初中数学教案模板万能
教案按照教学过程的步骤编排,让教师能够清晰地了解整个教学流程,有利于教学的有序进行。如何写出优秀的初中数学教案模板万能?下面给大家分享一些初中数学教案模板万能,希望对大家有所帮助。
初中数学教案模板万能篇1
一、教师自我介绍。
1.静听上课铃声,养成良好预备习惯(教师提前1分钟,面带微笑走上讲台。)
师:亲爱的小朋友们,再过一分钟,我们就会听到上课铃声了,让我们静静地等待吧。(孩子们静静地倾听。)
铃声响过,师:这就是上课铃声,多响亮呀,它告诉我们:上课啦,上课啦,小朋友们坐好啦!身子快挺直,小手快放好,眼睛看前方,小嘴不吵闹。(教师示范,表扬做得好的孩子)
师:小朋友们可真聪明,一听就懂,一学就会,坐得多端正,听得多专心,对啦,铃声响起来,我们的心儿静下来,笑容露出来,快乐的学习开始啦!
2.通过识字,进行教师的自我介绍。
师:小朋友,你们知道我是谁吗?我是数学老师。(故作神秘)想不想知道我叫什么名字?我的名字里有三个字,我把它写在黑板上。(一笔一划写上自己的名字)小朋友,这就是汉字,读什么呢?不认识?没关系,我只要给它注上拼音,你们就知道读什么啦!(在名字上注上拼音)请几个小朋友读一读。小朋友的拼音学得不错呀!知道老师名字的小朋友举手,都知道啦?真了不起!不过在我们中国,为了表示对长辈的尊重,我们不能直接喊长辈的名字,老师也是你们的这个长辈,你们平时应该怎么和我打招呼呢?(孙老师好!)真是个懂礼貌的好孩子!(师生互相打招呼,例如:展鹏鹏,你好!孙老师好!)
3.教师展示自己的特长,给学生留下好的印象。
师:孙老师和小朋友们一样,平时也有很多爱好呢,请小朋友来猜猜看,老师喜欢什么?(教师根据自己的特点,画一些简单的符号。例如书(爱看书,说说自己看书的故事)音符(喜欢音乐)漂亮的字(爱好书法)
师:我还喜欢什么呢?对啦,孙老师最喜欢小朋友们!小朋友们,愿意和孙老师交朋友吗?呀,我真是太高兴啦,我多了那么多的朋友啦!那你们愿意跟着孙老师学本领吗?好的,朋友们,从今天起,让我们一起努力,好好学习,天天向上,把自己变得更棒!
二、熟悉校园,班级,激起学生成为小学生的自豪感。
1.歌曲引线,让学生体验成为一名小学生的自豪。
师:现在,让我们来听一首歌,会唱的小朋友可以跟着唱。小朋友们的歌声里充满了快乐,你们为什么会这么高兴呢?是呀,我们现在已经从幼儿园毕业了,上小学啦,我们有一个新的称呼,叫——小学生。开心吗?老师祝贺你们!(很庄重很认真地)成为一名小学生,就会学到更多的知识,会写字,会看书,会许多许多本领,多了不起!谁来神气地说说这句话:我是小学生!(你来说,多自信的小学生!我真喜欢这位小学生!)一起说说。,
2.知道学校名称、班级名称以及所在位置。
师:小朋友,我们的学校叫什么名字呀?(出示学校图片,教师讲解:位置,功能)我们是几年级几班呢?我们的教室在哪儿?
3.填写表格(拼音)。(反面印儿歌)
学校:奎屯市三小
姓名:
班级:一()
教室所在位置:南一楼
我的老师:孙老师
(请几名小朋友上来读读自己填写的内容)
三、上下课基本规则训练。
1.学习《上下课》儿歌。
上课下课歌
上课铃响,快进课堂。下课铃响,不慌不忙。
坐姿端正,专心听讲。做好准备,再出课堂。
积极动脑,发言响亮。走路轻轻,入厕及时。
自觉做好,人人夸奖。游戏文明,争做榜样。
师:要成为一名合格的小学生,上下课应该怎么做呢?我们来学习一首儿歌。
2.解读儿歌要求,细化上下课的规范。(注意时间安排,来不及可留待下节课再进行,切忌匆忙,每个规范要训练到位,在进行下个规范的训练)
下课铃响,及时上厕所,课间不在走廊里追逐打闹,做好下节课的准备工作,书本文具摆在什么位置,上课怎么站立和老师打招呼,举手发言姿势、下课和老师再见等方面的要求。
四、总结。
师:小结:小朋友们,我们是小学生啦,我们的学校又大又漂亮,有美丽的花坛,干净的操场,宽敞的教室,还有可亲的老师,可爱的小朋友,喜欢我们这个大家庭吗?让我们相亲相爱,在这个大家庭里开心地学习、生活吧!
