高中免费教案数学
教案编写需要依据不同的学科和教学内容,选取合适的教学方法和手段,明确教学目标和教学计划,以确保教学质量。优秀的高中免费教案数学是什么样的?下面给大家带来高中免费教案数学,供大家参考。
高中免费教案数学篇1
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的`公比,公比通常用字母q表示。
(1)等比数列的通项公式是:An=A1×q^(n-1)
若通项公式变形为an=a1/q-q^n(n∈N-),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q-q^x上的一群孤立的点。
(2)任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
(5)等比求和:Sn=a1+a2+a3+.......+an
①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
②当q=1时,Sn=n×a1(q=1)
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
高中免费教案数学篇2
【考纲要求】
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
【自学质疑】
1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 ,
渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。
2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3.经过两点 的双曲线的标准方程是 。
4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。
5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为
【例题精讲】
1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。
3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。
【矫正巩固】
1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。
2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。
3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是
4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。
【迁移应用】
1. 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率
2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。
3. 双曲线 的焦距为
4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则
5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .
6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为
高中免费教案数学篇3
各位评委老师:
大家好!
我说课的课题是等差数列的前n项和,本节内容选自江苏教育出版社中职数学第二册第11章第2节,下面我将从说教材、说教法学法、说教学过程、说板书设计以及说教学反思几个方面对本节课加以说明。
一、下面先说说教材
1、教材的地位和作用
中职数学是中等职业学校各类专业学生必修的主要文化基础课,学好这门课程对提高学生数学素养具有十分重要的意义。数列这一章是中职数学的重要内容之一。它不仅是函数知识的延伸,而且还有着非常广泛的实际应用;同时数列还是培养学生数学思维能力的良好题材。
《等差数列的前n项和》是本章的第二节,它为后继学习提供了知识基础,对提高学生分析、猜想、概括、归纳的能力有着重要的作用。
《等差数列》作为《数列》这一章中两个最重要的数列之一,具有承上启下的作用,它的研究和解决集中体现了研究《数列》问题的思想和方法。学习《等差数列的前n项和》对提高学生分析、猜想、概括、归纳的能力有着重要的作用。
2、教学目标根据教学大纲的要求和教学内容的结构特征,并结合学生学习的实际情况,我将本节课的教学目标确定为以下三个方面
知识目标:掌握等差数列的前n项和公式
能力目标:
1、培养学生观察、归纳、类比、联想等发现规律的一般方法。
2、提高学生分析问题和解决问题的能力
情感目标:
1、培养学生主动探索的精神和良好的学习习惯
2、让学生在问题中感受学习的乐趣;
3、教学重点和难点。根据本节课的内容以及学生已掌握的知识情况我将
教学重点确定为:等差数列的前n项和公式及应用
教学难点确定为:应用等差数列解决有关问题
二、说教法学法
教法教学有法但教无定法,教学方法要与学生学习的实际情况相结合。
中职学生的生源质量逐年下降,大部分中职生基础薄弱、理解接受能力较差,大多数学生不爱学习,不会学习。学生认为数学难,枯燥理解不了。对数学学习提不起兴趣,因此在教学中我注重激发学生学习的兴趣。本节课通过具体的实例引入,采用了问题、类比、发现、归纳的探究式教学方法。引导学生积极主动的去学习。在课堂教学中强调以学生为主体,注重精讲多练。同时也注重学生非智力因素的培养,增强学生的自信心和成就感。为学习营造宽松和谐的氛围。另外在教学中使用多媒体教学手段等,提高教学质量和教学效果。
学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。倡导学生主动参与、乐于探究,培养学生发现问题、分析问题和解决问题的能力。根据学生的认知水平,我设计了①创设情境—引入问题②分析归纳—解决问题③例题研究—运用新知④分组训练—巩固新知⑤总结归纳—提高认识⑥课后作业-自主探究六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。
接下来,我再具体谈一谈这堂课的教学过程。
三、说教学过程
(一)创设情境——引入问题教学设想
我经常在想:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的`生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。
由生活中的实例一招聘信息引入:A公司月薪2000元;B公司第一个月800元,以后逐月递加200元。你愿意到哪家公司上班?为什么?在A、B公司一年各共领多少钱?五年呢?以此来激发学生的学习兴趣。再给学生讲数学家高斯的故事
1+2+3+…+100=
同学们,如果你是小高斯,你会怎么向老师解释算法呢?
