教案吧 > 学科教案 > 数学教案 >

初中数学教案汇编

时间: 新华 数学教案

好的教案应该采用多种教学方法和手段,如讲解、实验、讨论等,以激发学生的学习兴趣和提高教学效果。写初中数学教案汇编要注意什么?这里给大家提供初中数学教案汇编下载,供大家参考。

初中数学教案汇编篇1

问题描述:

初中数学教学案例

初中的,随便那个年级.2000字.案例和反思

1个回答分类:数学20__-11-30

问题解答:

我来补答

2.3平行线的性质

一、教材分析:

本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分.

二、教学目标:

知识与技能:掌握平行线的性质,能应用性质解决相关问题.

数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程.

解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神.

情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神.

三、教学重、难点:

重点:平行线的性质

难点:“性质1”的探究过程

四、教学方法:

“引导发现法”与“动像探索法”

五、教具、学具:

教具:多媒体课件

学具:三角板、量角器.

六、教学媒体:

大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思:

1.播放一组幻灯片.内容:①火车行驶在铁轨上;②游泳池;③横格纸.

2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

学生活动:

思考回答.①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

教师:首先肯定学生的回答,然后提出问题.

问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?

引出课题——平行线的性质.

(二)数形结合,探究性质

1.画图探究,归纳猜想

任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).

问题一:指出图中的同位角,并度量这些角,把结果填入下表:

第一组

第二组

第三组

第四组

同位角

∠1

∠5

角的度数

数量关系

学生活动:画图——度量——填表——猜想

结论:两直线平行,同位角相等.

问题二:再画出一条截线d,看你的猜想结论是否仍然成立?

学生:探究、讨论,最后得出结论:仍然成立.

2.教师用《几何画板》课件验证猜想

3.性质1.两条直线被第三条直线所截,同位角相等.(两直线平行,同位角相等)

(三)引申思考,培养创新

问题三:请判断内错角、同旁内角各有什么关系?

学生活动:独立探究——小组讨论——成果展示.

教师活动:引导学生说理.

因为a‖b因为a‖b

所以∠1=∠2所以∠1=∠2

又∠1=∠3又∠1+∠4=180°

所以∠2=∠3所以∠2+∠4=180°

语言叙述:

性质2两条直线被第三条直线所截,内错角相等.

(两直线平行,内错角相等)

性质3两条直线被第三条直线所截,同旁内角互补.

(两直线平行,同旁内角互补)

(四)实际应用,优势互补

1.(抢答)

(1)如图,平行线AB、CD被直线AE所截

①若∠1=110°,则∠2=°.理由:.

②若∠1=110°,则∠3=°.理由:.

③若∠1=110°,则∠4=°.理由:.

(2)如图,由AB‖CD,可得()

(A)∠1=∠2(B)∠2=∠3

(C)∠1=∠4(D)∠3=∠4

(3)如图,AB‖CD‖EF,

那么∠BAC+∠ACE+∠CEF=()

(A)180°(B)270°(C)360°(D)540°

(4)谁问谁答:如图,直线a‖b,

如:∠1=54°时,∠2=.

学生提问,并找出回答问题的同学.

2.(讨论解答)

如图是一块梯形铁片的残余部分,量得∠A=100°,

∠B=115°,求梯形另外两角分别是多少度?

(五)概括存储(小结)

1.平行线的性质1、2、3;

2.用“运动”的观点观察数学问题;

3.用数形结合的方法来解决问题.

(六)作业第69页2、4、7.

八、教学反思:

①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣.

②学的转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境.

③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.