其他要注意训练的要点(可选用,时间允许的话,可加入第一课时):
一、小朋友简单自我介绍(让孩子们互相认识,知道这是一个受欢迎的新集体。)
二、知道养成正确的读写姿势才能保护视力,初步学会正确的读写姿势,初步养成良好的读写习惯。(读书看书姿势,握笔姿势,坐姿,站姿)
三、继续进行坐姿训练、听课发言常规训练、课前准备和下课时的常规训练。
训练要求:
1.坐姿要求:小手平方桌面(右手在上),双脚平放地面,腰背挺直,眼睛看着黑板或老师。
2.听课发言要求:听课要专心,坐姿端正,不能教室里随意走动,不能同桌或边上的小朋友随便讲话,眼睛跟着老师转。别的同学发言,要认真倾听,如果有话要说,要先举起右手,得到老师的同意,起身,向右或向左轻移一步,站到凳子旁边,双手自然垂肩,腰背挺直,发言要响亮。
3.课前准备和上课规范训练要求:根据课表安排,拿出相对应学科的课本、作业本以及文具,按大的在下,小的在上的顺序整齐地摆在课桌的左上角(或右上角),动作要轻。师生问好,学生站姿参考发言时站立要求,坐下立刻端正坐姿。
4.下课训练要求:老师说下课,小朋友们再见,小朋友起立,说老师再见。然后轻轻收好课桌上的东西,把下节课要上课的课本文具轻轻摆好。轻轻走路,轻轻说话,及时入厕,安全游戏。
5.路队训练要求:安静,快速,整齐,和前面小朋友对齐,不能走到队伍外面,上下楼梯靠右行走,不能推挤。
初中数学教案模板万能篇2
学习目标
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
重点难点
同位角、内错角、同旁内角的特征
教学过程
一·导入
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?
若都不是,请自学课本P6内容后回答它们各是什么关系的角?
二·问题导学
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。
2. 如图⑶是"直线 , 被直线 所截"形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角
4.讨论与交流:
(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:"F" 字型,"同旁同侧"
"三线八角" 内错角:"Z" 字型,"之间两侧"
同旁内角:"U" 字型,"之间同侧"
三·典题训练
例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角 B、∠2与∠3是同位角
C、∠1与∠3是同位角 D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.
⒊如图⑹, 直线DE截AB, AC, 构成八个角:
① 指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课: 备课人:徐新齐 审核人:霍红超
一.基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
二.基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.
初中数学教案模板万能篇3
教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.
教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.
教学过程:
一、提出问题,得到新知
观察下列多项式:x24和y225
学生思考,教师总结:
(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.
公式逆向:a2b2=(a+b)(ab)
如果多项式是两数差的.形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.
二、运用公式
例1:填空
①4a2=()2②b2=()2③0.16a4=()2
④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2
解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2
④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2
例2:下列多项式能否用平方差公式进行因式分解
①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2
解答:①1.21a2+0.01b2能用
②4a2+625b2不能用
③16x549y4不能用
④4x236y2不能用
初中数学教案模板万能篇4
教学目标:
1、知识与技能:
⑴、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
⑵、了解方位角,能确定具体物体的方位。
2、过程与方法:
进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会推理,并能对问题的结论进行合理的猜想。
3、情感态度与价值观:
体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重、难点及关键:
1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
3、关键:了解推理的意义和推理过程是掌握性质的关键。
教学过程:
一、引入新课:
让学生观察意大利著名建筑比萨斜塔。
比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。
二、新课讲解:
1、探究互为余角的定义:
如果两个角的和是90(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。即:1是2的余角或2是1的余角。
2、练习⑴:
图中给出的各角,那些互为余角?
3、探究互为补角的定义:
如果两个角的和是180(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。即:3是4的补角或4是3的补角。
4、练习⑵:
(1)图中给出的各角,那些互为补角?
(2)填下列表:
a的余角a的补角
5
32
45
77
6223
x
结论:同一个锐角的补角比它的余角大90。
(3)填空:
①70的余角是,补角是。
②a(90)的它的余角是,它的补角是。
重要提醒:ⅰ(如何表示一个角的余角和补角)
锐角a的余角是(90a)
a的补角是(180a)
ⅱ互余和互补是两个角的数量关系,与它们的位置无关。
5、讲解例题:
例1:若一个角的补角等于它的余角4倍,求这个角的度数。
解:设这个角是x,则它的补角是(180-x),余角是(90-x)。
根据题意得:
(180-x)=4(90-x)
解之得:x=60
答:这个角的度数是60。
6、练习⑶:
一个角的补角是它的3倍,这个角是多少度?
7、探究补角的性质:
如图1与2互补,3与4互补,如果1=3,那么2与4相等吗?为什么?
教师活动:操作多媒体演示。
学生活动:观察图形的运动,得出结果:4
补角性质:同角或等角的补角相等
教师活动:向学生说明,以上从观察图形得到的`结论,还可以从理论上说明其理由。
∵1+2=180,3+4=180
2=180-1,4=180-3
∵1=3
180-1=180-3
即:2=4
8、探究余角的性质:
如图1与2互余,3与4互余,如果1=3,那么2与4相等吗?为什么?
教师活动:操作多媒体演示。
学生活动:观察图形的运动,得出结果:4
余角性质:同角或等角的余角相等
教师活动:向学生说明,以上从观察图形得到的结论,还可以从理论上说明其理由。
∵1+2=90,3+4=90
2=90-1,4=90-3
∵1=3
90-1=90-3
即:2=4
9、讲解例题:
例2:如图,AOB=90COD=EOD=90,C,O,E在一条直线上,且4,请说出1与3之间的关系?并试着说明理由?
解:3
∵2=COD=90
3+2=AOB=90
3(等角的余角相等)
10、练习⑷:
如图AOB=90COD=90则1与2是什么关系?