(二)分析归纳——解决问题教学设想
由高斯的解题过程:
S=1+2+3+…+100
S=100+99+98+…+1
2S=(100+1)×100
S=(100+1)100/2=5050
让学生在在教师的启发引导下,由被动地听讲变为主动参与,敢于发表自己独特的见解,并学会倾听、尊重他人的意见。教师引导学生概括总结出本课新的知识点。
1、等差数列前n项求和公式
类似m+n=s+tam+an=as+atm,n,s,t∈N+
等差求和
倒排相加
另有
即(2)——类似梯形面积公式便于记忆
进而让学生解决课前提出的问题
一年在A公司12×2000
在B公司
800+900+1000+…1900
五年在A公司2000×12×5
在B公司
800+900+1000+…+6700
——让学生利用刚学的知识解决当前的问题,让学生明白学以致用。
(三)例题研究——运用新知教学设想
通过例题,使学生加深对知识的理解,从而达到掌握、运用知识的效果
例1、(1)求正奇数前100项之和;
(2)求第101个正奇数到第150个正奇数之和;
(3)等差数列的通项公式为an=100-3n,求其前65项之和;
(4)在等差数列{an}中,已知a1=3,,求S10
例2、某长跑运动员7天每天的训练量(单位:m)分别是7500,8000,8500,9000,9500,10000,10500,他在7天内共跑了多少米?
例3、设等差数列{an}的公差d=,,前n项之和Sn=。求a1及n
课堂上让学生用两种公式解题,有利于提高思维的灵活性,通过板演调动学生的积极性,也掌握本节课的重点和难点。
(四)分组训练—巩固新知
教学设想,例题过后,我特地设计了一组检测题,
1、等差数列求和公式Sn=
2、等差数列{an}中,(1)a1=2,d=-1则Sn=
3、2c+4c+6c+…+2nc=
4、一堆圆木,每层总比上一层多一根,顶层4根,最底层21根,这堆木料有多少根?
5、一只挂钟,遇整点就敲响,钟响的次数是该点的时间数,从1点到12点共响几次?
通过游戏比赛的形式,活跃课堂气氛,提高学生的学习兴趣。来巩固新知识。
(五)总结归纳——提高认识教学设想
让学生通过所学内容的小结,对知识的发生发展有一个清晰的线索,把课堂所学知识构建起新的知识体系。同时养成良好的学习习惯。
(六)课后作业自主探究
教学设想
学生经过以上五个环节的学习,已经初步掌握了等差数列的前n项的求和,并解决了一些实际问题。
根据学生在课堂上知识掌握的情况有针对性布置课后作业。提高学生应用知识的能力。
四、说板书设计
我将这节课的板书设计为三列,一列为本节课的基本知识点,一列为例题,一列为讲解。条理清晰,一目了然。
我认为板书设计在课堂教学中也很重要,好的板书就是一份微型教案,向学生展现了所学知识的框架,突出重点难点,清晰直观地将授课内容传递给学生,便于学生理解掌握。
五、说教学反思
根据课堂教学情况,课后及时总结,不断改进,精益求精,努力提高课堂教学效果。
结束:以上是我说课的内容,不当之处希望各位评委老师提出宝贵意见。
高中免费教案数学篇4
椭圆的简单几何性质中的考查点:
(一)、对性质的考查:
1、范围:要注意方程与函数的区别与联系;与椭圆有关的求最值是变量的取值范围;作椭圆的草图。
2、对称性:椭圆的中心及其对称性;判断曲线关于x轴、y轴及原点对称的依据;如果曲线具有关于x轴、y轴及原点对称中的任意两种,那么它也具有另一种对称性;注意椭圆不因坐标轴改变的固有性质。
3、顶点:椭圆的顶点坐标;一般二次曲线的顶点即是曲线与对称轴的交点;椭圆中a、b、c的几何意义(椭圆的特征三角形及离心率的三角函数表示)。
4、离心率:离心率的定义;椭圆离心率的取值范围:(0,1);椭圆的离心率的变化对椭圆的影响:当e趋向于1时:c趋向于a,此时,椭圆越扁平;当e趋向于0时:c趋向于0,此时,椭圆越接近于圆;当且仅当a=b时,c=0,两焦点重合,椭圆变成圆。
(二)、课本例题的变形考查:
1、近日点、远日点的概念:椭圆上任意一点p(x,y)到椭圆一焦点距离的最大值:a+c与最小值:a-c及取最值时点p的坐标;
2、椭圆的第二定义及其应用;椭圆的准线方程及两准线间的距离、焦准距:焦半径公式。
3、已知椭圆内一点m,在椭圆上求一点p,使点p到点m与到椭圆准线的距离的和最小的求法。
4、椭圆的参数方程及椭圆的离心角:椭圆的参数方程的简单应用:
5、直线与椭圆的位置关系,直线与椭圆相交时的弦长及弦中点问题。
高中免费教案数学篇5
教学内容:
简单的排列组合
教学目标:
1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。
2.培养学生有序地、全面地思考问题的意识和习惯。
教学过程:
1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。
2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。
3、出示练习二十五第3题。
学生看题后,四人小组讨论出有多少种求组合数的方法。
4、学生汇报。