初中数学教案汇编篇2

一、说教材

本节内容是人民教育出版社的义务教育数学课程标准实验教科书《数学》初二下册第16章第二节第二课时《分式的加减法》,属于数与代数领域的知识。它是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。

在此之前,学生已经学习了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础。而掌握好本节课的知识,将为《分式的加减法》第二课时以及《分式方程》的学习做好必备的知识储备。因此,在分式的学习中,占据重要的地位。本节课中掌握分式的加减运算法则是重点,运用法则计算分式的加减是难点,掌握计算的一般解题步骤是解决问题是关键。基于以上对教材的认识,考虑到学生已有的认识和结构与心理特征,我制定如下的教学目标。

二、说目标

根据学生已有的认识基础及本课教材的.地位和作用,依据新课程标准制定如下:知识与技能:会进行简单的分式加减运算,具有一定解决问题计算的能力;过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。为突出重点,突破难点,抓住关键使学生能达到本节设定的教学目标,我载从教法和学法上谈谈设计思路。

三、说教学方法

教法选择与手段:本课我主要以“复习旧知,导入新知,例题讲解,拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。学法指导:根据学生的认知水平,我设计了“观察思考、猜想归纳、例题学习和巩固提高”四个层次的学法。最后,我来具体谈一谈本节课的教学过程。

四、说教学过程

在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程是:观察导入、例题示范、习题巩固、归纳小结和作业布置。

五、分层作业

各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的灵活发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。

初中数学教案汇编篇3

教学目标

1.通过实验,使学生相信经过大量的重复实验后得到的频率值确实可以作为随机事件每次发生的机会的估计值,体会随机事件中所隐含着的确定性内涵。

2.使学生知道,通过实验的方法,用频率估计机会的大小,必须要求实验是在相同条件下进行的。且在相同条件下,实验次数越多,就越有可能得到较好的估计值,但个人所得的值也并不一定相同。

3.培养学生合作学习的能力,并学会与他人交流思维的过程和结果。

教学重难点

重点:频率与机会的关系。

难点:如何用频率估计机会的大小?教学准备数枚相同的图钉。

教学过程

一、提出问题

上一节课,通过一系列的实验和观察,我们已经知道:实验是估计机会大小的一种方法。我们可以通过实验,观察某事件出现的频率,当频率值逐渐稳定时,这个值就可以作为我们对该事件发生机会的估计。

实际上,在前面的问题中,即使不做实验,也可以设法预先推测出事件发生的机会,为什么还要花大量时间去进行实验呢?

下面让我们看另一类问题:

一枚图钉被抛起后钉尖触地的`机会有多大?

二、分组实验

1.两个学生一个小组,一人抛掷,一人记录

每个小组抛掷40次,记录出现钉尖触地的频数

教师负责把各小组的结果登录在黑板上

2.然后把每小组的结果合起来,分别计算抛掷80次、120次、160次、200次、240次、180次、320次、360次、400次、480次、520次、560次后出现钉尖触地的频数及频率

3.列出统计表,绘制折线图

4.根据实验结果估计一下钉尖触地的机会是百分之几?

5.课本第105页表15.2.1和图15.2.2是一位同学在抛掷图钉的实验中画的统计表和折线图。这与你实验的结果相同吗?为什么?

三、深入思考

如果两个小组使用的是两种不同形状的图钉,那么这两种图钉钉尖触地的机会相同吗?

能把两个小组的实验数据合起来进行实验吗?

四、概括小结

从上面的问题可以看出:

1.通过实验的方法用频率估计机会的大小,必须要求实验是在相同条件下进行的。比如,以同样的方式抛掷同一种图钉。

2.在相同的条件下,实验次数越多,就越有可能得到较好的估计值,但每人所得的值也并不一定相同。

五、用心观察

我们已经知道,在相同条件下,实验次数越多,就越有可能得到较好的估计值。那么,总共要做多少次实验才认为得到的结果比较可靠呢?

观察课本第105页表15.2.1和图15.2.2。

当实验进行到多少次以后,所得频率值就趋于平稳了?

(小结:实验到频率值较稳定时,结果比较可靠。这个频率值也就可以作为这个事件发生机会的估计值。)

六、巩固练习

课本第107页练习第1、2题。

七、课堂小结

这节课你有什么收获?还有哪些问题需要老师帮你解决的?

