教案吧 > 学科教案 > 数学教案 >

初中数学教案的范文

时间: 新华 数学教案

编写教案可以帮助教师更好地掌握教学目标和教学内容,从而提高教学质量和效果。如何撰写优秀的初中数学教案的范文?这里分享一些初中数学教案的范文写作案例,供大家参考。

初中数学教案的范文篇1

学习目标:

1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。

2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。重点和难点:理解绝对值的概念,能求一个数的绝对值。

学习过程:

任务一、复习旧知:

1、什么叫互为相反数?在数轴上表示互为相反数的两点和原点的位置关系怎样?

2、数轴上与原点的距离是2的点表示的数有_____个,他们表示的数是_____;与原点的距离是5的点有____个、任务二、新知理解:

1、自读课本p11-p12,体会绝对值的意义。

绝对值的几何意义:____________________________________、

a的绝对值记作_______,如5的绝对值记作______,结果是_____、

试一试:(1)+6=______,0、2=________,+8、2=_______

(2)0=_______;

(3)-3=_____,-0、2=_____,-8、2=________、

绝对值的代数意义:(1)一个正数的绝对值是__________;

(2)一个负数的绝对值是___________(3)0的绝对值是___________。

上述可以用式子表示为:(1)当a是正数时,a=_______,

(2)当a是负数时,a=_______,(2)当a=0时,a=________,

任务三:巩固练习

1、求下列各数的绝对值:?7

12,?

110

,?4、75,10、5

2.计算-2++834??815

-20??45

3、绝对值是3的数是_______,有____个绝对值是1、5的数?4、判断:(1)有理数的绝对值一定是正数;

(2)如果一个数是正数,那么这个数的绝对值是它本身;(3)如果一个数的绝对值是它本身,那么这个数是正数(4)一个数的绝对值越大,表示它的点在数轴上越靠右。归纳:(1)不论有理数a取何值,它的绝对值总是______。

(2)两个互为相反数的绝对值____。能力提升:

(1)-35、6=________;a=_____(a<0);若x=5,则x=______(2)绝对值小于4的整数有________;绝对值大于2小于5的整数有________;

(3)绝对值等于本身的数是_______,绝对值等于它的相反数的数是_________,绝对值最小的有理数是_______、(

4)若a-2=3,则a=______

归纳总结:

初中数学教案的范文篇2

学习目标

1、了解分式的概念,会判断一个代数式是否是分式。

2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。

3、能分析出一个简单分式有、无意义的条件。

4、会根据已知条件求分式的值。

学习重点

分式的概念,掌握分式有意义的条件

学习难点

分式有、无意义的条件

教学流程

预习导航

一、创设情境:

京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:

(1)货运列车从北京到上海需要多长时间?

(2)快速列车从北京到上海需要多长时间?

(3)已知从北京到上海快速列车比货运列车少用多少时间?

观察刚才你们所列的式子,它们有什么特点?

这些式子与分数有什么相同和不同之处?

合作探究

一、概念探究:

1、列出下列式子:

(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是

(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是元。

(3)正n边形的每个内角为度。

(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。这两块棉田平均每公顷产棉花______㎏。

2、两个数相除可以把它们的商表示成分数的形式。如果用字母分别表示分数的分子和分母,那么可以表示成什么形式呢?

3、思考:

上面所列各式有什么共同特点?

(通过对以上几个实际问题的研讨,学会用的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)

分式的概念:

4、小结分式的概念中应注意的问题.

①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;

②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;

③如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。分式分母不为零是隐含在此分式中而无须注明的条件。

二、例题分析:

例1:试解释分式所表示的实际意义

例2:求分式的值①a=3②a=—

例3:当取什么值时,分式(1)没有意义?(2)有意义?(3)值为零。

三、展示交流:

1、在____________中,是整式的有_____________________,是分式的有________________;

2、写成分式为____________,且当m≠_____时分式有意义;

3、当x_______时,分式无意义,当x______时,分式的值为1。

4、若分式的值为正数,则x的取值应是()

A.,B.C.D.为任意实数

四、提炼总结:

1、什么叫分式?

