇔________________.

(三)核心考点·习题演练

考点1.平面向量的坐标运算

例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;

(2)求满足 =m +n 的实数m,n;

练:(2015江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

(m,n∈R),则m-n的值为     .

考点2平面向量共线的坐标表示

例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)

若( +k )∥(2 - ),求实数k的值;

练:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= (  )

思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

方法总结:

1.向量共线的两种表示形式

设a=(x1,y1),b=(x2,y2),①a∥b⇒a=λb(b≠0);②a∥b⇔x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.

2.两向量共线的充要条件的作用

判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.

考点3平面向量数量积的坐标运算

例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

则 的值为     ; 的值为     .

【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

练:(2014,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于(  )

【思考】两非零向量 ⊥ 的充要条件: · =0⇔     .

解题心得:

(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.

(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

(3)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.

考点4:平面向量模的坐标表示

例4:(2015湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则 的值为(  )

A.6 B.7 C.8 D.9

练:(2016,上海,12)

在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?

解题心得:

求向量的模的方法:

(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..

五、课后作业(课后习题1、2题)

高中数学电子版教案篇4

一、教学设计

1、教学背景

在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题,这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在2009级进行了“创设数学情境与提出数学问题”的以学生为主的“生本课堂”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。

2、教材分析

“余弦定理”是高中数学的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

3、设计思路

建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。

为此我们根据“情境—问题”教学模式,沿着“设置情境—提出问题—解决问题—反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境—问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:

①创设一个现实问题情境作为提出问题的背景;

②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边。

③为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点;二是如何将向量关系转化成数量关系。

④由学生独立使用已证明的结论去解决中所提出的问题。

二、教学反思

本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。

例如,新课的引入,我引导学生从向量的模下手思考:

生:利用向量的模并借助向量的数量积。

教师:正确!由于向量的模长,夹角已知,只需将向量用向量来表示即可。易知,接下来只要把这个向量等式数量化即可。如何实现呢

学生8:通过向量数量积的运算。

通过教师的引导,学生不难发现还可以写成,不共线,这是平面向量基本定理的一个运用。因此在一些解三角形问题中,我们还可以利用平面向量基本定理寻找向量等式,再把向量等式化成数量等式,从而解决问题。

(从学生的“最近发展区”出发,证明方法层层递进,激发学生探求新知的欲望,从而感受成功的喜悦。)

创设数学情境是“情境·问题·反思·应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。

从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材解三角形应用举例的例1实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。

“情境·问题·反思·应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程。把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。

高中数学电子版教案篇5

[课程目标]

1.掌握集合的两种表示方法(列举法和描述法);

2.掌握用区间表示数集;

3.能够运用集合的两种表示方法表示一些简单集合,正确运用区间表示一些数集。

知识点一列举法表示集合

[填一填]

列举法

把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法叫做列举法。

[答一答]

1.什么类型的集合适合用列举法表示?

提示:当集合中的元素较少时,用列举法表示方便。

2.用列举法表示集合的优点与缺点是什么?

提示:用列举法表示集合的优点是元素清晰明确、一目了然;缺点是不易看出元素所具有的属性。

知识点二描述法表示集合

[填一填]

描述法

(1)集合的特征性质:

一般地,如果属于集合A的任意一个元素-都具有性质p(-),而不属于集合A的元素都不具有这个性质,则性质p(-)叫做集合A的一个特征性质。

(2)特征性质描述法:

集合A可以用它的特征性质p(-)描述为{-p(-)},这种表示集合的方法,叫做特征性质描述法,简称描述法。

[答一答]

3.什么类型的集合适合用描述法表示?

提示:描述法多用于集合中的元素有无限多个的无限集或元素个数较多的有限集。

4.集合{-->3}与集合{tt>3}表示同一个集合吗?

提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合。

知识点三区间及其表示

[填一填]

研究函数常常用到区间的概念,设a、b是两个实数,且a<b,我们规定:

(1)满足a≤-≤b的全体实数-的集合简写为[a,b],称为闭区间。

(2)满足a<-<b的全体实数-的集合简写为(a,b),称为开区间。

(3)满足a≤-<b的全体实数-的集合简写为[a,b),称为半开半闭区间。

(4)满足a

高中数学电子版教案篇6

教学内容:

简单的排列组合

教学目标:

1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

2.培养学生有序地、全面地思考问题的意识和习惯。

教学过程:

1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。

2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。

3、出示练习二十五第3题。

学生看题后,四人小组讨论出有多少种求组合数的方法。

4、学生汇报。

(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。

(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。

(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。

(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。

2.“做一做”