(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。
(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。
(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。
(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。
2.“做一做”
(1)练习二十五第7题。
通过活动的方式让学生不重不漏地把所有取钱的情况写出来。
(2)练习二十五第9题。
用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。
高中免费教案数学篇6
一.教学目标:
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集
(3)能使用venn图表达集合的运算,体会直观图示对理解抽象概念的作用
2.过程与方法
学生通过观察和类比,借助venn图理解集合的基本运算
3.情感.态度与价值观
(1)进一步树立数形结合的思想
(2)进一步体会类比的作用
(3)感受集合作为一种语言,在表示数学内容时的简洁和准确
二.教学重点.难点
重点:交集与并集,全集与补集的概念
难点:理解交集与并集的概念,符号之间的区别与联系
三.学法与教学用具
1.学法:学生借助venn图,通过观察、类比、思考、交流和讨论等,理解集合的基本运算
2.教学用具:投影仪
四.教学思路
(一)创设情景,揭示课题
问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?
请同学们考察下列各个集合,你能说出集合c与集合a、b之间的关系吗?
引导学生通过观察,类比、思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。
(二)研探新知
l.并集
—般地,由所有属于集合a或属于集合b的元素所组成的集合,称为集合a与b的并集
记作:a∪b
读作:a并b
其含义用符号表示为:
用venn图表示如下:
请同学们用并集运算符号表示问题1中a,b,c三者之间的关系
练习、检查和反馈
(1)设a={4,5,6,8),b={3,5,7,8),求a∪b
(2)设集合
让学生独立完成后,教师通过检查,进行反馈,并强调:
(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次
(2)对于表示不等式解集的集合的运算,可借助数轴解题
2.交集
(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合a、b与集合c之间有什么关系?
②b={是新华中学20--年9月入学的高一年级同学},c={是新华中学20--年9月入学的高一年级女同学}
教师组织学生思考、讨论和交流,得出结论,从而得出交集的定义;
一般地,由属于集合a且属于集合b的所有元素组成的集合,称为a与b的交集
记作:a∩b
读作:a交b
其含义用符号表示为:
接着教师要求学生用venn图表示交集运算
(2)练习、检查和反馈
①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系
②学校里开运动会,设a={是参加一百米跑的同学},b={是参加二百米跑的同学},c={是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算a∩b与a∩c的含义
学生独立练习,教师检查,作个别指导,并对学生中存在的问题进行反馈和纠正
(三)学生自主学习,阅读理解
1.教师引导学生阅读教材第10~11页中有关补集的内容,并思考回答下例问题:
(1)什么叫全集?
(2)补集的含义是什么?用符号如何表示它的含义?用venn图又表示?
(3)已知集合
(4)设s={是至少有一组对边平行的四边形},a={是平行四边形},b={是菱形},c={是矩形},求。
在学生阅读、思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价
(四)归纳整理,整体认识
1.通过对集合的学习,同学对集合这种语言有什么感受?
2.并集、交集和补集这三种集合运算有什么区别?
(五)作业
1.课外思考:对于集合的基本运算,你能得出哪些运算规律?
2.请你举出现实生活中的一个实例,并说明其并集,交集和补集的现实含义
3.书面作业:教材第12页习题1.1a组第7题和b组第4题
高中免费教案数学篇7
教学目标:
掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.
教学重点:
二倍角公式的推导及简单应用.
教学难点:
理解倍角公式,用单角的三角函数表示二倍角的三角函数.
教学过程:
Ⅰ.课题导入
前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.