11、讲解方位角:
(1)认识方位:
正东、正南、正西、正北、东南、
西南、西北、东北。
(2)找方位角:
ⅰ乙地对甲地的方位角ⅱ甲地对乙地的方位角
12、讲解例题:
例3:选择题:
(1)A看B的方向是北偏东21,那么B看A的方向()
A:南偏东69B:南偏西69C:南偏东21D:南偏西21
(2)如图,下列说法中错误的是()
A:OC的方向是北偏东60
B:OC的方向是南偏东60
C:OB的方向是西南方向
D:OA的方向是北偏西22
(3)在点O北偏西60的某处有一点A,在点O南偏西20的某处有一点B,则AOB的度数是()
A:100B:70C:180D:140
例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60的方向上,同时,在它北偏东40,南偏西10,西北(即北偏西45)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.
三、课堂小结:
1、本节课学习了余角和补角,并通过简单的推理,得到出了余角和补角的性质。
2、了解方位角,学会了确定物体运动的方向。
四、课外作业:
1、课本第114页:9、11、12题。
2、学习指要第78-79页:训练二和训练三。
课后反思:
初中数学教案模板万能篇5
一、案例实施背景
教材为人教版义务教育课程标准实验教科书七年级数学(下册)。
二、案例主题分析与设计
本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——5.3.1平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活?数学”“活动?思考”“表达?应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标
1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2.数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
四、案例教学重、难点
1.重点:对平行线性质的掌握与应用。
2.难点:对平行线性质1的探究。
五、案例教学用具
1.教具:多媒体平台及多媒体课件.
2.学具:三角尺、量角器、剪刀。
六、案例教学过程
1.创设情境,设疑激思
⑴播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。
⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。
2.数形结合,探究性质
⑴画图探究,归纳猜想。
教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,填写结果:
第一组:同位角()()角的度数()()数量关系()
第二组:同位角()()角的度数()()数量关系()
第三组:同位角()()角的度数()()数量关系()
第四组:同位角()()角的度数()()数量关系()
教师提出研究性问题二:
将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想
⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
3.引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)
又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)
所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)
教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
4.实际应用,优势互补
⑴(抢答)课本P21练一练
1、2及习题5.3
1、3.
⑵(讨论解答)课本P22习题5.
32、
4、5.
5.课堂总结:
这节课你有哪些收获?
⑴学生总结:平行线的性质
1、
2、3.⑵教师补充总结:
①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。
②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。③用准确的语言来表达问题(如平行线的性质
1、
2、3的表述)。
④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
6.作业。学习与评价:P236(选择);P24
7、12(拓展与延伸)。
七、教学反思
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变:
1.教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。
2.学的转变
学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。
3.课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!
初中数学教案模板万能篇6
教学目标
一、教学知识点
1、三角形全等的“边边边”的条件。
2、了解三角形的稳定性。
二、能力训练要求
1、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
2、掌握三角形全等的“边边边”的条件,了解三角形的稳定性。
3、在探索三角形全等的条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
三、情感与价值观要求
1、使学生在自主探索三角形全等的条件的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验。
2、让学生体验数学来源于生活,服务于生活的辩证思想。
教学重点
三角形全等的条件
教学难点
三角形全等的条件
教学方法
动手操作、讨论、引导教学法
教具准备
多媒体投影、一幅三角尺、量角器
教学过程
一、创设问题情景,引入新课
1、复习提问:什么样的两个三角形是全等三角形?全等三角形有什么特征?
答:能够完全重合的两个三角形是全等三角形。全等三角形的对应边相等,对应角相等。
2、已知:如图,△ABC≌△DEF,请找出图中的对应边和对应角。
答:AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F。
3、若有一个三角形纸片,你能画一个三角形与它全等吗?如何画?
答:能,先量出这个三角形纸片的每边的长,各个角的度数,然后作出一个三角形,使它的每边长,每个角的度数分别等于已知三角形纸片的每边长,每个角,这样作出三角形一定与已知三角形纸片全等。
4、如上图,△ABC与△DEF满足上述六个条件的全部可以使△ABC与△DEF全等。如果满足上述六个条件中的一部分是否能保证△ABC与△DEF全等?条件能否尽可能少吗?一个条件行吗?两个条件、三个条件呢?
这节课就来探索三角形全等的条件。
二、新课讲授
1、只给出一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?
2、给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?
⑴、给出一个内角,一条边;⑵、给出两个内角;⑶、给出两条边。
分别按照下面的条件做一做:
⑴、三角形一个内角为30°,⑵、三角形的两个内角⑶三角形的两条边
一条边为3cm;分别为30°和50°;分别为4cm,6cm。
结论:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等。
〔注解〕:若给出的条件能够使两个三角形全等,则班上所有同学所作的三角形都应该全等;若给出的条件不能使两个三角形全等,只要按照同一要求作图,只要有两位同学作的三角形不全等,即可以说明给出的条件不能使两个三角形全等。特别地,只要能举出相关的反例能说明两个三角形不全等,可以适当减少作图环节。
3、如果给出三个条件画三角形,你能说出有哪几种可能的情况?
⑴、都给角:给三个角;⑵、都给边:给三条边;
⑶、既给角,又给边:①给一条边,两个角;②给两条边,一个角。
按照下面的条件做一做:
⑴、已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?
把你画的三角形与同伴画的进行比较,它们一定全等吗?
结论:三个内角对应相等的&39;两个三角形不一定全等。
⑵、已知一个三角形的三条边分别为4cm、5cm和7cm,你能画出这个三角形吗?
把你画的三角形与同伴画的进行比较,它们一定全等吗?