2、分式什么时候有意义?怎样求分式的值

初中数学教案的范文篇3

整式的加减——初中数学第一册教案(通用2篇)

整式的加减——初中数学第一册篇1

第9课3.4整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、 叙述合并同类项法则。

2、 练习题:(用投影仪显示、学生完成)

3、 叙述去括号与添括号法则。

4、 练习题:(用投影仪显示、学生完成)

5、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)(学生自学后,教师按以下提示点拔即可)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

提示:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

练习:P167 1、2

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)(口述:文字叙述的整式加减,对每个整式要添上括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

练习:P167 3

例3。(P166例3)(学生自学后,完成练习,教师矫正练习错误)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。(最好由学生归纳)

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B(视时间是否足够而定)

四、小结(用投影仪板演)

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 (可适当减少些)

整式的加减——初中数学第一册教案篇2

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

初中数学教案的范文篇4

问题描述:

初中数学教学案例

初中的,随便那个年级.2000字.案例和反思

1个回答分类:数学2014-11-30

问题解答:

我来补答

2.3平行线的性质

一、教材分析:

本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分.

二、教学目标:

知识与技能:掌握平行线的性质,能应用性质解决相关问题.

数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程.

解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神.

情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神.

三、教学重、难点:

重点:平行线的性质

难点:“性质1”的探究过程

四、教学方法:

“引导发现法”与“动像探索法”

五、教具、学具:

教具:多媒体课件

学具:三角板、量角器.

六、教学媒体:

大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思:

1.播放一组幻灯片.内容:①火车行驶在铁轨上;②游泳池;③横格纸.

2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

学生活动:

思考回答.①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

教师:首先肯定学生的回答,然后提出问题.

问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?

引出课题——平行线的性质.

(二)数形结合,探究性质

1.画图探究,归纳猜想

任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).

问题一:指出图中的同位角,并度量这些角,把结果填入下表:

第一组

第二组

第三组

第四组

同位角

∠1

∠5

角的度数

数量关系

学生活动:画图——度量——填表——猜想

结论:两直线平行,同位角相等.

问题二:再画出一条截线d,看你的猜想结论是否仍然成立?

学生:探究、讨论,最后得出结论:仍然成立.

2.教师用《几何画板》课件验证猜想

3.性质1.两条直线被第三条直线所截,同位角相等.(两直线平行,同位角相等)

(三)引申思考,培养创新

问题三:请判断内错角、同旁内角各有什么关系?

学生活动:独立探究——小组讨论——成果展示.

教师活动:引导学生说理.

因为a‖b因为a‖b

所以∠1=∠2所以∠1=∠2

又∠1=∠3又∠1+∠4=180°

所以∠2=∠3所以∠2+∠4=180°

语言叙述:

性质2两条直线被第三条直线所截,内错角相等.

(两直线平行,内错角相等)

性质3两条直线被第三条直线所截,同旁内角互补.

(两直线平行,同旁内角互补)

(四)实际应用,优势互补

1.(抢答)

(1)如图,平行线AB、CD被直线AE所截

①若∠1=110°,则∠2=°.理由:.

②若∠1=110°,则∠3=°.理由:.

③若∠1=110°,则∠4=°.理由:.

(2)如图,由AB‖CD,可得()

(A)∠1=∠2(B)∠2=∠3

(C)∠1=∠4(D)∠3=∠4

(3)如图,AB‖CD‖EF,

那么∠BAC+∠ACE+∠CEF=()

(A)180°(B)270°(C)360°(D)540°

(4)谁问谁答:如图,直线a‖b,

如:∠1=54°时,∠2=.

学生提问,并找出回答问题的同学.

2.(讨论解答)

如图是一块梯形铁片的残余部分,量得∠A=100°,

∠B=115°,求梯形另外两角分别是多少度?

(五)概括存储(小结)

1.平行线的性质1、2、3;

2.用“运动”的观点观察数学问题;

3.用数形结合的方法来解决问题.

(六)作业第69页2、4、7.

八、教学反思:

①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣.

②学的转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境.