注意:通过实验的方法用频率估计机会大小,必须要求实验是在相同条件下进行的。

八、布置作业

1、课本第108页习题15.2第2题

2、课本第106页做一做

2、数字之积为奇数与偶数的机会

初中数学教案汇编篇4

教学目标

1、知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。

2、过程与方法

经历探索一次函数的应用问题,发展抽象思维。

3、情感、态度与价值观

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。

重、难点与关键

1、重点:一次函数的应用。

2、难点:一次函数的应用。

3、关键:从数形结合分析思路入手,提升应用思维。

教学方法

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的.应用。

教学过程

一、范例点击,应用所学

【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。

y=

【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

二、随堂练习,巩固深化

课本P119练习。

三、课堂总结,发展潜能

由学生自我评价本节课的表现。

四、布置作业,专题突破

课本P120习题14.2第9,10,11题。

板书设计

1、一次函数的应用例:

初中数学教案汇编篇5

一、说教学地位和作用

全等三角形是《三角形》这一章的主线,在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以培养和提高。因此,全等三角形的教学对全章乃至以后的学习都是至关重要的。为此,我在设计这节课的时候,以学生为主体,让他们全面地参与到学习过程中来,有意识地培养学生的创新意识和实践能力,增强他们学习的能力,让他们充分的掌握该知识点,同时尽量扩充他们的知识范畴。在教学中,采用的是“设疑——实验——发现——总结”的教学方法,并采用“变式练习”方法来提高学习效率。

二、说教学的目标和要求:

1.知识目标:

(1)知道什么是全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角,对应边。

2.能力目标:

(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3.情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

三、说教学重点:

1.能准确地在图形中识别出对应边,对应角;

2.全等三角形的性质和利用其基本性质进行一些简单的推理和计算。

四、说教学难点:

能在全等变换中准确找到对应边,对应角。(在对应边,对应角的识别,查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点)

五、说教法与学法:

采用直观,类比的方法,以多媒体为手段辅助教学,引导学生预习教材内容,养成良好的自学习惯,启发学生发现问题,思考问题,培养学生的逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。

六、说教学用具:

多媒体,剪刀,直尺,硬纸,三角板

七、说教学过程:

(一)复习导入方面

从复习全等图形方面入手,展示一些直观的图形,接着创设一个问题情境:如何翻新一个旧的`三角形的纸样让学生动手画图,实验尝试,从而发现其实解决问题的关键是画一个全等的三角形,从而引出课题。通过以上的环节主要是提高学生数学概念的辨析能力和培养学生的动手实践能力。(此环节约用时5分钟)

(二)新课讲解方面

1.全等三角形的定义

通过动画的展示,引导学生观察,分析得出全等三角形的定义(先展示动画)。目的主要在于培养学生的观察分析能力。(此环节学生约用2分钟进行讨论分析)

2.全等三角形的性质

以动画的形式,介绍全等三角形的对应顶点,对应边,对应角,并引导学生通过观察分析全等三角形的对应边,对应角之间分别有怎样的关系,从而得出全等三角形的性质。在无形中培养了学生的图形识别能力和直观判断能力。(此环节约用时7分钟)

3.全等三角形的表示法

介绍全等符号,说明表示两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。(此环节用时约2分钟)

4.议一议

方法:(1)小组活动,展示部分小组的解决方案

(2)动画展示解决方案

(3)知识点的扩充:动画展示全等三角形的变换识别中对应边,对应角的查找。

以上环节主要趋于培养学生的团结合作精神,认识团队的力量和开拓学生的思维,扩充学生的知识范畴。(此环节约用时8分钟)

(三)课堂练习(此环节约用时18分钟)

用多媒体课件逐一展示练习题目,让学生一一解答。主要是通过练习让学生巩固所学的知识并学会用所学的知识进行推理和解决实际问题。

(四)课堂小结(此环节约用时2分钟)

经过以上的教学环节,为了帮助学生系统的掌握所学的知识,达到预期的效果,在这一步骤中,我准备利用提问的形式,师生共同进行小结和归纳。

(五)作业布置(约用时1分钟)

(六)板书设置

初中数学教案汇编篇6

教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.