(1)练习二十五第7题。

通过活动的方式让学生不重不漏地把所有取钱的情况写出来。

(2)练习二十五第9题。

用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。

高中数学电子版教案篇7

一、教学目标

1.知识与能力目标

①使学生理解数列极限的概念和描述性定义。

②使学生会判断一些简单数列的极限,了解数列极限的“e-N"定义,能利用逐步分析的方法证明一些数列的极限。

③通过观察运动和变化的过程,归纳总结数列与其极限的特定关系,提高学生的数学概括能力和抽象思维能力。

2.过程与方法目标

培养学生的极限的思想方法和独立学习的能力。

3.情感、态度、价值观目标

使学生初步认识有限与无限、近似与精确、量变与质变的辩证关系,培养学生的辩证唯物主义观点。

二、教学重点和难点

教学重点:数列极限的概念和定义。

教学难点:数列极限的“ε―N”定义的理解。

三、教学对象分析

这节课是数列极限的第一节课,足学生学习极限的入门课,对于学生来说是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡阶段,在《立体几何》内容求球的表面积和体积时对极限思想已有接触,而学生在以往的数学学习中主要接触的是关于“有限”的问题,很少涉及“无限”的问题。极限这一抽象概念能够使他们做基于直观的理解,并引导他们作出描述性定义“当n无限增大时,数列{an}中的项an无限趋近于常数A,也就是an与A的差的绝对值无限趋近于0”,并能用这个定义判断一些简单数列的极限。但要使他们在一节课内掌握“ε-N”语言求极限要求过高。因此不宜讲得太难,能够通过具体的几个例子,归纳研究一些简单的数列的极限。使学生理解极限的基本概念,认识什么叫做数列的极限以及数列极限的定义即可。

四、教学策略及教法设计

本课是采用启发式讲授教学法,通过多媒体课件演示及学生讨论的方法进行教学。通过学生比较熟悉的一个实际问题入手,引起学生的注意,激发学生的学习兴趣。然后通过具体的两个比较简单的数列,运用多媒体课件演示向学生展示了数列中的各项随着项数的增大,无限地趋向于某个常数的过程,让学生在观察的基础上讨论总结出这两个数列的特征,从而得出数列极限的一个描述性定义。再在教师的引导下分析数列极限的各种不同情况。从而对数列极限有了直观上的认识,接着让学生根据数列中各项的情况判断一些简单的数列的极限。从而达到深化定义的效果。最后进行练习巩固,通过这样的一个完整的教学过程,由观察到分析、由定量到定性,由直观到抽象,并借助于多媒体课件的演示,使得学生逐步地了解极限这个新的概念,为下节课的极限的运算及应用做准备,为以后学习高等数学知识打下基础。在整个教学过程中注意突出重点,突破难点,达到教学目标的要求。

五、教学过程

1.创设情境

课件展示创设情境动画。

今天我们将要学习一个很重要的新的知识。

情境

1、我国古代数学家刘徽于公元263年创立“割圆术”,“割之弥细,所失弥少。割之又割,以至不可割,则与圆周合体而无所失矣”。

情境

2、我国古代哲学家庄周所著的《庄子?天下篇》引用过一句话:一尺之棰,日取其半,万世不竭。也就是说拿一根木棒,将它切成一半,拿其中一半来再切成一半,得到四分之一,再切成一半,就得到了八分之„„?如此下去,无限次地切,每次都切一半,问是否会切完?

大家都知道,这是不可能切完的,但是每次切了以后,木棒都比原来的少了一半,也就是说木棒的长度越来越短,但永远不会变成零。从而引出极限的概念。

2.定义探究

展示定义探索(一)动画演示。

问题1:请观察以下无穷数列,当n无限增大时,a,I的变化趋势有什么特点?

(1)1/2,2/3,3/4,„n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n„„

问题2:观察课件演示,请分析以上两个数列随项数n的增大项有那些特点?

师生一起归纳总结出以下结论:数列(1)项数n无限增大时,项无限趋近于1;数列(2)项数n无限增大时,项无限趋近于1。

那么就把1叫数列(1)的极限,1叫数列(2)的极限。这两个数列只是形式不同,它们都是随项数n的无限增大,项无限趋近于某一确定常数,这个常数叫做这个数列的极限。

那么,什么叫数列的极限呢?对于无穷数列an,如果当n无限增大时,an无限趋向于某一个常数A,则称A是数列an的极限。

提出问题3:怎样用数学语言来定量描述呢?怎样用数学语言来描述上述数列的变化趋势?