③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.

初中数学教案的范文篇5

一、运用数形结合解答二次函数章节问题

“数形结合百般好,隔裂分家万事非.”数形结合思想抓住了数学学科数学语言的抽象性和平面图形的直观性特征,通过“数”“形”互补,使复杂问题简单化,抽象问题具体化.通过对二次函数章节内容的整体研析发现,二次函数章节知识点的抽象内容,通过图象的直观画面进行展示,同时借助图象反映出来的性质内容,进行二次函数问题的有效解答,达到变繁为简,优化解题途径的目的.

图1问题1:有一座抛物线型拱桥,桥下面在正常水位AB时宽20m.水位上升3m,就达到警戒线CD,这时,水面宽度为10m.若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?

在该问题的教学活动中,如果单纯对问题条件内容进行分析,学生在理解抽象性的数学语言符号时,解决问题就有一定的难度.此时,教师利用数形结合的解题思想,根据问题条件内容,采用“以形补数”的形式,做出如图1所示的图形,这样,学生可以借助于图形的直观性和语言的精确性等特性,在对问题条件及解题策略的分析和找寻中变得更加“简便”、“易行”.

二、运用分类讨论解题思想解答二次函数章节问题

分类讨论思想是解决问题的一种逻辑方法,本质就是“化整为零,积零为整”,增加题设条件的解题策略,它能够有效提升学生思维活动的严密性、科学性和全面性.在二次函数问题案例教学中,分类讨论的解题思想有着深刻的运用.如在确定二次函数一般式y=ax2+bx+c图象与x轴的交点个数时,就运用到了分类讨论的解题思想:Δ=b2-4ac,当Δ>0时,二次函数一般式图象与x轴交于两点;当Δ=0,图象与x轴交于一点;当Δ

图2问题2:如图2所示,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别是(6,0),(6,8),动点M,N分别从O,B同时出发,以每秒一个单位的速度前进,其中,点M沿OA向终点A运动,点N沿BC向终点C运动,过点N作NP垂直于BC,交AC于点P,连结MP,设运动时间为t秒.(1)求点P的坐标;(用含t的字母代数式表示);(2)试求MPA的面积最大值,并且求此时t的值;(3)请你探究:当t为何值时,MPA是一个等腰三角形?你发现了几种情况?写出你的探究成果.

分析:上述问题案例的第三小问题的解答过程中,实际就是蕴含了分类讨论的解题思想,需要对MPA的三边情况分类讨论,分别确定当MP=PA时、PA=AM时以及MP=AM时的三种情况下,t的取值范围.

三、利用函数特性,运用函数方程解题思想解答二次函数章节问题

二次函数章节作为函数教学的重要组成部分,它不仅是一次函数、反比例函数的有效延伸,更是三角函数、指数函数等高中阶段函数知识的有效基础.同时,通过对二次函数章节内容的整体分析,可以发现,二次函数与一元二次方程、二元一次不等式之间有着密切的联系.在解答该类型问题中,教师可以渗透函数方程解题思想策略进行解答问题活动.

问题3:设关于x的方程x2-mx+4=0在[-1,1]上有解,求实数m的取值范围.

分析:令f(x)=x2-mx+4,则问题转化为抛物线f(x)=x2-mx+4与x数轴在x∈[-1,1]上有交点的问题,将方程的问题转化为函数图象问题来解决的可将m看成x的函数.因为x≠0,所以有m=x+4/x,问题转化为求函数的值域问题.

解:因为x≠0,所以m=x+4/x此函数显然是奇函数,易证函数m在(0,1]上为减函数.所以当x∈(0,1]时,在x=1函数有最小值,m小=1+4=5,m∈[5,+∞)同理,当x∈[-1,0]时,在x=-1时,函数有最大值,m大=-5,m∈(-∞,-5].

故实数m的取值范围为(-∞,-5]∪[5,+∞).