教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.

教学过程:

一、提出问题,得到新知

观察下列多项式:x24和y225

学生思考,教师总结:

(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.

公式逆向:a2b2=(a+b)(ab)

如果多项式是两数差的.形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.

二、运用公式

例1:填空

①4a2=()2②b2=()2③0.16a4=()2

④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2

解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2

④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2

例2:下列多项式能否用平方差公式进行因式分解

①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2

解答:①1.21a2+0.01b2能用

②4a2+625b2不能用

③16x549y4不能用

④4x236y2不能用

初中数学教案汇编篇7

教学设计示例一——公式

教学目标

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式、

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例二——公式

一、教学目标

(一)知识教学点

1、使学生能利用公式解决简单的实际问题、

2、使学生理解公式与代数式的关系、

(二)能力训练点

1、利用数学公式解决实际问题的能力、

2、利用已知的公式推导新公式的能力、

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践、

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美、

二、学法引导

1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2、学生学法:观察分析推导计算

三、重点、难点、疑点及解决办法

1、重点:利用旧公式推导出新的图形的计算公式、

2、难点:同重点、

3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差、

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式、

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏、在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题、

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。

师生共同分析:

1、根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

2、题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性。

【教法说明】

1、通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量。

2、用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。

(出示投影3)

例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

学生讨论:

1、环形是怎样形成的、

2、如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。

评讲时注意:

1、如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算。

2、本题实际上是由圆的面积公式推导出环形面积公式。

3、进一步强调解题的规范性

教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径。

测试反馈,巩固练习

(出示投影4)

1、计算底,高的三角形面积

2、已知长方形的长是宽的1。6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t

3、已知圆的半径,,求圆的周长C和面积S

4、从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

(1)求A地到B地所用的时间公式。

(2)若千米/时,千米/时,求从A地到B地所用的时间。

学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演、

【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展、

师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式、

八、随堂练习

(一)填空

1、圆的半径为R,它的面积________,周长_____________

2、平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________

3、圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________

(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,V是多少?

九、布置作业

(一)必做题课本第__页x、x、x第__页x组x

(二)选做题课本第__页__组x

初中数学教案汇编篇8

一、教材内容

人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

二、教学目标

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

三、教学重、难点

认识负数的意义。

四、教学过程

(一)谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的&39;自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

(二)教学新知

1.表示相反意义的量

(1)引入实例

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

①六年级上学期转来6人,本学期转走6人。

②张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③与标准体重比,小明重了2.5千克,小华轻了1.8千克。

④一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

……

(3)展示交流

……

2.认识正、负数

(1)引入正、负数

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

①同桌交流。

②全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:……)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”

(1)看一看、读一读

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

哈尔滨:-18℃~-5℃

北京:-6℃~6℃

深圳:15℃~25℃

温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说

我们来看首都北京当天的温度,“-5℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

你能很快找到12℃、-3℃吗?

(3)提升认识

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

5.练一练

读一读,填一填。

6.出示课题

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

初中数学教案汇编篇9

【学习目标】

1.借助数轴,初步理解绝对值和相反数的概念,能求一个数的绝对值和相反数,2.会利用绝对值比较两负数的大小;学习数形结合的数学方法和分类讨论的思想。

3.会与人合作,并能与他人交流思想的过程和结果;

【学习方法】

自主探究与合作交流相结合。

【学习重难点】

重点:会求一个数的绝对值和相反数,会利用绝对值比较两负数的大小。

难点:对绝对值和相反数的代数意义、几何意义的理解。

【学习过程】

模块一预习反馈

一、学习准备

1.数轴:规定了__、__、__的一条直线叫做__.

2.数轴上两个点表示的数,右边的总比左边的;正数大于,负数小于,正数大于一切。

3.请同学们阅读教材p30—p32,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。

二、精读教材

4.相反数的意义

+3与—3,—5与+5,—1.5与1.5这三对数有什么共同点?还能列举出这样的数吗?