展示定义探索(二)动画演示,师生共同总结发现在数轴上两点间距离越小,项与1越趋近,因此可以借助两点间距离无限小的方式来描述项无限趋近常数。无论预先指定多么小的正数e,如取e=O-1,总能在数列中找到一项am,使得an项后面的所有项与1的差的绝对值都小于ε,若取£=0。0001,则第6项后面的所有项与1的差的绝对值都小于ε,即1是数列(1)的极限。最后,师生共同总结出数列的极限定义中应包含哪量(用这些量来描述数列1的极限)。

数列的极限为:对于任意的ε>0,如果总存在自然数N,当n>N时,不等式|an-A|n的极限。

定义探索动画(一):

课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值,并且动画演示数列的变化过程。如图1所示是课件运行时的一个画面。

定义探索动画(二)课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值和Ian一1I的值,并且动画演示出第an项和1之间的距离。如图2所示是课件运行时的一个画面。

3.知识应用

这里举了3道例题,与学生一块思考,一起分析作答。

例1.已知数列:

1,-1/2,1/3,-1/4,1/5„„,(-1)n+11/n,„„

(1)计算an-0(2)第几项后面的所有项与0的差的绝对值都小于0.017都小于任意指定的正数。

(3)确定这个数列的极限。

例2.已知数列:

已知数列:3/2,9/4,15/8„„,2+(-1/2)n,„„。

猜测这个数列有无极限,如果有,应该是什么数?并求出从第几项开始,各项与这个极限的差都小于0.1,从第几项开始,各项与这个极限的差都小于0.017

例3.求常数数列一7,一7,一7,一7,„„的极限。

5.知识小结

这节课我们研究了数列极限的概念,对数列极限有了初步的认识。数列极限研究的是无限变化的趋势,而通过对数列极限定义的探讨,我们看到这一过程又是通过有限来把握的,有限与无限、近似与精确、量变与质变之间的辩证关系在这里得到了充分的体现。

课后练习:

(1)判断下列数列是否有极限,如果有的话请求出它的极限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。

(2)课本练习1,2。

6.探究性问题

设计研究性学习的思考题。

提出问题:

芝诺悖论:阿基里斯是《荷马史诗》中的善跑英雄。奔跑中的阿基里斯永远也无法超过在他前面慢慢爬行的乌龟,因为当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了。这样,阿基里斯可无限接近它,但不能追到它。假定阿基里斯跑步的速度是乌龟速度的10倍,阿基里斯与乌龟赛跑的路程是1公里。如果让乌龟先跑0.1公里,当阿基里斯追到O.1公里的地方,乌龟又向前跑了0.01公里。当阿基里斯追到0.01公里的地方,乌龟又向前跑了0.001公里„„这样一直追下去,阿基里斯能追上乌龟吗?

这里是研究性学习内容,以学生感兴趣的悖论作为课后作业,巩固本节所学内容,进一步提高了学生学习数列的极限的兴趣。同时也为学生创设了课下交流与讨论的情境,逐步培养学生相互合作、交流和讨论的习惯,使学生感受到了数学来源于生活,又服务于生活的实质,逐步养成用数学的知识去解决生活中遇到的实际问题的习惯。

高中数学电子版教案篇8

今天我说课的课题是《平面向量的概念》,这是江苏省职业学校文化课教材《基础模块·下册》第七章平面向量中的第一节的内容,我将尝试运用新课改的理念、中职学生的认知特点指导本节课的教学,新课标指出,学生是教学的主体,教师的教要本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。下面我将以此为基础从教材分析、学情分析、教法学法、教学过程、教学评价等五个环节,向各位专家谈谈我对本节课教材的理解和教学设计。

一、教材分析:

1、教材的地位和作用

向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础。

结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:

2、教学目标

(1)知识与技能目标

1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;

2)识记向量模的定义,会用字母和线段表示向量的模。

3)知道零向量、单位向量的概念。

(2)过程与方法目标

学生通过对向量的学习,能体会出向量来自于客观现实,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想。

(3)情感态度与价值观目标

通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度。

3、教学重难点

教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量

教学难点:向量的几何表示的理解,对零向量和单位向量的理解

二、学情分析

(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想。

(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。

(3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。

三、教法学法

教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学

学法:在学法上,采用的是探究,发现,归纳,练习。从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程。

四、教学过程

课前:

为了打造高效课堂,以生为本我选择生本式的教学方式,以穿针引线的方式设计了前置性作业。其中包括一些向量的基本概念,并提出:

1、你学过的其他学科中有没有可以称为向量的?

2、向量的特点是什么?有几种描述向量的表示方法?

3、零向量的特点是什么?

【设计意图】目的是通过课前的预习明确自己需要在本节课中解决的问题,带着问题听课,我会在上课前就学生的完成情况明确主要的教学侧重点,真正打造高效课堂。

课上教学过程:

1、创设情境

数学的学习应该是与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中发现数学,探究数学,认识并掌握数学,由生活的实例引入,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题平面向量

【设计意图】形成对概念的初步认识,为进一步抽象概括做准备。

2、形成概念

结合物理学中对矢量的定义,给出向量的描述性概念。对于一个新学的量定义概念后,通常要用符号表示它。怎样把我们所举例子中的向量表示出来呢?

