初中数学教案1000字
编写教案有助于更好地满足学生的学习需求,提高学生的学习效果。什么才算好的初中数学教案1000字?接下来给大家分享一些初中数学教案1000字,供大家参考。
初中数学教案1000字篇1
课题:
对数函数
(1)——定义、图象、性质目标:
1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。
2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;
3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。
重点:对数函数的定义、图象、性质
难点:对数函数与指数函数间的关系
过程:
一、复习引入:实例引入:回忆学习指数函数时用的实例我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数是分裂次数的函数,这个函数可以用指数函数=表示。现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数就是要得到的细胞个数的函数。根据对数的定义,这个函数可以写成对数的形式就是如果用表示自变量,表示函数,这个函数就是由反函数概念可知,与指数函数互为反函数这一节,我们来研究指数函数的反函数对数函数
二、新课
1.对数函数的定义:函数叫做对数函数;它是指数函数的反函数。对数函数的定义域为,值域为。
2.对数函数的图象由于对数函数与指数函数互为反函数,所以的图象与的图象关于直线对称。因此,我们只要画出和的图象关于对称的曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质。
活动设计:由学生任意取底数作图,观察分析讨论,教师引导、整理3.对数函数的性质由对数函数的图象,观察得出对数函数的性质。见P87表图象性质定义域:(0,+∞)值域:R过点(1,0),即当时,时时时时在(0,+∞)上是增函数在(0,+∞)上是减函数活动设计:学生观察、分析讨论,教师引导、整理4.应用例1.(课本第94页)求下列函数的定义域:(1);(2);(3)分析:此题主要利用对数函数的定义域(0,+∞)求解。解:(1)由>0得,∴函数的定义域是;(2)由得,∴函数的定义域是(3)由9-得-3,∴函数的定义域是注:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2.求下列函数的反函数①②解:①∴②∴
三、小结:对数函数定义、图象、性质四、作业:课本第95页练习1,2习题2.81,2
初中数学教案1000字篇2
相反数
一、学习目标
1了解相反数的概念。
2给一个数,能求出它的相反数。
3根据a的相反数是-a,能把多重符号化成单一符号。
二、教学过程
师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。
生:人人动用手画数轴,独立思考后,在小组内进行交流。
师:深入了解各小组的交流情况,讨论结束后,提问1、2人,帮助全班同学理清思考问题的思路。
师:请同学们阅读课本,知道什么叫相反数,给出一个数能求出它的相反数。
生:阅读课本第59页,并完成练习一第(1)~(4)题。
师:提问检查学生的学习情况,强调“0的相反数是0”也是相反数定义的`一部分。
师:请同学们先想一想,a可以表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习情况。
师:认真了解各小组的学习情况,特别是对简化符号的题和学习困难的学生,要重点对待。
生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。
师:请同学们先小结一下本节课的学习内容。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除A组第2题外都可以直接说出结果)
生:小结。完成习题1.3中的有关练习。
练习
1在下列各式中分别填上适当的符号,使等号左右两端的数相等;
-(+19)=____________19;
____________10.2=+(+10.2);
____________(+12)=-12;
____________(-25)=+25。
2把下面的多重符号化成单一符号:
-[-(-0.3)]=____________;
-[-(+4)]=____________;
+[+(+5)]=____________;
-[+(-50)]=____________。
3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。
4下面的说法对不对?请举列说明。
(1)一个有理数的相反数的相反数就是这个有理数本身。
(2)一个有理数的相反数一定比原来的有理数小。
(3)-a是一个负数。
作业
在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。
初中数学教案1000字篇3
教学目标
知识与能力:
1.理解一元二次方程根的判别式。
2.掌握一元二次方程的根与系数的关系
3.同学们掌握一元二次方程的实际应用.了解一元二次方程的分式方程。
过程与方法:
培养学生的逻辑思维能力以及推理论证能力。
情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。
重、难点
重点:根的判别式和根与系数的关系及一元二次方程的应用。
难点:一元二次方程的实际应用。
一、导入新课、揭示目标
1.理解一元二次方程根的判别式。
2.掌握一元二次方程的根与系数的关系
3.掌握一元二次方程的实际应用.
二、自学提纲:
一.主要让学生能理解一元二次方程根的判别式:
1.判别式在什么情况下有两个不同的实数根?
2.判别式在什么情况下有两个相同的实数根?
3.判别式在什么情况下无实数根?
二.ax2+bx+c=o(a≠0)的两个根为x1.x2那么
X1+x2=-x1x2=
三.一元二次方程的实际应用。根据不同的类型的问题.列出不同类型的方程.
三.合作探究.解决疑难
例1已知关于x的方程x2+2x=k-1没有实数根.试判别关于x的方程x2+kx=1-k的根的情况。
巩固提高:
已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根.求的周长
例题2:
.已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根.且(x1+2)(x2+2)=11.求a的值。
.巩固提高:
已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.
(1)求证:不论m为任何实数.方程总有两个不相等的实数根;
(2)若方程两根为x1.x2.且满足
求m的值。
例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台.现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台,
(1)求1月份到3月份销售额的平均增长率:
(2)求3月份时该电脑的销售价格.
练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?
2)则降价多少元?
四、小结
这节课同学有什么收获?同学互相交流?
五、布置作业:
课前课后P10-12
初中数学教案1000字篇4
一、教材分析
(一)、教材内容的地位和作用
《代数式的值》选自义务教育课程标准实验教科书(人教版)七年级数学(上)第二章,是我个人根据学生的知识基础较差、认知能力不强以及思维品质不够活跃等实际情况而在教学中加以补充的一节课。代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?
(二)、教学目标
根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:
知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。
情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。
(三)、教学重点、难点
教学重点:代数式求值的书写格式。
教学难点:代数式求值的书写格式,变式训练知识的运用。
二、教法、学法分析
本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果,而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
三、教学程序设计
板书设计:
代数式的值
四、评价与反思
新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。
教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。
无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。
以上是我对《代数式的值》一课的说课,不当之处请各位评委、老师批评指正,谢谢。
初中数学教案1000字篇5
一、教学目标
1、了解二次根式的意义;
2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、掌握二次根式的性质和,并能灵活应用;
4、通过二次根式的计算培养学生的&39;逻辑思维能力;
5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?
例2x是怎样的实数时,式子在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有x≥0,因此,x+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
初中数学教案1000字篇6
教学目标
1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。
2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。
3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。
4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。
重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。
2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。
难点利用数形结合的方法验证公式
教学方法动手操作,合作探究课型新授课教具投影仪
教师活动学生活动
情景设置:
你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)
新课讲解:
把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:
教师接着在介绍教材第94页例题的拼法及相关公式
提问:还能通过怎样拼图来解决以下问题
(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;
(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2
试用拼一个长方形的方法,把这个二次三项式因式分解。
这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作
了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。
小结:
从这节课中你有哪些收获?
(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)
学生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
学生拿出准备好的硬纸板制作
给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。
作业第95页第3题
板书设计
复习例1板演
………………
………………
……例2……
………………
………………
教学后记