归纳:如果两个数只有__不同,那么称其中一个数为另一个数的__,也称这两个数__.特别地,0的相反数是__。如,+3的相反数是—3,也可以说+3与—3互为相反数。相反数是成对出现的,不能单独存在。

《2.3绝对值》课时练习

一、选择题(共10题)

1.有理数的绝对值一定是()

A.正数B.负数

C.零或正数D.零或负数

答案:C

解析:解答:根据绝对值的定义可知:正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零;所以答案选择C选项

分析:考查有理数的绝对值,注意正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零

2.绝对值等于它本身的数有()

A.0个B.1个C.2个D.无数个

答案:D

解析:解答:根据绝对值得定义可知正数和零的绝对值是它本身,所以答案选择D选项

分析:考查绝对值这一知识点.

3.相反数等于-5的数是()

A.5B.-5C.5或-5D.不能确定

答案:A

解析:解答:根据相反数的定义可知,互为相反数的两个数只有符号不同,所以答案选择A选项

分析:考查相反数的基本概念。

2.3绝对值》同步练习

10.如果a=-a,下列成立的是()

A.-a一定是非负数B.-a一定是负数

C.a一定是正数D.a不能是0

11.下列说法:①一个数的绝对值一定是正数;②-a一定是一个负数;③没有绝对值为-3的数;④若a=a,则a是一个正数;⑤-20__的绝对值是20__.其中正确的有__.(填序号)

12.若绝对值相等的两个数在数轴上的对应点的距离为6,则这两个数为()

A.+6和-6B.-3和+3C.-3和+6D.-6和+3

初中数学教案汇编篇10

一、学生起点分析

七年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.

二、教学任务分析

本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时.勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.

为此本节课的教学目标是:

1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.

2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.

3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.

4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.

三、教学过程设计

本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.

第一环节:创设情境,引入新课

内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:

会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)

意图:紧扣课题,自然引入,同时渗透爱国主义教育.

效果:激发起学生的求知欲和爱国热情.

第二环节:探索发现勾股定理

1.探究活动一

内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:

问:你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.

效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.

2.探究活动二

内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

(1)观察下面两幅图:

(2)填表:

A的面积

(单位面积)B的面积

(单位面积)C的面积

(单位面积)

左图

右图

(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)

学生的方法可能有:

方法一:

如图1,将正方形C分割为四个全等的直角三角形和一个小正方形,.

方法二:

如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.

方法三:

如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.

(4)分析填表的数据,你发现了什么?

学生通过分析数据,归纳出:

结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.

效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.

3.议一议

内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗?

(2)你能发现直角三角形三边长度之间存在什么关系吗?

(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?

勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.

数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)

意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.

效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.

第三环节:勾股定理的简单应用

内容:

例题如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处.大树在折断之前高多少?

(教师板演解题过程)

练习:

1.基础巩固练习:

求下列图形中未知正方形的面积或未知边的长度(口答):

2.生活中的应用:

小明妈妈买了一部29in(74cm)的电视机.小明量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?

意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.

效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.

第四环节:课堂小结

内容:

教师提问:

1.这一节课我们一起学习了哪些知识和思想方法?

2.对这些内容你有什么体会?与同伴进行交流.

在学生自由发言的基础上,师生共同总结:

1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.

2.方法:(1)观察—探索—猜想—验证—归纳—应用;

(2)“割、补、拼、接”法.

3.思想:(1)特殊—一般—特殊;

(2)数形结合思想.

意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.

效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.

第五环节:布置作业

内容:布置作业:1.教科书习题1.1.

2.观察下图,探究图中三角形的三边长是否满足?

初中数学教案汇编篇11

课题:数轴

编写:审阅:

班级学号姓名使用日期_________

【学习目标】

1.利用数轴比较两个数的大小;用数轴帮助深化对数的认识;

2.探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想;

3.感受点在数轴上左右运动时,所表示数的大小变化.