采取让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量。明确为什么可以用有向线段表示向量,引导学生总结出向量的表示方法,强调印刷体与手写体的区别。结合板书的有向线段给出向量的模。

单位向量、零向量的概念

【即时训练】

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知

3、知识应用

本阶段的教学,我采用的是教材上的两个例题,旨在巩固学生对平面向量的观念,提高学生的动手实践能力,掌握求模的基本方法,提升识图能力。

4、学以致用

为了调动学生的积极性,培养学生团队合作的精神,本环节我采用小组竞争的方式开展教学,小组讨论并选派代表回答,各组之间取长补短,将课堂教学推向高潮,再次加强学生对向量概念的理解。

5、课堂小结

为了了解学生本节课的学习效果,并且将所学做个很好的总结。设置问题:通过本节课的学习你有哪些收获?(可以从各种角度入手)

【设计意图】通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础

6、布置作业

出选做题的目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动眼观察,动脑思考,层层递进,亲身经历了知识的形成和发展过程,以问题为驱动,使学生对知识的理解逐步深入。而最后的实际应用又将激发学生的学习兴趣,带领学生进入对本节课更深一步的思考和研究之中,从而达到知识在课堂以外的延伸。

以上就是我对本节课的设计和说明,请各位领导,老师批评指正

高中数学电子版教案篇9

高中数学数列知识点

数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N_或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。

通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。

数列通项公式的特点:

(1)有些数列的通项公式可以有不同形式,即不。

(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。

递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

数列递推公式特点:

(1)有些数列的递推公式可以有不同形式,即不。

(2)有些数列没有递推公式。

有递推公式不一定有通项公式。

注:数列中的项必须是数,它可以是实数,也可以是复数。

等差数列通项公式

an=a1+(n-1)d

n=1时a1=S1

n≥2时an=Sn-Sn-1

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

等差中项

由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

等差数列性质

一、任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

怎么样提高数学成绩

首先想要提升数学成绩,成为数学学霸的前提是要对数学有良好的学习兴趣。其次要学会课前预习,方便自己能够更加深入的吃透课堂上的知识点。然后还要学会总结复习,总结自己课堂上的问题,复习课堂上的重要知识点,从而提高自己的数学成绩。

提升数学成绩还要拥有一个错题本,和数学资料。认真对待自己的学习工具,多做练习题,找出自己的薄弱环节和自己常犯的题型,记在错题本上,常练习,常巩固。在自己的数学资料中摸索出适合自己的解题技巧,反复练习加以运用,一定会提升你的数学成绩。

学会听课,在课堂上勇于提问。数学最重要的部分都是在课本上,所以必须要掌握好课堂的45分钟。把握好数学课本,为自己打下一个好基础,这样才能更有效的提升你的数学成绩。学会做课堂笔记,把每节课的重要知识点记下来,以便接下来的复习。

学好数学的方法技巧整理

预习的方法

上课之前一定要抽时间进行预习,有时预习比做作业更重要,因为通过预习我们可以初步掌握课程的大致内容,听课就能够把握好重点,针对性比较强,还会带着问题去听课,听课效率就会比较高,上课听明白了,完成作业也会更好更快,最终会形成良性循环。

听懂课的习惯

注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

不断练习

不断练习是指多做数学练习题。希望学好数学,多做练习是必不可少的。做练习的原因有以下三点:第一,熟练和巩固学到的数学知识;二,引导同学灵活运用所学知识点以及独立思考独立做题的水平;第三,融会贯通。通过做题将所学的所有知识点结合起来,加深同学对数学体系化的理解。

高中数学电子版教案篇10

说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。

下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。

一、背景分析

1、学习任务分析

平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

2、学生情况分析

学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。

二、教学目标设计

《普通高中数学课程标准(实验)》对本节课的要求有以下三条:

(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。

(2)体会平面向量的数量积与向量投影的关系。

(3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。

综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:

1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;

2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,

并能运用性质和运算律进行相关的运算和判断;

3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。

三、课堂结构设计

本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:

即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。

四、教学媒体设计

和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:

1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。

2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。

平面向量数量积的物理背景及其含义

一、数量积的概念二、数量积的性质四、应用与提高

1、概念:例1:

2、概念强调(1)记法例2:

(2)“规定”三、数量积的运算律例3:

3、几何意义:

4、物理意义:

五、教学过程设计

课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:

活动一:创设问题情景,激发学习兴趣

正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:

问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?

问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

期望学生回答:物理模型→概念→性质→运算律→应用

问题3:如图所示,一物体在力F的作用下产生位移S,

(1)力F所做的功W=。

(2)请同学们分析这个公式的特点:

W(功)是量,

F(力)是量,

S(位移)是量,

α是。

问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。

问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。

问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。

活动二:探究数量积的概念

1、概念的抽象

在分析“功”的计算公式的基础上提出问题4

问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?

学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。

2、概念的明晰

已知两个非零向量

,它们的夹角为

,我们把数量︱

︱·︱

︱cos

叫做

的数量积(或内积),记作:

·

,即:

·

=︱

︱·︱

︱cos

在强调记法和“规定”后,为了让学生进一步认识这一概念,提出问题5

问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:

的范围0°≤

<90°

=90°0°<

≤180°

·

的符号

通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。

3、探究数量积的几何意义

这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。

如图,我们把│

│cos

(│

│cos

)叫做向量

方向上(

方向上)的投影,记做:OB1=│

│cos

问题6:数量积的几何意义是什么?