问题4:若x、y∈R且(2x+y)13+x13+3x+y

证明:将条件化为(2x+y)13+(2x+y)

令f(t)=t13+t,则有f(2x+y)

又f(t)为奇函数,f(-x)=-f(t)

所以f(2x+y)

所以2x+y

评析:将方程的问题转化为函数图象或函数值域问题,可使方程问题迎刃而解.其中利用函数值域问题求解则更为简捷.

初中数学教案的范文篇6

一、教学目标:

1、理解二元一次方程及二元一次方程的解的概念;

2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

二、教学重点、难点:

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学方法与教学手段:

通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

四、教学过程:

1、情景导入:

新闻链接:x70岁以上老人可领取生活补助。

得到方程:80a+150b=902880、

2、新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

做一做:

(1)根据题意列出方程:

①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:

(2)课本P80练习2、判定哪些式子是二元一次方程方程。

合作学习:

活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。

问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的&39;一对未知数的值叫做二元一次方程的一个解。

并提出注意二元一次方程解的书写方法。

3、合作学习:

给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

出示例题:已知二元一次方程x+2y=8。

(1)用关于y的代数式表示x;

(2)用关于x的代数式表示y;

(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。

(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

4、课堂练习:

(1)已知:5xm—2yn=4是二元一次方程,则m+n=;

(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;

5、你能解决吗?

小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。

6、课堂小结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

7、布置作业:

初中数学教案的范文篇7

一、教学目标

1、了解推理、证明的格式,理解判定定理的证法、

2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证、

3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力、

4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的&39;教育、

二、学法引导

1、教师教法:启发式引导发现法、

2、学生学法:积极参与、主动发现、发展思维、

三、重点、难点及解决办法

(一)重点

判定定理的推导和例题的解答、

(二)难点

使用符号语言进行推理、

(三)解决办法

1、通过教师正确引导,学生积极思维,发现定理,解决重点、

2、通过教师指导,学生自行完成推理过程,解决难点及疑点、

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片、

六、师生互动活动设计

1、通过设计练习,复习基础,创造情境,引入新课、

2、通过教师指导,学生探索新知,练习巩固,完成新授、

3、通过学生自己总结完成小结、

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力、

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知、

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)、

学生活动:学生口答第1、2题、

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行、

教师将第3题图形画在黑板上、

学生活动:学生口答理由,同角的补角相等、

师:要求学生写出符号推理过程,并板书、

教法说明:本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行、第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点、

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角、

师:它们有什么关系、

学生活动:互补、

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题、

初中数学教案的范文篇8

教学目标

1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

难点利用数形结合的方法验证公式

教学方法动手操作,合作探究课型新授课教具投影仪

教师活动学生活动

情景设置:

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

小结:

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

作业第95页第3题

板书设计

复习例1板演

………………

………………

……例2……

………………

………………

教学后记

初中数学教案的范文篇9

首先我用苏轼的《题西林壁》巧妙地唤起学生的生活感受,让他们认识到视图的知识在生活中我们早有亲身体验,只是还没有形成概念,然后我再用“粉笔”这一简单的教具,让学生再次体会,加深认识,这样,教学与生活紧密相连,既有自然地导入课题,又消除学生对新知识的恐惧,同时还激发了学生浓厚的学习兴趣。

然后,我不适时地出示“三视图”这一概念,通过实验,让学生认识到视图就是由立体图形转化成的平面图形,并不断地训练、讨论、总结,得出画三视图的正确方法。这时教师要巧妙点拨,学生如何从正面、上面、侧面三个角度来观察,既体现了学生的主体地位,又突出了教师的主导作用,锻炼了学生的动手操能力。

由视图到立体图形与上面的过程恰恰相反,需要学生根据视图进行想象,在大脑中构建一个立体形象。我引导学生利用直观形象与生活中的实物进行联系,通过归纳、总结、对比的方法,有效的突破这一难点。

为了进一步地激发学生的学习兴趣,培养学生的想象能力和思维能力,可以让学生用一些小立方体随意摆出几种组合并描绘出它的视图,再由视图到立体图形的课堂训练。

最后,让学生归纳所学知识,进一步锻炼学生的概括能力,使知识系统化。

以上设计如有不妥之处,望老师们不吝赐教,我不胜感激。

评课记录

开发区李玉:于坤老师这节课有几个突出特点:

1、给学生创设了生动的问题情境。本节课用宋朝文学家苏轼的一首著名的诗《题西林壁》。“横看成岭侧成峰,远近高低各不同……”来引入课题,从横、侧、远、近、高、低等不同角度来观察庐山,引出如何观察生活中的立体图形,这个切入点非常好,一下子就能抓住学生的心,吸引学生的注意力。在平日的教学中,我们也应该多找这样的例子。如在教七年级《代数式》时,有的老师这样引入“童年是美好而幸福的,大家还记得那首“唱不完的儿歌吧”,然后同学们一起念“一只青蛙一张嘴,两只眼睛四条腿,扑腾一声跳下水;两只青蛙两张嘴,四只眼睛八条腿,扑腾两声跳下水;三只青蛙三张嘴,六只眼睛12条腿,扑腾三声跳下水……”,然后问:你能不能用一句话来唱完这首儿歌?引发学生思考的兴趣,有的学生通过思考得出:n只青蛙n张嘴,2n只眼睛4n条腿,扑腾n声跳下水,将字母表示数的优点一下子表现出来,令学生顿觉耳目一新。

2、注重过程教学和学法指导

在教学画圆柱体、长方体、球体和圆锥体的三视图时,老师不是直接给学生讲解它们的三视图是什么,然后让学生记忆、变式练习,而是引导学生通过看书、观察老师手中的教具、学生自己的学具或学生自制的模型,再找学生回答、小组讨论,然后教师和学生一起确定答案。这种教学模式:提出问题,创设问题情境———观察实物或学生看书、计算、画图、独立思考、猜想———小组讨论交流———让一个小组代表发言,其它小组补充说明———师生交流总结———拓展应用的模式,比较符合学生的认知规律,能让学生经历探索知识的发生发展过程及在合作学习中学会与他人交流,不仅学会了知识,而且能锻炼学生的各种能力。

3、体现学生主体地位,注重学法指导

教师在本节课上处处关注学生学习的主观能动性,学生自始至终处于被肯定、被激励之中,时时感受到自己是学习的主人,教师给学生留有较大的学习的空间:如观察、讨论、动手摆放学具等,提出问题后让学生充分思考并给予适时的点拨。

初中数学教案的范文篇10

教学目标

一、教学知识点

1、三角形全等的“边边边”的条件。

2、了解三角形的稳定性。

二、能力训练要求

1、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

2、掌握三角形全等的“边边边”的条件,了解三角形的稳定性。

3、在探索三角形全等的条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。

三、情感与价值观要求

1、使学生在自主探索三角形全等的条件的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验。

2、让学生体验数学来源于生活,服务于生活的辩证思想。

教学重点

三角形全等的条件

教学难点

三角形全等的条件

教学方法

动手操作、讨论、引导教学法

教具准备

多媒体投影、一幅三角尺、量角器

教学过程

一、创设问题情景,引入新课

1、复习提问:什么样的两个三角形是全等三角形?全等三角形有什么特征?

答:能够完全重合的两个三角形是全等三角形。全等三角形的对应边相等,对应角相等。

2、已知:如图,△ABC≌△DEF,请找出图中的对应边和对应角。

答:AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F。

3、若有一个三角形纸片,你能画一个三角形与它全等吗?如何画?

答:能,先量出这个三角形纸片的每边的长,各个角的度数,然后作出一个三角形,使它的每边长,每个角的度数分别等于已知三角形纸片的每边长,每个角,这样作出三角形一定与已知三角形纸片全等。

4、如上图,△ABC与△DEF满足上述六个条件的全部可以使△ABC与△DEF全等。如果满足上述六个条件中的一部分是否能保证△ABC与△DEF全等?条件能否尽可能少吗?一个条件行吗?两个条件、三个条件呢?

这节课就来探索三角形全等的条件。

二、新课讲授

1、只给出一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?

2、给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?