【导学提纲】

1.观察数轴,比较右边的点表示的数与左边的点表示的数的大小关系;

并比较-3与-1,与1的大小关系.

2.观察数轴,比较正数、负数、0的大小关系.

【展示交流】

活动一:

1.在数轴上画出表示-5,3,-1,0,4的点.你能将这些数从大到小排列吗?说说你这样排列的理由.

2.2°C与-2°C哪个温度高?-1°C与0°C哪个温度高?-3°C与-4°C哪个温度高?在数轴上画出表示数2、-2;-1、0和-3,-4的点,它们的位置关系如何?

3.把-3°C、-2°C、0°C、5°C按温度从低到高的顺序排列;在数轴上画出表示-3、-2、0、5的点,你能比较这几个数的大小吗?

活动二:

1.比较下列各组数的大小

(1)5和0(2)-0.5和0(3)-3、0、1.5(4)-3.5和-0.5

2.在数轴上画出下列各数的点,并用“<”将它们连接起来.

4,-2.5,0,-4.5,

【盘点收获】

【课堂反馈】

1.课本P18-19练一练1、2、3

2.在数轴上,到原点距离不大于2的所有整数是;

3.如图,在数轴上有三个点A、B、C,请回答:

(1)将点B向左移动3个单位后,三个点所表示的数谁最小?

(2)将点A向右移动4个单位后的数是多少?这时三个点所表示的数谁最小?

(3)将C点向左移动6个单位后,这时点B所表示的数比点C表示的数大多少?

(4)移动A、B、C中的两个点,使三个点表示的数相同,有几种移法?

【迁移创新】

利用数轴回答:

(1)写出所有不大于4且大于-3的整数:;

(2)不小于-4的非正整数是;

(3)比-2大的数是;-3比-6大.

【课堂作业】

课本P19习题3、4

初中数学教案汇编篇12

一、课题2.4有理数的减法

二、教学目标

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力.

三、教学重点

有理数减法法则

四、教学难点

有理数减法法则

五、教学用具

三角尺、小黑板、小卡片

六、课时安排

1课时

七、教学过程

(一)、从学生原有认知结构提出问题

1.计算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:

(1)-(-6);(2)-(+8);(3)+(-7);

(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:

(1)______+6=20;(2)20+______=17;

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.

(二)、师生共同研究有理数减法法则

问题1(1)(+10)-(+3)=______;

(2)(+10)+(-3)=______.

教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).

教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?问题2(1)(+10)-(-3)=______;

(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

(2)的结果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教师引导学生归纳出有理数减法法则:

减去一个数,等于加上这个数的.相反数.

教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)

(三)、运用举例变式练习

例1计算:

(1)(-3)-(-5);(2)0-7.

例2计算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

通过计算上面一组有理数减法算式,引导学生发现:

在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.

例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?

阅读课本63页例3

(四)、小结

1.教师指导学生阅读教材后强调指出:

由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

(五)、课堂练习

1.计算:

(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;

2.计算:

(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;

(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.

3.计算:

(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;

(4)(-5.9)-(-6.1);

(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

利用有理数减法解下列问题

4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?

八、布置课后作业:

课本习题2.6知识技能的2、3、4和问题解决1

九、板书设计

2.5有理数的减法

(一)知识回顾(三)例题解析(五)课堂小结

例1、例2、例3

(二)观察发现(四)课堂练习练习设计

十、课后反思

初中数学教案汇编篇13

总体说明:

完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.

本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.

一、学生学情分析

学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.

学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.

二、教学目标

知识与技能:

(1)让学生会推导完全平方公式,并能进行简单的应用.

(2)了解完全平方公式的几何背景.

数学能力:

(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.

(2)发展学生的数形结合的数学思想.

情感与态度:

将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.

三、教学重难点

教学重点:1、完全平方公式的推导;

2、完全平方公式的应用;

教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;

2、完全平方公式结构的认知及正确应用.

四、教学设计分析

本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.