这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。

4、研究数量积的物理意义

数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。

问题7:

(1)请同学们用一句话来概括功的数学本质:功是力与位移的数量积。

(2)尝试练习:一物体质量是10千克,分别做以下运动:

①、在水平面上位移为10米;

②、竖直下降10米;

③、竖直向上提升10米;

④、沿倾角为30度的斜面向上运动10米;

分别求重力做的功。

活动三:探究数量积的运算性质

1、性质的发现

教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:

(1)将尝试练习中的①②③的结论推广到一般向量,你能得到哪些结论?

(2)比较︱

·

︱与︱

︱×︱

︱的大小,你有什么结论?

在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。

2、明晰数量积的性质

3、性质的证明

这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。

活动四:探究数量积的运算律

1、运算律的发现

关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9

问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?

通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。

学生可能会提出以下猜测:①

·

=

·

②(

·

)

=

(

·

)③(

+

=

·

+

·

猜测①的正确性是显而易见的。

关于猜测②的正确性,我提示学生思考下面的问题:

猜测②的左右两边的结果各是什么?它们一定相等吗?

学生通过讨论不难发现,猜测②是不正确的。

这时教师在肯定猜测③的基础上明晰数量积的运算律:

2、明晰数量积的运算律

3、证明运算律

学生独立证明运算律(2)

我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:

当λ<0时,向量

与λ

与λ

的方向的关系如何?此时,向量λ

与λ

的夹角与向量

的夹角相等吗?

师生共同证明运算律(3)

运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。

在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。

活动五:应用与提高

例1、(师生共同完成)已知︱

︱=6,︱

︱=4,

的夹角为60°,求

(

+2

)·(

-3

),并思考此运算过程类似于哪种运算?

例2、(学生独立完成)对任意向量

,b是否有以下结论:

(1)(

+

)2=

2+2

·

+

2

(2)(

+

)·(

-

)=

2—

2

例3、(师生共同完成)已知︱

︱=3,︱

︱=4,且

不共线,k为何值时,向量

+k

-k

互相垂直?并思考:通过本题你有什么收获?

本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的.两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。

为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:

1、下列两个命题正确吗?为什么?

①、若

≠0,则对任一非零向量

,有

·

≠0.

②、若

≠0,

·

=

·

,则

=

.

2、已知△ABC中,

=

,

=

,当

·

<0或

·

=0时,试判断△ABC的形状。

安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,

通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。

活动六:小结提升与作业布置

1、本节课我们学习的主要内容是什么?

2、平面向量数量积的两个基本应用是什么?

3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?

4、类比向量的线性运算,我们还应该怎样研究数量积?

通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下

一节做好铺垫,继续激发学生的求知欲。

布置作业:

1、课本P121习题2.4A组1、2、3。

2、拓展与提高:

已知

都是非零向量,且

+3

与7

-5

垂直,

-4

与7

-2

垂直求

的夹角。

在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。

六、教学评价设计

评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:

1、通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定

性的评价。

2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。

3、通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。

4、通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。

高中数学电子版教案篇11

一、教学内容分析

本节内容是学生在学习了乘法原理、排列、排列数公式和加法原理以后的知识,学生已经掌握了排列问题,并且对顺序与排列的关系已经有了一个比较清晰的认识.因此关键是排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系,指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

二、教学目标设计

1.理解组合的意义,掌握组合数的计算公式;

2.能正确认识组合与排列的联系与区别

3.通过练习与训练体验并初步掌握组合数的计算公式

三、教学重点及难点

组合概念的理解和组合数公式;组合与排列的区别.

四、教学用具准备

多媒体设备

五、教学流程设计



六、教学过程设计

一、 复习引入

1.复习

我们在前几节中学习了排列、排列数以及排列数公式

定 义

特 点

相同排列

公 式



排 列























 以上由学生口答.

2.引入

那么请问:平面上有7个点,问以这7点中任何两个为端点,构成有向线段有几条?

这是一个排列问题 

若改为:构成的线段有几条?则为 ,

其实亦可用另一种方法解决,这就是组合.

二、学习新课

探究性质

1. 组合定义: P16

一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.

【说明】:⑴不同元素; ⑵“只取不排”——无序性;

⑶相同组合:元素相同.

2.组合数定义:

从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数.用符号表示.

如:引入中的例子可表示为 

== 这是为什么呢?

因为 构成有向线段的问题可分成2步来完成:

第一步,先从7个点中选2个点出来,共有种选法;

第二步,将选出的2个点做一个排列,有种次序;

根据乘法原理,共有·= 所以

·判断何为排列、组合问题: 利用书本P16~P17例题请学生判断

·这个公式叫组合数公式

3.组合数公式:

如= =

用计算器求  、  、  、 

可发现= =

由此猜想: 

用实际例子说明:比如要从50人中挑选4个出来参加迎春长跑的选择方案有,就相当于挑46个人不参加长跑的选择方案一样.“取法”与“剩法”是“一 一对应”的.