先回忆和角公式
sin(α+β)=sinαcosβ+cosαsinβ
当α=β时,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
当α=β时cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
当α=β时,tan2α=2tanα1-tan2α
Ⅱ.讲授新课
同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α
同学们是否也考虑到了呢?
另外运用这些公式要注意如下几点:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)时才成立,否则不成立(因为当α=π2 +kπ,k∈Z时,tanα的值不存在;当α=π4 +kπ2 ,k∈Z时tan2α的值不存在).
当α=π2 +kπ(k∈Z)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情况下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k∈Z)时,sin2α=2sinα=0成立].
同样在一般情况下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为 α2 的2倍,将 α2 作为 α4 的2倍,将3α作为 3α2 的2倍等等.
高中免费教案数学篇8
依据如下:
(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。
(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。
(3)从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。
突破难点方法:
(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。从而得知求等比数列前n项和……+的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法——错位相减法,说明这种方法的用途。
(2)值得一提的是公式的证明还有两种方法:
后两种方法可以启发引导学生自行完成。这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。
等比数列前n项和公式及应用是本节课的重点内容。
依据如下:
(1)新大纲中有较高层次的要求。
(2)教学地位重要,是教学中全部学习任务中必须优先完成的任务。
(3)这项知识内容有广泛的实际应用,很多问题都要转化为等比数列的求和上来。
突出重点方法:
(1)明确重点。利用高一学生求知积极性和初步具有的数学思维能力,运用比较法来突出公式的内容(彩色粉笔板书):,强调公式的应用范围:中可知三求二。
(2)运用纠错法对公式中学生容易出错的地方,即公式的条件,以精练的语言给予强调,并指出q=1时,。再有就是有些数列求和的项数易错,例如的项数是n+1而不是n。
(3)创设条件、充分保证。设置低、中、高三个层次的例题,即公式的直接应用、公式的变形应用和实际应用来突出这一重点。对应用题师生要共同分析讨论,从问题中抽象出等比数列,然后用公式求和。
2.实际应用题.
这样设置主要依据:
(1)练习题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。
(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的习题。
(3)应用题比较切合对智力技能进行检测,有利于数学能力的提高。同时,它可以使学生在后半程学习中保持兴趣的持续性和学习的主动性,。
根据高一学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,简称“例—规”法。
案例为浅层次要求,使学生有概括印象。
公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。
应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。
其中,案例是基础,是学生感知教材;公式为关键,是学生理解教材;练习为应用,是学生巩固知识,举一反三。
在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书、棋盘教具和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,加深了学生理解巩固与应用,有利于培养学生思维能力,落实好教学任务。
在提倡教育改革的今天,对学生进行思维技能培养已成了我们非常重要的一项教学任务。研究性学习已在全国范围内展开,等比数列就是一个进行研究性学习的好题材。在我们学校可以按照Intel未来教育计划培训的模式,学完本节课后,教师可以给学生布置一个研究分期付款的课题,让学生利用网络资源,多方查找资料,并通过完成多媒体演示文稿和网页制作来共同解决这一问题。这样不仅培养了学生主动探究问题、解决问题的能力,而且还提高了他们的创新意识和团结协作的精神。
高中免费教案数学篇9
一、教学目标
(一)知识与技能
1、进一步熟练掌握求动点轨迹方程的基本方法。
2、体会数学实验的直观性、有效性,提高几何画板的操作能力。
(二)过程与方法
1、培养学生观察能力、抽象概括能力及创新能力。
2、体会感性到理性、形象到抽象的思维过程。
3、强化类比、联想的方法,领会方程、数形结合等思想。
(三)情感态度价值观
1、感受动点轨迹的动态美、和谐美、对称美
2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气
二、教学重点与难点
教学重点:运用类比、联想的方法探究不同条件下的轨迹
教学难点:图形、文字、符号三种语言之间的过渡
三、、教学方法和手段
【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。
【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。
【教学模式】重点中学实施素质教育的课堂模式"创设情境、激发情感、主动发现、主动发展"。
四、教学过程
1、创设情景,引入课题
生活中我们四处可见轨迹曲线的影子
【演示】这是美丽的城市夜景图
【演示】许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多
【演示】建筑中也有许多美丽的轨迹曲线
设计意图:让学生感受数学就在我们身边,感受轨迹曲线的动态美、和谐美、对称美,激发学习兴趣。
2、激发情感,引导探索
靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;
例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。
第一步:让学生借助画板动手验证轨迹
第二步:要求学生求出轨迹方程
法一:设,则
由得,
化简得
法二:设,由得
化简得
法三:设, 由点到定点的距离等于定长,
根据圆的定义得;
第三步:复习求轨迹方程的一般步骤
(1)建立适当的坐标系
(2)设动点的坐标M(x,y)
(3)列出动点相关的约束条件p(M)
(4)将其坐标化并化简,f(x,y)=0
(5)证明
其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化
设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。
3、主动发现、主动发展
由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。
第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)
设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。
第二步:分解动作,向学生提出3个问题:
问题1:当M位置不同时,线段BM与MA的大小关系如何?