第一环节:学生练习、暴露问题

活动内容:计算:(a+2)2

设想学生的做法有以下几种可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正确做法;

针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?

活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:

(a+2)2=a2+22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.

第二环节:验证(a+2)2=a2–4a+22

活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22

活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.

第三环节:推广到一般情况,形成公式

活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.

第四环节:数形结合

活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?

展示动画,用几何图形诠释完全平方公式的几何意义.

学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)

活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.

第五环节:进一步拓广

活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.

第六环节:总结口诀、认识特征

活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;

②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)

口诀:首平方,尾平方,首尾相乘的两倍在中央.

活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.

第七环节:公式应用

活动内容:例:计算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9

②(4x+)2=(4x)2+2•••••(4x)()+()2=16x2+2xy+

活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.

第八环节:随堂练习

活动内容:计算:①;②;③(n+1)2–n2

活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.

第九环节:学生PK

活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.

活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.

第十环节:学生反思

活动内容:通过今天这堂课的学习,你有哪些收获?

收获1:认识了完全平方公式,并能简单应用;

收获2:了解了两数和与两数差的完全平方公式之间的差异;

收获3:感受到数形结合的数学思想在数学中的作用.

活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.

第十一环节:布置作业:

课本P43习题1.13

初中数学教案汇编篇14

第6.4因式分解的简单应用

背景材料:

因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。

教材分析:

本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的.经验。

教学目标:

1、在整除的情况下,会应用因式分解,进行多项式相除。

2、会应用因式分解解简单的一元二次方程。

3、体验数学问题中的矛盾转化思想。

4、培养观察和动手能力,自主探索与合作交流能力。

教学重点:

学会应用因式分解进行多项式除法和解简单一元二次方程。

教学难点:

应用因式分解解简单的一元二次方程。

设计理念:

根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。

教学过程:

一、创设情境,复习提问

1、将正式各式因式分解

(1)(a+b)2-10(a+b)+25(2)-xy+2x2y+x3y

(3)2a2b-8a2b(4)4x2-9

[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]

教师订正

提出问题:怎样计算(2a2b-8a2b)÷(4a-b)

二、导入新课,探索新知

(先让学生思考上面所提出的问题,教师从旁启发)

师:如果出现竖式计算,教师可以给予肯定;可能出现(2a2b-8a2b)÷(4a-b)=ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2a2b-8a2b=2ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。

(2a2b-8a2b)÷(4a-b)

=-2ab(4a-b)÷(4a-b)

=-2ab

(让学生自己比较哪种方法好)

利用上面的数学解题思路,同学们尝试计算

(4x2-9)÷(3-2x)

学生总结解题步骤:1、因式分解;2、约去公因式)

(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合,[运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]

练习计算

(1)(a2-4)÷(a+2)

(2)(x2+2xy+y2)÷(x+y)

(3)[(a-b)2+2(b-a)]÷(a-b)

三、合作学习

1、以四人为一组讨论下列问题

若A?B=0,下面两个结论对吗?

(1)A和B同时都为零,即A=0且B=0

(2)A和B至少有一个为零即A=0或B=0

[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]

2、你能用上面的结论解方程

(1)(2x+3)(2x-3)=0(2)2x2+x=0

解:

∵(2x+3)(2x-3)=0

∴2x+3=0或2x-3=0

∴方程的解为x=-3/2或x=3/2

解:x(2x+1)=0

则x=0或2x+1=0

∴原方程的解是x1=0,x2=-1/2

[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]

3、练习,解下列方程

(1)x2-2x=04x2=(x-1)2

四、小结

(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。

(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。

设计理念:

根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。

初中数学教案汇编篇15

一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

二、教学重点:勾股定理的证明和应用。

三、 教学难点:勾股定理的证明。

四、教法和学法: 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

(一)创设情境 以古引新

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。(二)初步感知 理解教材

教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

(三)质疑解难 讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

(四)巩固练习 强化提高

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结 练习反馈

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

33240