结论:边边边公理
三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
AB=DE
AC=DF△ABC≌△DEF(SSS)
BC=EF
注意:三边对应相等是前提条件,三角形全等是结论。
5、由上面结论可知,只要三角形三边长度确定了,这个三角形的形状和大小就完全确定了。
如图,是用三根长度适当的木条钉成一个三角形框架,所得框架的形状固定吗?用四根木条钉成的框架的形状固定吗?
三角形框架形状和大小是固定不变的,四边形框架形状是可以改变的。
三角形具有稳定性;四边形不具有稳定性。
举例说明生活中经常会看到应用三角形稳定性的例子?(投影片)
三、例题与练习
例1如图,当AB=CD,BC=DA时,图中的△ABC与△CDA是否全等?并说明理由。
答:△ABC与△CDA是全等三角形。
证明:在△ABC与△CDA中
AB=CD(已知)
∵AD=CB(已知)
AC=CA(公共边)
∴△ABC≌△CDA(SSS)
例2变式题如图,当AB=CD,BC=DA时,你能说明AB与CD、AD与BC的位置关系吗?为什么?
答:能判定AB∥CD
证明:在△ABC与△CDA中
AB=CD(已知)
∵AD=CB(已知)
AC=CA(公共边)
∴△ABC≌△CDA(SSS)
∴∠3=∠4,∠1=∠2(全等三角形对应角相等)
∴AB∥CD,AD∥BC(内错角相等,两直线平行)
四、课堂小结
1、通过这节课的学习活动你有哪些收获?
(1)只给出一个条件或两个条件时,都不能保证两个三角形一定全等。
(2)三个内角对应相等的两个三角形不一定全等。
(3)边边边公理:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(4)三角形具有稳定性,四边形不具有稳定性。
2、你还有什么想法吗?
五、作业
课本第160页,习题5.7数学理解第1、2题;问题解决第1题
六、板书设计
1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
AB=DE
AC=DF△ABC≌△DEF(SSS)
BC=EF
2、三角形具有稳定性。
初中数学教案模板万能篇7
【关键词】函数;函数思想方法;初中数学
函数概念,首先出现在初中数学课本.初中课本对函数概念是这样描述的:“设在一个变化过程中,有两个变量x和y,如果对于变量x的每一个确定的值,变量y都有唯一确定的值与它对应,那么就说,x是自变量,y是x的函数.”
函数概念的出现,开始了变量教学的新起点,打破了在此之前的常量教学的旧格局,许许多多的数学问题都可以利用函数概念来解析,利用函数思想方法来处理,甚至对于一些数学难题,一旦用上了函数思想方法,即迎刃而解,达到非常好的效果.因此,我们必须十分重视函数概念的教学,重视函数思想方法的应用.
一、函数思想方法的特性
函数思想方法,就是用运动和变化的观点,分析和研究具体问题中的数量关系,通过函数的形式,把这种关系表示出来并加以研究,从而获得问题的解决办法.函数思想方法,作为中学数学的思想方法,它具有以下特性:
1.函数概念的抽象性引起函数思想方法的复杂性
函数概念,体现一个变量与另一个变量的一种对应,也体现一个集合到另一个集合的一种映射,在初中数学来讲,则是一个变数与另一个变数的一种关系.什么叫对应,什么叫映射,什么叫关系,对初中生来说,是非常陌生的,这些抽象词汇,造成了学生对函数概念理解上的困难.因此,函数思想方法作为函数概念的外延,就显得非常复杂了.一个连函数概念都不理解的人,怎么能掌握函数思想方法呢?函数与图像的亲密对应,引发了数形结合方法;函数的等价变换,引发了化归思想方法;还有其他的,如换元法、配方法、综合法、分析法等.正确认识函数思想方法的复杂性,使教师更加重视函数概念的教学,更加重视函数思想方法的研究,提高教学的责任心.
2.函数概念的生活性引起函数思想方法的广阔性
函数概念虽然很抽象,但函数的具体应用却渗透到我们生活中的各个领域.可以说,我们的生活离不开函数,我们的每一个生产活动也离不开函数,许多关于数量的科学研究问题,只有引入函数才能表达清楚.生活中的每一个问题,只要引入变量,就可以与函数联系起来,而函数的变化千姿百态,目不暇接,于是,就产生千姿百态的函数思想方法.例如初中数学的路程问题、浓度问题、一次方程和二次方程的解法问题,高中数学体现在生产中的增产节支问题、生产的成本核算问题、一次不等式和二次不等式的求解问题、解三角形问题、面积问题、体积问题等,都可以引入变量,转变为函数问题.这一转变,使人们的函数思想方法打开了更为广阔的前景,解决问题思路也就左右逢源.
3.函数变化的奇异性引起函数思想方法的多样性
函数的变化经常出现奇妙的效果,三角形的边与角的关系通过三角式联系得天衣无缝,懂得了这些道理,不上山者能测山高,不过河者能测河宽,就显得不足为奇了.二次函数与抛物线的联系也是如胶似漆,看见二次函数就应该想到抛物线,看见抛物线也应该想到二次函数,二次函数的变化便引起抛物线的运动,而抛物线的运动又使二次函数变得奇异无穷.一次函数与直线的关系也是如此,一次函数的变化与直线的运动,引出许多美妙的数学问题,呈现出多姿多彩的思维效果.本来是生活中的实际问题、如产值最大问题、原料最省问题,还有生产设计问题、最优决策问题,列出了函数,掌握了函数与函数图像的变化规律,那么,解决问题就如囊中取物.