问题2、体现BM与MA大小关系还有什么常见的形式?
问题3、你能类比例1把这种数量关系表达出来吗?
第三步:展示学生归纳、概括出来的数学问题
1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。
2、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。
3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。(说明是什么轨迹)
第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成
4、合作探究、实现创新
改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展
1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。
2、已知A(4,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。
3、已知A(2,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。
4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。
以下是学生课后探究得到的一些轨迹图形
课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?
可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。
以下是X轴和Y轴不垂直时的轨迹图形
五、教学设计说明:
(一)、教材
《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。
(二)、校情、学情
校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子阅室,并且能随时上网。
学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。
(三)学法
观察、实验、交流、合作、类比、联想、归纳、总结
(四)、教学过程
1、创设情景,引入课题
2、激发情感,引导探索
由梯子滑落问题抽象、概括出数学问题
第一步:让学生借助画板动手验证轨迹
第二步:要求学生求出轨迹方程
第三步:复习求轨迹方程的一般步骤
3、主动发现、主动发展
探究M不是中点时的轨迹
第一步:利用网络平台展示学生得到的轨迹
第二步:分解动作,向学生提出3个问题:
第三步:展示学生归纳、概括出来的数学问题
4、合作探究、实现创新
改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展
(五)、教学特色:
借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。
整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。
本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。
高中免费教案数学篇10
在预习教材中的例4的基础上,证明:若分别是椭圆的左、右焦点,则椭圆上任一点p()到焦点的距离(焦半径),同时思考当椭圆的焦点在y轴上时,结论如何?(此题意图是引导学生去进一步探究,为进一步研究椭圆的性质做准备)
本堂课是在学生学习了椭圆的定义、标准方程的基础上,根据方程研究曲线的性质。按照学生的认知特点,改变了教材中原有安排顺序,引导学生从观察课前预习所作的图形入手,从分析对称开始,循序渐进进行探究。由教师点拨、指导,学生研究、合作、体验来完成。
本节课借助多媒体手段创设问题情境,指导学生研究式学习和体验式学习(兴趣是前提)。例如导入,通过“神州五号”这样一个人们关注的话题引入,有利于激发学生的兴趣。再如,这节课是学生第一次利用曲线方程研究曲线性质,为了解决这一难点,在课前设计中改变了教材原有研究顺序,让学生从观察一个具体椭圆图形入手,从观察到对称性这一宏观特征开始研究,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验几何性质的形成与论证过程,变静态教学为动态教学。在研究范围这一性质时,课前设计中,只要学生能根据不等式知识解出就可以了,但学生采用了多种方法研究,这时教师没有打断他的思路,而是引导帮助他研究,鼓励学生创新,从而也实现了以学生为主,为学生服务。
在离心率这一性质的教学中,充分利用多媒体手段,以轻松愉悦的动画演示,化解了知识的难点。
但也有不足的地方:在对具体例子的观察分析中,设计的问题过于具体,可能束缚了学生的思维,还没有放开。还有就是少讲多学方面也是我今后教学中努力的方向。
感悟:新课堂是活动的课堂,讨论、合作交流可课堂,德育教育的课堂,应用现代技术的课堂,因此新教育理念、新课改下的新课堂需要教师和学生一起来培育。
高中免费教案数学篇11
[核心必知]
1、预习教材,问题导入
根据以下提纲,预习教材P6~P9,回答下列问题、
(1)常见的程序框有哪些?
提示:终端框(起止框),输入、输出框,处理框,判断框、
(2)算法的基本逻辑结构有哪些?