⑴、给出一个内角,一条边;⑵、给出两个内角;⑶、给出两条边。

分别按照下面的条件做一做:

⑴、三角形一个内角为30°,⑵、三角形的两个内角⑶三角形的两条边

一条边为3cm;分别为30°和50°;分别为4cm,6cm。

结论:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等。

〔注解〕:若给出的条件能够使两个三角形全等,则班上所有同学所作的三角形都应该全等;若给出的条件不能使两个三角形全等,只要按照同一要求作图,只要有两位同学作的三角形不全等,即可以说明给出的条件不能使两个三角形全等。特别地,只要能举出相关的反例能说明两个三角形不全等,可以适当减少作图环节。

3、如果给出三个条件画三角形,你能说出有哪几种可能的情况?

⑴、都给角:给三个角;⑵、都给边:给三条边;

⑶、既给角,又给边:①给一条边,两个角;②给两条边,一个角。

按照下面的条件做一做:

⑴、已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?

把你画的三角形与同伴画的进行比较,它们一定全等吗?

结论:三个内角对应相等的&39;两个三角形不一定全等。

⑵、已知一个三角形的三条边分别为4cm、5cm和7cm,你能画出这个三角形吗?

把你画的三角形与同伴画的进行比较,它们一定全等吗?

结论:边边边公理

三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

AB=DE

AC=DF△ABC≌△DEF(SSS)

BC=EF

注意:三边对应相等是前提条件,三角形全等是结论。

5、由上面结论可知,只要三角形三边长度确定了,这个三角形的形状和大小就完全确定了。

如图,是用三根长度适当的木条钉成一个三角形框架,所得框架的形状固定吗?用四根木条钉成的框架的形状固定吗?

三角形框架形状和大小是固定不变的,四边形框架形状是可以改变的。

三角形具有稳定性;四边形不具有稳定性。

举例说明生活中经常会看到应用三角形稳定性的例子?(投影片)

三、例题与练习

例1如图,当AB=CD,BC=DA时,图中的△ABC与△CDA是否全等?并说明理由。

答:△ABC与△CDA是全等三角形。

证明:在△ABC与△CDA中

AB=CD(已知)

∵AD=CB(已知)

AC=CA(公共边)

∴△ABC≌△CDA(SSS)

例2变式题如图,当AB=CD,BC=DA时,你能说明AB与CD、AD与BC的位置关系吗?为什么?

答:能判定AB∥CD

证明:在△ABC与△CDA中

AB=CD(已知)

∵AD=CB(已知)

AC=CA(公共边)

∴△ABC≌△CDA(SSS)

∴∠3=∠4,∠1=∠2(全等三角形对应角相等)

∴AB∥CD,AD∥BC(内错角相等,两直线平行)

四、课堂小结

1、通过这节课的学习活动你有哪些收获?

(1)只给出一个条件或两个条件时,都不能保证两个三角形一定全等。

(2)三个内角对应相等的两个三角形不一定全等。

(3)边边边公理:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

(4)三角形具有稳定性,四边形不具有稳定性。

2、你还有什么想法吗?

五、作业

课本第160页,习题5.7数学理解第1、2题;问题解决第1题

六、板书设计

1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

AB=DE

AC=DF△ABC≌△DEF(SSS)

BC=EF

2、三角形具有稳定性。

初中数学教案的范文篇11

教学目的

1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

2. 熟识等边三角形的性质及判定.

2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

教学重点: 等腰三角形的性质及其应用。

教学难点: 简洁的逻辑推理。

教学过程

一、复习巩固

1.叙述等腰三角形的性质,它是怎么得到的?

等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。

等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。

2.若等腰三角形的两边长为3和4,则其周长为多少?

二、新课

在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。

等边三角形具有什么性质呢?

1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

2.你能否用已知的知识,通过推理得到你的猜想是正确的?

等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。

3.上面的条件和结论如何叙述?

等边三角形的各角都相等,并且每一个角都等于60°。

等边三角形是轴对称图形吗?如果是,有几条对称轴?

等边三角形也称为正三角形。

例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。

分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

问题2:求∠1是否还有其它方法?