二、函数思想方法在初中数学教学中的应用
函数概念是初中数学概念的灵魂,函数思想方法是数学方法的主线,它能把数学概念、数学命题、数学原则、数学方法贯穿起来,使得数学内容达到更高层次的和谐与统一.因此,函数概念和函数思想方法在初中数学教学中起到了统帅的作用.数学教师若能抓住函数思想方法这条主线,再把其他思想方法连贯起来,应用于教学的各个环节,可以肯定地说,教学效果是很好的.我们在这方面作了一些有价值的探索.
1.函数思想方法应用于数学教学的全过程
函数的概念是动态的概念,函数思想方法是一种动态的思想方法,这正符合动态式的数学教学的要求.引进函数概念之后,实现了数与点的结合、函数与图形的结合,还实现了数与形的灵活转换、符号语言与图形语言的灵活转换.我们要帮助学生从局部的、静止的、割裂的认知结构中解放出来,学会运用动态的、变化的、联系的观点来理解数学知识,这乃是提高数学质量的重要途径.正是考虑到动态教学的新理念,于是,应该把体现动态思想方法的函数思想方法应用于教学的全过程,在课堂教学、课外作业、科研辅导等教学环节,只要能用函数思想方法来处理的,都应运用.这需要毅力,需要创造,需要教师从现有教材中挖掘与函数概念有关系的数学知识点,然后考虑运用函数思想方法解决它.
例1若关于实数x的不等式(k2-2k-3)x2-(k-3)x-1<0恒成立,求k的取值范围.
这不是一个简单的一元二次不等式,而是已知这个不等式恒成立,反过来求k的取值范围.这与函数概念有关吗?诚然,不等式的左边可以看做关于变量x的函数,记为y=(k2-2k-3)x2-(k-3)x-1,它的图像是抛物线,按题意,不等式恒成立,也就是说,函数值y恒小于零,则函数的图像,即抛物线总在x轴的下方,并且与x轴没有交点.根据抛物线的这个特点,可以确定,抛物线开口向下,二次项系数a=k2-2k-3<0,又可以确定,抛物线全部落在下半平面,与x轴没有交点,则二次方程没有实数根,Δ=(k-3)2+4(k2-2k-3)<0.这是一次成功的转化,把题意转化为解下列不等式组:
a=k2-2k-3<0,Δ=(k-3)2+4(k2-2k-3)<0
(k+1)(k-3)<0①(5k+1)(k-3)<0②-<k<3.
故k的取值范围是-<k<3.
这个数学问题的解决,确实是运用了函数思想,把不等式问题转化为函数问题,再把函数问题转化为图形问题,最后又把图形的特征转化为另一个不等式组的计算,这样的一条龙似的解题过程相当流畅,不仅充分体现了函数思想与方程思想、数形结合思想、转化思想的高度统一,同时也是函数思想方法解决问题的一个典型范例.
例2已知(1-2x)7=a0+a1x+…+a7x7,求代数式a1+a2+…+a7的值.
这个问题初中生能解决吗?初看起来,有点像二项展开式,是高中的问题.按高中知识来做,那就得把左边按二项式定理展开,对比两边系数,分别求出a1,a2,…,a7的值,最后把它们加起来,就得代数式a1+a2+…+a7的值,难度不小啊!
认真观察一下,这也是一个函数问题.把已知问题看做函数,记为y=(1-2x)7=a0+a1x+…+a7x7.
当x=0时,y=(1-2×0)7=a0=1;
当x=1时,y=(1-2×1)7=a0+a1+…+a7=-1,
所以a1+a2+…+a7=(a0+a1+…+a7)-a0=-1-1=-2.
一个看起来似乎是高中的数学问题,用了函数思想方法,却变成了初中生也能接受的数学问题.函数思想方法的功能不小啊!
2.函数思想方法要与其他数学知识紧密结合
函数思想方法确实是解决数学问题的有力武器,但绝不是万能武器.不是说所有数学问题都能用函数思想方法解决,而是说,凡能转化为函数问题的,就应该尽量转化.这也体现函数概念与其他数学知识的紧密结合.
3.函数思想方法应用于解决实际数学问题
我们的生活空间是一个巨大的数学空间,生活中的每一个实际问题大都能转化为数学问题,其中相当大的部分可以用函数思想方法来处理.为了强化函数思想方法的应用,更为了培养学生运用函数思想方法解决实际问题的能力,让学生学会解决身边发生的经济问题,学会解决经济发展过程中的一些社会问题.为此,我们应该努力创设良好的学习环境,使学生在学习中得到锻炼.
例3数学竞赛队的3位教师和若干名参赛学生准备乘飞机到北京参加全国性比赛,按当地飞机票价,乘飞机往返每人需交3000元.但民航服务站对师生乘坐飞机有优惠的临时规定:第一种优惠方案是教师买全票,学生买半票;第二种优惠方案为师生一律按六折优惠购票.你认为,应采取哪一种优惠方案?
这是发生在学生身边的与经济有关的生活问题,采取哪种方案,当然应以节约为原则,哪种方案为竞赛队节约开支,就采取哪种方案.考虑把旅费与学生人数建立函数关系,若设学生人数为x,两种优惠方案的旅费分别为y1和y2,则
y1=3000×3+1500x=9000+1500x,
y2=3000×0.6×(x+3)=1800×(x+3).
y1<y2?圳9000+1500x<1800x+5400?圳x>12;
y1>y2?圳9000+1500x>1800x+5400?圳x<12;
y1=y2?圳9000+1500x=1800x+5400?圳x=12.