证明:∵

又 ,∴

当m=n时,

此性质作用:当时,计算可变为计算,能够使运算简化.

4. 组合数性质:

1、

2、=  

可解释为:从这n 1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m (1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据加法原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.

证明:





得证.

【说明】1( 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.

2( 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.

2.例题分析

例1、(1),求x

(2)

(3)

略解:(1) 





(2) 

(3)



例2、应用题:

有15本不同的书,其中6本是数学书,问:

分给甲4本,且都不是数学书;

略解:(1)

3.问题拓展

例3.题设同例2:

(2)平均分给3人;

(3)若平均分为3份;

(4)甲分2本,乙分7本,丙分6本;

(5)1人2本,1人7本,1人6本.

略解:(2) (3)

(4) (5)

三、课堂小结

指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.

学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.

排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.

四、作业布置

(略)

七、教学设计说明

在学习过程中,从排列问题引入,随即自然地过渡到组合问题.由此让学生对于排列与组合两者的异同有深刻理解,并能自如地进行判断.

本节课在教学技术上通过多媒体课件大大缩短了教师板书抄题的时间,让学生能够更加连贯的思考以及探索问题.

在例题的设计上从最基本的组合数公式的利用,到简单的应用题,再到组合中较难的分组分配以及平均不平均分配问题的训练,由浅入深,层层递进,以积极发挥课堂教学的基础型和研究型功能,培养学生的基础性学力和发展性学力.

在课堂教学中教师遵循“以学生为主体”的思想,鼓励学生善于观察和发现;鼓励学生积极思考和探究;鼓励学生大胆猜想,努力营造一个民主和谐、平等交流的课堂氛围,采取对话式教学,调动学生学习的积极性,激发学生学习的热情,使学生开阔思维空间,让学生积极参与教学活动,提高学生的数学思维能力.

高中数学电子版教案篇12

教学主题:

主要涉及到简单排列组合问题,相同元素和不同元素排列组合问题。

捆绑法插空法特殊元素法特殊位置法定序法分组分配

教学内容及分析:

排列组合问题是高中数学知识的一个重要组成部分,在高考中也是必考内容,难度一般在中等偏上,只要掌握的排列组合的几种典型方法,就能快速理解题型题意,快速找到突破口,对症下药,事半功倍,关键是要把握住什么题型用什么方法,通过题型对比分析相同点和不同点,区分易错的,难点。另外,排列组合在适应新高考有着天然出题优势,因为排列组合更贴近显示生活,可以把我们课本上的抽象概念和数学公式和实际生活联系起来,数学知识走进生活,知识来与是但高于生活,最后回归于生活,才是我们学习知识,专研学问的立足点。本文就对数学中概率统计中的一小点内容——排列组合,做一个简单的对比分析。

教学对象及特点:

排列组合在高中数学选修2—3。人教版教材,高二的学生在日常生活中,有很多需要用排列组合来解决的知识。作为二年级的学生,已有了一定的生活经验及解决问题的能力。因此,在设计中,我通过创设一个完整的、有趣的生活情境来进行教学,力求使学生在经历日常生活最简单的事例中体验到重要的数学思想方法,从而也感受到数学思想也是依托于生活,来源于生活,是有生命活力的。

教学目标:

基于对教材的理解,我把本节课的教学重点定为:在经历简单事物排列与组合规律的过程中体会排列与组合的数学思想。教学难点定为:培养学生全面有序的思考问题的意识。通过观察、猜测、比较、实验等活动,培养学生学习初步的观察、分析能力和有序、全面地思考问题的意识。培养学生大胆猜想、积极思维的学习方法,使学生感受学习数学的快乐,进一步激发学生学习数学的兴趣。

教学过程:

一、排列问题

例1:有4个男生,5个女生站队,在下列条件下,有多少种情况?

(1)9个人全部站成一排;

(2)9个人站成两排,前排站4人,后排站5人;

(3)9个人全部站一排,全部女生站在一起;(捆绑法)

(4)9个人全部站一排,全部男生都不相邻;(插空法)

(5)9个人全部站一排,甲乙相邻,丙丁不相邻;

(6)9个人全部站一排,甲不在两端;(特殊元素法,特殊位置法)

(7)9个人全部站一排,甲不在最左边,乙不在最右边;

(8)9个人全部站一排,甲在乙的左边,可以不相邻;(定序)

(9)9个人全部站一排,甲在乙的前面,乙在丙的前面,可以不相邻;

(10)9个人全部站一排,甲在乙和丙的中间,可以不相邻;

二、组合问题

例2:有25件产品,其中5件次品,从中任取3件,在下列条件下,有多少种情况?