三、练习巩固

1.判断下列命题,对的打“√”,错的打“×”。

a.等腰三角形的角平分线,中线和高互相重合( )

b.有一个角是60°的等腰三角形,其它两个内角也为60°( )

2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。

3.P54练习1、2。

四、小结

由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

五、作业: 1.课本P57第7,9题。

2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。

12.3.2 等边三角形(二)

教学目标

1.掌握等边三角形的性质和判定方法. 2.培养分析问题、解决问题的能力.

教学重点:等边三角形的性质和判定方法.

教学难点:等边三角形性质的应用

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2. 已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

3. P56页练习1、2

III课堂小结:1.等腰三角形和性质;等腰三角形的条件

V布置作业: 1.P58页习题12.3第ll题.

2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

12.3.2 等边三角形(三)

教学过程

一、 复习等腰三角形的判定与性质

二、 新授:

1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等

2.等边三角形的判定:

三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.

3.由学生解答课本148页的例子;

4.补充:已知如图所示, 在△ABC中, BD是AC边上的中线, DB⊥BC于B,

∠ABC=120o, 求证: AB=2BC

分析 由已知条件可得∠ABD=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.

初中数学教案的范文篇12

我说课的题目是冀教版小学数学教材四年级下册第六单元时《垂线》。下面我从四个方面进行说课:

一、教学设计:

主要包括三个方面

1、教材分析:

垂线在生产、生活中有着广泛的应用,垂线的概念、性质是学生今后进一步学习数学的基础,在教材上起着承上启下的作用。

大多数学生感到数学枯燥,学习兴趣不高。我所教的班一直采用小组合作学习,学生基本养成了良好的预习习惯。这节课利用普通的多媒体教室,灵活运用现代教育技术,通过实例的展示及动画演示,让学生充分感知图形中蕴含的垂线特征,使知识的生成过程更直观更形象。对学生的认知、理解以及教学重难点突破起到了关键作用。

2、根据以上分析,我确定本节课的教学目标是:

知识与技能包括垂直的定义垂线的画法与性质。

数学思考包括

探索垂线的性质,发展学生的几何直觉,培养学生的猜想能力。并通过“做数学”,让学生对猜想进行检验,作出正确判断。

解决问题包括

培养学生数学语言表达能力,培养学生解决问题时的合作意识和习惯。

情感与态度包括

让学生体验数学充满着探索和创造,感受数学趣味,获得发现的喜悦。

鼓励学生感想敢说,让学生体验成功的快乐,树立学好数学的信心。

3、教学重难点:

教学重点:

垂直概念的建立、垂线的画法与性质。

教学难点:

用数学语言描述垂直的定义以及学生猜想能力的培养。

二、教学过程设计:

根据这节课的特点,我把整堂课分为课题导入、合作探究、课堂小结、拓展创新四个环节,灵活运用现代教育技术,突出重点,化解难点。为培养学生课前预习的习惯,设立了预习导航,准备了大量有关本节课的学习资料,并鼓励学生自己到网上查阅资料,提高学生的信息素养。

1、课题导入

课题导入运用多媒体展示学生熟悉的马路、篱笆、小棒等实物形象,并提出问题:仔细观察各组图形中两条直线的位置关系有什么共同点?让学生感到数学贴近生活,激发学生的表达欲望。

2、合作探究凸现学生的主体地位,让学生在学习中学会质疑、学会发现。合作探究分为垂直的定义、课堂练习、试试身手、垂线性质、你来当老师、走进生活五个小版块。其中,垂线的定义鼓励学生自己概括,并积极与大家交流。课堂练习梯度明显,答案灵活,尽量让每一个学生都有收获。“试试身手”让学生走上讲台,展示自己的发现,学生在轻松愉悦中很容易发现垂线的性质。“你来当老师”、“各抒己见”鼓励学生积极主动的发表自己的见解,营造平等、民主的学习氛围。激发学生探求的欲望,给学生一份自信,让学生在学习中学会质疑、学会发现。“走进生活”借助多媒体把学生的生活体验真实的再现给学生,让学生体验学有用的数学,增强学生学习数学的兴趣。