当学生人数多于12人时,采取第一种优惠方案;当学生人数少于12人时,采取第二种优惠方案;当学生人数等于12人时,采取哪种优惠方案都可以.
函数思想方法在解决数学问题中的确起到非常重要的作用,我们应加强这一方法的教学探讨和学习训练,把数学教学推向新水平.
【参考文献】
初中数学教案模板万能篇8
一、教材内容及设置依据
【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。
【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。
二、教材的地位和作用
本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,
特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了
类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。
三、对重点、难点的处理
【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型2、实际应用型3、方法多变型4、知识拓展型等。
【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)
四、关于教学方法的选用
根据本节课的内容和学生的实际水平,本节课可采用的方法:
1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。
2、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。
3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。
五、关于学法的指导
“授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。
六、课时安排:1课时
教学程序:
一、复习铺垫:
首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。
1、45+(-23)2、9-(-5)
3、-28-(-37)4、(-13)+0
5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)
从四排学生中个推选一名学生代表板演6、7、8、题。
通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。
然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。
二、新知探索:
1、出示引例1:一架飞机作特技表演,起飞后的高度变化如下表:高度变化记作
上升4.5千米+4.5千米
下降3.2千米-3.2千米
上升1.1千米+1.1千米
下降1.4千米-1.4千米
此时飞机比起飞点高了多少米?
让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:
①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4
=1.3+1.1+(-1.4)=1.3+1.1-1.4
=2.4+(-1.4)=2.4-1.4
=1千米=1千米
教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学
初中数学教案模板万能篇9
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实、
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力、
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯、
二、教学重点、难点
1、重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实、
2、难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论、
三、教学步骤
(一)明确目标
1、如图6—1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2、长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3、若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4、若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答、这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识、但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用、同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来、
通过四个例子引出课题、
(二)整体感知
1、请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值、
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值、程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长、
2、请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知、
(三)重点、难点的学习与目标完成过程
1、通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”、但是怎样证明这个命题呢?学生这时的思维很活跃、对于这个问题,部分学生可能能解决它、因此教师此时应让学生展开讨论,独立完成、
2、学生经过研究,也许能解决这个问题、若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上、这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值、
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透、
而前面导课中动手实验的设计,实际上为突破难点而设计、这一设计同时起到培养学生思维能力的作用、
练习题为作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来、
(四)总结与扩展
1、引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识、
2、扩展:当锐角为30°时,它的对边与斜边比值我们知道、今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了、看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下、通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣、
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念、
初中数学教案模板万能篇10
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得。
44x+64=328(1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结。
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。
教科书第3页,习题6.1第1、3题。
初中数学教案模板万能篇11
教学设计思想:
本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。
教学目标
知识与技能:
会用平方差公式对多项式进行因式分解;
会用完全平方公式对多项式进行因式分解;
能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;
提高全面地观察问题、分析问题和逆向思维的能力。
过程与方法:
经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。
情感态度价值观:
通过学习进一步理解数学知识间有着密切的联系。
教学重点和难点
重点:①运用平方差公式分解因式;②运用完全平方式分解因式。
难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式
关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。
初中数学教案模板万能篇12
教学目标:
1、通过解题,使学生了解到数学是具有趣味性的。
2、培养学生勤于动脑的习惯。
教学过程:
一、出示趣味题
师:老师这里有一些有趣的问题,希望大家开动脑筋,积极思考。
1、小卫到文具店买文具,他买毛笔用去了所带钱的一半,买铅笔用去了剩下钱的一半,最后用去剩下的8分,问小卫原有()钱?
2、苹苹做加法,把一个加数22错写成12,算出结果是48,问正确结果是()。
3、小明做减法,把减数30写成20,这样他算出的得数比正确得数多(),如果小明算出的结果是10,正确结果是()。
4、同学们种树,要把9棵树分3行种,每一行都是4棵,你能想出几种
办法来用△表示。
5、把一段布5米,一次剪下1米,全部剪下要()次。
6、李小松有10本本子,送给小刚2本后,两人本子数同样多,小刚原来
有()本本子。
二、小组讨论
三、指名讲解
四、评价
1、同学互评
2、老师点评
五、小结
师:通过今天的学习,你有哪些收获呢?
初中数学教案模板万能篇13
图样,图样,还是图样。到处都是图样,有的用尖细的木片潦草地写在满是灰尘的大理石桌上,有的用一块木炭涂在墙上,有的用粉笔画在地上。阿基米德穿着一件白色的旧长袍,坐在桌子上思索起来。手指象发烧似的微微颤抖。豆大的汗珠裹着灰尘,从他极度疲倦的脸上落在手上,落到衣服上,落到随手扔在桌子上的一卷草片纸上。
他没有跑,没有象一个无耻的胆小鬼那样从战场上逃跑。他竭尽全力,把全部的智慧和热情都献给了这座城市。多少个不眠之夜,多少个酷热难耐的白天,他就是整个叙拉古防御阵地的大脑和心脏。一提到他的名字,罗马人就惊恐地逃离城墙,他们唯恐躲避不及致命的投石炮,以及纷纷落下的炽热的涂满油脂的麻屑,标枪与长矛的骤雨。不就是他,不动咫尺就把接近城市海防工事的罗马舰队都烧毁了吗?不就是他,一个人用他发明的一组复杂的滑车把罗马的兵船吊在半空,再从高处把船抛向深海里去了吗?但这对于一个人的独创才能和精力来说,已经是极限了,他已经是一个衰弱的老人,他的手握不住战剑。他坚持留在阵地上,直至敌人出现在城墙外边。而这时戴着盔形帽的罗马人已经开始在被岁月磨出来的马路的石块上晃动。希腊人竭尽最后的力量进行抵抗,肉搏战当然没有阿基米德参加的份。。。。。。
在中午被烈日晒的发烫的物体,现在让令人惬意的凉爽的空气温柔地笼罩着。战斗的喊声透过厚实的门帘隐隐约约地传进屋里。挂在两个窗户上的草帘子使得屋里稍微有点昏暗,但一点也不妨碍看清楚眼睛看惯的东西。生命就要完结,这一生是漫长而又艰难的。在命运给予他的七十五年里,在不停的探索中,在持续的紧张中,在旅行中,在工作室,造船厂和采石场的不断的争论中,他从未能回顾过自己的人生,没有考虑一下是否活得合理。伊壁鸠鲁(前341—前270古希腊唯物主义哲学家,在伦理观上,主张人生的目的在于避免苦痛,使心身安宁,怡然自得,这才是人生最高的幸福)这位激进的老人如此忘情地说过的那种快乐,哪怕是一部分,阿基米德也没有从生活中得到过。在他还是一个十七岁的青年人时,曾经站在这位伟大哲学家的坟墓上,思索着用自己的一生实现他富有人生乐趣的哲学。他实现了吗?