(1)次品甲在内;

(2)次品甲不在内;

(3)恰有1件次品;

(4)至少1件次品;

(5)至少2件次品;

三、分组分配问题(不同元素)

例3:有6名学生分配到三个班级,在下列条件下,有多少种情况?

(1)随机分配;

(2)每个班表达对一名学生的争取意愿,6名学生实力相当;

(3)分配到三个班的人数分别为1、2、3人;

(4)分配到三个班的人数分别为1、1、4人;

(5)分配到三个班的人数分别为2、2、2人;

四、分组分配问题(相同元素)

例4:9个相同的乒乓球分给3个不同的人,在下列条件下,有多少种情况?

(1)3个人分别分到2个乒乓球,3个乒乓球,4个乒乓球;

(2)3个人分别分到2个乒乓球,2个乒乓球,5个乒乓球;

(3)3个人平均分,每人得到3个乒乓球;

(4)3个人每人至少分到1个乒乓球;

(5)3个人每个人至少分到2个乒乓球;

(6)3个人随机分配这9个乒乓球;

五、分组分配问题(部分元素相同)

例5:有形状大小相同,颜色不全相同的乒乓球,其中红色乒乓球,黄色乒乓球,黑色乒乓球分别有5个,从中取出四个乒乓球排一排,在下列条件下,有多少种情况?

(1)取3个红色乒乓球,1个黄色乒乓球;

(2)取2个红色乒乓球,2个黄色乒乓球;

(3)取2个红色乒乓球,1个黑色乒乓球,1个黄色乒乓球;

(4)取出的4个乒乓球中刚好3个乒乓球颜色相同;

(5)取出的4个乒乓球中刚好2个乒乓球颜色相同,其他两个乒乓球颜色也相同;

取出的4个乒乓球中刚好2个乒乓球颜色相同,其他两个乒乓球颜色不同;

所选技术以及技术使用的目的:选取的技术是PPT演示文稿,电子文档,交互式电子白板,目的是能和学生共享资源,实时授课,不用边抄题目边讲课,节约时间,集中精力。便于分享交流保存,复习资料可以打印存档,电子档纸质档都可以,提高学习教学的效率。

高中数学电子版教案篇13

各位老师你们好!今天我要为大家讲的课题是

首先,我对本节教材进行一些分析:

一、教材分析(说教材):

1.教材所处的地位和作用:

本节内容在全书和章节中的作用是:《__》是中数学教材第册第章第节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。

2.教育教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,

(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

3.重点,难点以及确定依据:

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

重点:通过突出重点

难点:通过突破难点

关键:

下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:

二、教学策略(说教法)

1.教学手段:

如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。

2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

3.学情分析:(说学法)

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学

生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

最后我来具体谈谈这一堂课的教学过程:

4.教学程序及设想:

(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。

(2)由实例得出本课新的知识点

(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

(7)板书

(8)布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

教学程序:

课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分

高中数学电子版教案篇14

【教学目标】

1、知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2、过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3、情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】

①等差数列的概念;

②等差数列的通项公式

【教学难点】

①理解等差数列“等差”的特点及通项公式的含义;

②等差数列的通项公式的推导过程.

【学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

【设计思路】

1、教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

2、学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

【教学过程】

一、创设情境,引入新课

1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

二、观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的&39;准确表达.)

三、举一反三,巩固定义

1、判定下列数列是否为等差数列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.

(设计意图:强化学生对等差数列“等差”特征的理解和应用).

2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四、利用定义,导出通项

1、已知等差数列:8,5,2,…,求第200项?

2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

五、应用通项,解决问题

1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?

2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

3、求等差数列3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况.

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

六、反馈练习:

教材13页练习1

七、归纳总结:

1、一个定义:

等差数列的定义及定义表达式

2、一个公式:

等差数列的通项公式

3、二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

【设计反思】

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

高中数学电子版教案篇15

各位老师:

大家好!

我叫______,来自____。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。

2.教学的重点和难点

重点:理解古典概型及其概率计算公式。

难点:古典概型的判断及把一些实际问题转化成古典概型。

二、教学目标分析

1.知识与技能目标

(1)通过试验理解基本事件的概念和特点

(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。

2、过程与方法:

经历公式的推导过程,体验由特殊到一般的数学思想方法。

3、情感态度与价值观:

(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。

三、教法与学法分析

1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。

㈠创设情景、引入新课

在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:

试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;

试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。

在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。

1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]

「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

㈡思考交流、形成概念

学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。

[基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和.]

「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。

例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?

先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。

「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点

观察对比,发现两个模拟试验和例1的共同特点:

让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。

[经概括总结后得到:

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。

㈢观察分析、推导方程

问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:

「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

提问:

(1)在例1的实验中,出现字母"d"的概率是多少?

(2)在使用古典概型的概率公式时,应该注意什么?