3、“课堂小结”让学生自己总结,谈本节课的收获、体会、本节课还有什么问题、新发现。鼓励学生大胆发言、锻炼学生的数学表达能力、语言概括能力。

4、探究创新:“创新园”让学生利用本节课所学知识,课后去思考、去动手制作、去创新发现。既能激发学生课后去学习、去探索的欲望,又能让学生感悟数学来源于生活,并反作用于生活的道理。培养学生学数学、用数学的创新意识,我想,只要我们教师用心,精心培育,创新园一定能育出创新果。

初中数学教案的范文篇13

一、教材分析

1、教材的地位和作用

本节教材是初中数学__年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了__的基础上,对__的进一步深入和拓展;另一方面,又为学习-__等

知识奠定了基础,是进一步研究__的工具性内容。因此本节课在教材中具有承上启下的作用。

2、学情分析

学生在此之前已经学习了__,对__已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于__的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为、

难点确定为、

二、教学目标分析

根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标

1.知识与技能目标

2.过程与方法目标

3.情感态度与价值目标

三、教学方法分析

本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

四、教学过程分析

为有序、有效地进行教学,本节课我主要安排以下教学环节、

(1)复习就知,温故知新

设计意图、建构主义主张教学应从学生已有的知识体系出发,__是本节课深入研究__的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

设计意图、以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知

设计意图、现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解

设计意图、数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第__环节。

(5)强化训练,巩固双基

设计意图、几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6)小结归纳,拓展深化

小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.

(7)当堂检测对比反馈

(8)布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上是我对本节课的见解,不足之处敬请各位评委谅解!

初中数学教案的范文篇14

①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解.②k可以是怎样的`数?

③你怎样认识一次函数和正比例函数的关系?

一个常数b的和即Y=kx+b定义:一般地,形

Y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,当

b=0时,

Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。

例1、下列函数中,Y是X的一次函数的是()①Y=X-6②Y=3X③Y=X2④Y=7-X

学生独立

A①②③B①③④C①②④D①②③④

例2、写出下列各题中x与y之间的关系式,并判

解释与应用

断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式

初中数学教案的范文篇15

4.1二元一次方程

【教学目标】

知识与技能目标

1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是

二元一次方程;

2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

情感与态度目标

1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

【重点、难点】

重点:二元一次方程的概念及二元一次方程的解的概念。

难点1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,

但不是任意的两个数是它的解。

2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

【教学方法与教学手段】

1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一

次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和

空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

【教学过程】

一、创设情境导入新课

1、一个数的3倍比这个数大6,这个数是多少?

2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?

思考:这个问题中,有几个未知数?能列一元一次方程求解吗?

如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

二、师生互动探索新知

1、推陈出新发现新知

引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

(板书:二元一次方程)

根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

2、小试牛刀巩固新知

判断下列各式是不是二元一次方程

(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

3、师生互动再探新知

(1)什么是方程的解?(使方程两边的值相等的`未知数的值,叫做方程的解。)

(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未

知数的值,叫做二元一次方程的一个解。)

?若未知数设为x,y,记做x?,若未知数设为a,b,记做

?y?

4、再试牛刀检验新知

(1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)

a?4a?5a?0a?100

b?3b??1020b??b?6033

(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

5、自我挑战三探新知

有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10

请找出这个方程的一个解,并写出你得到这个解的过程。

学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

6、动动笔头巩固新知

独立完成课本第81页课内练习2

三、你说我说清点收获

比较一元一次方程和二元一次方程的相同点和不同点

相同点:方程两边都是整式

含有未知数的项的次数都是一次

如何求一个二元一次方程的解

四、知识巩固

1、必答题

(1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2

10?__?10①x?5?4y②x?10?4y③y?④y?44

(3x?7是方程2x?y?15的解。()(2)多选题:方程

y?1

x?7

(4)判断题:方程2x?y?15的解是。()y?1

2、抢答题

是方程2x?3y?5的一个解,求a的值。(1)已知x??2

y?a

(2)写出一个解为x?3的二元一次方程。

y?1

3、个人魅力题

写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?

五、布置作业

34733