还在青年时代,他就踏上了这条荆棘丛生的,曲折的,布满无数坎坷的学者道路。学者的生活。。。。。。当生活道路开始的时候,他曾经把生活想象的很不实际。他用充满甜蜜的幸福,普遍的崇敬和持久不变的,任凭什么也不能蒙蔽的荣誉来描绘自己青年时代雄心勃勃的梦想。但生活并非如此,他竟然是格外地严酷。他实际体验到,这生活是一天一时也不停地,终身为一个神灵,一个偶像,一个各种思想和愿望的主宰服务。科学就是一个催眠术家,只要一次受到科学真理魔术般的诱惑,立刻就会为了科学而忘掉一切,直至最后进入坟墓。
荣誉是有的,但是这荣誉足以为不学无术者和嫉妒者们的大声嘲笑所败坏。是有许多狂热的崇拜者,但也有许多恶毒的非难者,他们不错过任何一个机会,通过假借的名义,公开和秘密地对他进行侮辱,诋毁和诽傍,以他为笑柄。。。。。。
他本人的生活是这样,他父亲的生活也是这样。他父亲叫做菲迪亚斯。供人参阅的备忘录描述了他很早的童年时代的情形,小阿基米德似乎不得不让每一个新认识的人相信,他的父亲只是和奥利匹亚的<<宙斯>>像和雅典的女神像的著名的建造者,比阿基米德天文学家的父亲早生一百多年的雕刻家菲迪亚斯同姓。奇怪的是,菲迪亚斯竟然不是国王亥厄洛的亲戚,相反,完全出乎意料之外,阿基米德却是国王亥厄洛的一个亲戚,就是说,也是国王儿子格隆的一个亲戚。。。。。。
这里是繁华的亚历山大城。阿基米德花了许多时间沿着城市的石头道散步,登上佛洛斯灯塔,从那里了望拥簇着似乎是从地球上所有有人居住的地方抵达到这里的希腊,罗马,腓尼基,波斯和其它国家的船只的港湾。但是,比这多得多的时间,他是在著名的亚历山大图书馆里度过的。世界上任何一个图书馆可能都要羡慕这家图书馆所收集的抄本和手稿。在图书馆里,集中了伟大的亚历山大城所有最优秀的青年人。在和那些崇拜本国著名的欧几里德的年轻人的热烈争论中,阿基米德对自己的科学立场的理解逐渐成熟,有些地方与亚历山大人接近,有些地方则与他们截然不同。但是,尽管在观点上有所不同,他刚一熟悉欧几里德的著作,对已故的伟大学者欧几里德的虔诚的敬意就完全征服了阿基米德。欧几里德的<<几何原本>>从此成为他整个漫长一生的必读之书。。。。。。
战斗的呐喊声越来越大。厚实的窗帘已经挡不住获胜的罗马人狂喜的欢呼声,战剑打击叙拉古最后一批保卫者的盾牌的叮当声,还有那刺向他们被长时间的防御战折磨得精疲力尽的身体的沉闷声。获胜的敌人已经占领了这座苦难的城市,又醉心于卑鄙无耻的,令人痛恶的杀掠,连儿童,妇女和老人也不放过。
非常奇怪的是,所以这一切————战剑的叮当声,垂死者的呻吟声,罗马人胜利的欢呼声,都是这样地遥远,似乎是在半个多世纪以前发出的。阿基米德突然以一种可怕的清醒回想起自己乘一艘小船从亚历山大到叙拉古所经历的漫长而又十分危险的旅程。在危机四伏的不平静的大海中,绿色的波涛的巅峰翻腾着白色的大理石般的泡沫,不停地撞击着毫无保护的不坚固的小船,船上可怜的人们觉得好像无论是人,还是超人的力量都已经不能把他们从海神的怀抱里解救出来。而就在这时,舵手使出全身的力气掌稳沉重的船舵,高高地向上搬动舵尾,用力地冲向那轰隆作响的摇荡的浪山。船象一匹戴上嚼子的马,战栗着,一会儿呆立在高高的浪峰上,一会儿又摇晃着跌进随之而来的无底的深渊。。。。。。
船驶离亚历山大之时,装饰着色彩缤纷的船帆,宛如一位服装时髦的美女,而抵达叙拉古时,却遍体鳞伤,千疮百孔,失去了桅杆和船帆,简直就是一个衣衫褴褛的女乞丐了。。。。。。
一个罗马兵凶恶的面孔突然出现在眼前,在他身后是一群形形色色的叙拉古人,正在走去迎接无数条载着有半死不活的航海者的战船。这个外国的不速之客从哪里来?是怎么来的呢?这个人张牙舞爪,脖子上的青筋暴起,叫嚷者什么,阿基米德却听不见他的话。往事仍然把阿基米德死死地拖住不放,忘却现实的销魂的魔力还没有退却。。。。。。
幻影没有消失。在它还没有最后填满整个房间,把整个古老的叙拉古阳光充足的港湾里毫无剩余地从房间里排挤出去之前,它在数学家视线模糊的眼睛里仍然在扩大,扩大。啊,原来这里还有个人。这时,一个强盗,杀人凶手找到了数学家阿基米德的住宅。这个残忍的罗马士兵————数学家以前几乎没有想过的死亡就这样悄悄地向她逼近了。
"别动我的图案!"老人声音低微,但语气却强硬地命令道。这就是他说的最后一句话。一把宽大的双刃剑用力地砍在这位伟大的世界公民头发斑白,疲惫不堪的,但却威严自豪,充满灵感的头颅上。。。。。。
据说,阿基米德就这样在位于被罗马人攻取并抢劫的叙拉古的一条街道上的房间里被杀害了。甚至罗马主将马尔采勒,这个长期徒劳地企图占领这座城市的不共戴天的,阴险的敌人,在得知这位最伟大的学者和最热情和无畏的爱国主义者的死讯之后,也感到极度的悲伤。
初中数学教案模板万能篇14
一、教学目标:
知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
二、教学重点:运用有理数的减法法则,熟练进行减法运算。
三、教学难点:理解有理数减法法则。
四、教材分析:本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
五、教学方法:师生互动法
六、教具:幻灯片
七、课时:1课时
八、教学过程:
1、计算(口答):
(1)1+(-2)
(2)-10+(+3)
(3)+10+(-3)
2、出示幻灯片二:
如图:
这是20__年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