「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

㈣例题分析、推广应用

例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

学生先思考再回答,教师对学生没有注意到的关键点加以说明。

「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。

例3同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。

「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

㈤探究思想、巩固深化

问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?

要求学生观察对比两种结果,找出问题产生的原因。

「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

㈥总结概括、加深理解

1.基本事件的特点

2.古典概型的特点

3.古典概型的概率计算公式

学生小结归纳,不足的地方老师补充说明。

「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

㈦布置作业

课本练习1、2、3

「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。

高中数学电子版教案篇16

2。2。1等差数列学案

一、预习问题:

1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。

2、等差中项:若三个数组成等差数列,那么A叫做与的,

即或。

3、等差数列的.单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。

4、等差数列的通项公式:。

5、判断正误:

①1,2,3,4,5是等差数列;()

②1,1,2,3,4,5是等差数列;()

③数列6,4,2,0是公差为2的等差数列;()

④数列是公差为的等差数列;()

⑤数列是等差数列;()

⑥若,则成等差数列;()

⑦若,则数列成等差数列;()

⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()

⑨等差数列的公差是该数列中任何相邻两项的差。()

6、思考:如何证明一个数列是等差数列。

二、实战操作:

例1、(1)求等差数列8,5,2,的第20项。

(2)是不是等差数列中的项?如果是,是第几项?

(3)已知数列的公差则

例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?

例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。

高中数学电子版教案篇17

教学目标:

1、理解流程图的选择结构这种基本逻辑结构。

2、能识别和理解简单的框图的功能。

3、能运用三种基本逻辑结构设计流程图以解决简单的问题。

教学方法:

1、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。

2、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。

教学过程:

一、问题情境

情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

其中(单位:)为行李的重量。

试给出计算费用(单位:元)的一个算法,并画出流程图。

二、学生活动

学生讨论,教师引导学生进行表达。

解算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费。

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1-2-6。

在上述计费过程中,第二步进行了判断。

三、建构数学

1、选择结构的概念:

先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。

如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行。

2、说明:

(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。

3、思考:教材第7页图所示的算法中,哪一步进行了判断?

高中数学电子版教案篇18

一 教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

二 教法

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

三 学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四 教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

五 板书设计

板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。

高中数学电子版教案篇19

各位评委老师,上午好,我是__号考生叶新颖。今天我的说课题目是集合。首先我们来进行教材分析。

教材分析

集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

教学目标

1、学习目标

(1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

2、能力目标

(1)能够把一句话一个事件用集合的方式表示出来。

(2)准确理解集合与及集合内的元素之间的关系。

3、情感目标

通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了解到数学于生活中。

教学重点与难点

重点:集合的基本概念与表示方法;

难点:运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

教学方法

(1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

(2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

学习方法

(1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象的综合能力。

(2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

优扶差,满足不同。”

教学思路,具体的思路如下

一、引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

二、正体部分

学生阅读教材,并思考下列问题:

(1)集合有那些概念?

(2)集合有那些符号?

(3)集合中元素的特性是什么?

(4)如何给集合分类?

(一)集合的有关概念

(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.

(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.

(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、元素通常用小写的

拉丁字母表示,如a、b、c、

1.思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

2、元素与集合的关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)

集合A={2,3,4,6,9}a=2因此我们知道a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA

要注意“∈”的方向,不能把a∈A颠倒过来写.(举例)集合A={3,4,6,9}a=2因此我们知道aA

3、集合中元素的特性(1)确定性:(2)互异性:(3)无序性:

4、集合分类

根据集合所含元素个属不同,可把集合分为如下几类:

(1)把不含任何元素的集合叫做空集Ф

(2)含有有限个元素的集合叫做有限集

(3)含有无穷个元素的集合叫做无限集注:应区分,{},{0},0等符号的含义

5、常用数集及其表示方法

(1)非负整数集(自然数集):全体非负整数的集合.记作N

(2)正整数集:非负整数集内排除0的集.记作N__或N+

(3)整数集:全体整数的集合.记作Z

(4)有理数集:全体有理数的集合.记作Q

(5)实数集:全体实数的集合.记作R注:

(1)自然数集包括数0.

(2)非负整数集内排除0的集.记作N__或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z__

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{-2,3-+2,5y3--,-2+y2},;例1.(课本例1)思考2,引入描述法

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{---3>2},{(-,y)y=-2+1},{直角三角形},;例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P6思考)

强调:描述法表示集合应注意集合的代表元素

{(-,y)y=-2+3-+2}与{yy=-2+3-+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P6练习)

三、归纳小结与作业

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

书面作业:习题1.1,第1-4题。

高中数学电子版教案篇20

教学目标:

1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

教学重点:

复数的几何意义,复数加减法的几何意义.

教学难点:

复数加减法的几何意义.

教学过程:

一、问题情境

我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

二、学生活动

问题1任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

问题2平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

问题3任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

问题4复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

三、建构数学

1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

4.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的。

32897