教师引导观察
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?
(+10)-(+3)=7
再计算:(+10)+(-3),师让学生观察两式结果,由此得到:
(+10)-(+3)=(+10)+(-3)
观察减法是否可以转化为加法计算呢?是如何转化的呢?
(教师发挥主导作用,注意学生的参与意识)
2、再看一题:
计算:(-10)-(-3)
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与-3相加会得到-10,那么这个数是多少?
问题:计算:(-10)+(+3)
教师引导,学生观察上述两题结果,由此得到
(-10)-(-3)=(-10)+(+3)
教师进一步引导学生观察式子,你能得到什么结论呢?
教师总结:由以上两式可以看出减法运算可以转化成加法运算。
教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?
教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。
强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)
3、例题讲解:
出示幻灯片三(例1和例2)
例1计算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教师板书做示范,强调解题的规范性,然后师生共同总结解题步骤,(1)转化(2)进行加法运算。
例2:小明家蔬菜大棚的气温是24℃,此时棚外的气温是-13℃,棚内气温比棚外气温高多少摄氏度?
师巡视指导,最后师生讲评两个学生的解题过程。
课后练习1、2
教师巡视指导
师组织学生自己编题
1、谈谈本节课你有哪些收获和体会?[
2、本节课涉及的数学思想和数学方法是什么
教师点评:有理数减法法则是一个转化法则,要求同学们掌握并能应用进行计算。
课堂检测(包括基础题和能力提高题)
1、-9-(-11)
2、3-15
3、-37-12
4、水银的凝固点是-38.87℃,酒精的凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?
学生思考后抢答,尽量照顾不同层次的学生参与的积极性。
学生观察思考如何计算
学生观察思考
互相讨论
学生口述解题过程
由两个学生板演,其他学生在练习本上做
第1小题学生抢答
第2小题找两个学生板演。
学生回答
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用
既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础
创设问题情境,激发学生的认知兴趣。
让学生通过尝试,自己认识减法可以转化为加法计算。
学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力
可以培养学生严谨的学风和良好的学习习惯,同时锻炼学生的表达能力
可以照顾不层次的学生,调动学生学习积极性。
通过练习让学生进一步巩固新知,体验知识的应用性。
能增强学生学习的&39;主动性和参与意识。
学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
锻炼学生综合运用知识,独立解题的能力
板书设计:
2.6有理数的减法
有理数减法法则:
(+10)-(+3)=(+10)+(-3)
(-10)-(-3)=(-10)+(+3)
减去一个数等于加上这个数的相反数.例1:
例2:
练习:
教学反思:
本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。
初中数学教案模板万能篇15
教学目标:
1、了解公式的意义,使学生能用公式解决简单的实际问题;
2、初步培养学生观察、分析及概括的能力;
3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议:
一、教学重点、难点
重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例:
一、教学目标
(一)知识教学点
1、使学生能利用公式解决简单的实际问题。
2、使学生理解公式与代数式的关系。
(二)能力训练点
1、利用数学公式解决实际问题的能力。
2、利用已知的公式推导新公式的能力。
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践。
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。
二、学法引导
1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。
2、学生学法:观察→分析→推导→计算。
三、重点、难点、疑点及解决办法
1、重点:利用旧公式推导出新的图形的计算公式。
2、难点:同重点。
3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差。
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。