提示:顺序结构、条件结构和循环结构、
2、归纳总结,核心必记
(1)程序框图
程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形、在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序、
(2)常见的程序框、流程线及各自表示的功能
图形符号名称功能
终端框(起止框)表示一个算法的起始和结束
输入、输出框表示一个算法输入和输出的信息
处理框(执行框)赋值、计算
判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”
流程线连接程序框
○连接点连接程序框图的两部分
(3)算法的基本逻辑结构
①算法的三种基本逻辑结构
算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的
②顺序结构
顺序结构是由若干个依次执行的步骤组成的这是任何一个算法都离不开的基本结构,用程序框图表示为:
[问题思考]
(1)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束吗?
提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束、
(2)顺序结构是任何算法都离不开的基本结构吗?
提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构、
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)程序框图的概念:
(2)常见的程序框、流程线及各自表示的功能:
(3)算法的.三种基本逻辑结构:
(4)顺序结构的概念及其程序框图的表示:
问题背景:计算1×2+3×4+5×6+…+99×100。
[思考1]能否设计一个算法,计算这个式子的值。
提示:能。
[思考2]能否采用更简洁的方式表述上述算法过程。
提示:能,利用程序框图。
[思考3]画程序框图时应遵循怎样的规则?
名师指津:
(1)使用标准的框图符号。
(2)框图一般按从上到下、从左到右的方向画。
(3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是一个具有超过一个退出点的程序框。
(4)在图形符号内描述的语言要非常简练清楚。
(5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序。
高中免费教案数学篇12
教学目标:
1、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。
2、培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。
3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。使学生在数学活动中养成与人合作的良好习惯。
教学过程:
一、创设增境,激发兴趣。
师:今天我们要去"数学广角乐园"游玩,你们想去吗?
二、操作探究,学习新知。
<一>组合问题
l、看一看,说一说
师:那我们先在家里挑选穿上漂亮的衣服吧。(课件出示主题图)
师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)
2、想一想,摆一摆
(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?
①学生小组讨论交流,老师参与小组讨论。
②学生汇报
(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在展示板上。(要求:小组长拿出学具衣服图片、展示板)
①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:
第一种方案(按上装搭配下装)有几种穿法?(4种)
第二种方案(按下装搭配上装)有几种穿法?(4种)
师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
<二>排列问题
师:数学广角乐园到了,不过进门之前我们必须找到开门密码。(课件出示课件密码门)
密码是由1、2、3组成的两位数.
(1)小组讨论摆出不同的两位数,并记下结果。
(2)学生汇报交流(老师根据学生的回答,点击课件展示密码)
(3)生生相互评价。方法一:每次拿出两张数字卡片能摆出不同的两位数;
方法二:固定十位上的数字,交换个位数字得到不同的两位数;
方法三:固定个位上的数字,交换十位数字得到不同的两位数.
师小结:三种方法虽然不同,但都能正确并有序地摆出6个不同的两位数,同学们可以用自己喜欢的方法.
三、课堂实践,巩固新知。
1、乒乓球赛场次安排。
师:我们先去活动乐园看看,这儿正好有乒乓球比赛呢.(课件出示情境图)
(l)老师提出要求:每两个运动员之间打一场球赛,一共要比几场?
(2)学生独立思考.
(3)指名学生汇报.规
2、路线选择。(课件展示游玩景点图)
师:我们去公园看看吧。途中要经过游戏乐园。
(l)师引导观察:从活动乐园到游戏乐园有几条路线?哪几条?(甲,乙两条)从游戏乐园去公园有几条路线?哪几条?(A,B,C三条)(根据学生的回答课件展示)
从活动乐园到时公园到底有几种不同的走法?
(2)学生独立思索后小组交流。
(3)全班同学互相交流。
3、照像活动。
师:我们来到公园,这儿的景色真不错,大家照几张像吧.
师提出要求:摄影师要求三名同学站成一排照像,每小组根据每次合影人数(双人照或三人照)设计排列方案,由组长作好活动记录。
(1)小组活动,老师参与小组活动。
(2)各小组展示记录方案。
(3)师生共同评价。
4、欣赏照片.
师:在同学们照像的同时,小丽一家三口人也正在照像呢,看看她们是怎样照的.(课件展示照片集欣赏)
四、总结
今天的游玩到此结束,同学们互相握手告别好吗?如果小组里的四个同学每两人握一次手,一共要握几次手?
高中免费教案数学篇13
【教学目标】
1、知识与技能
(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:
(2)账务等差数列的通项公式及其推导过程:
(3)会应用等差数列通项公式解决简单问题。
2、过程与方法
在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3、情感、态度与价值观
通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】
①等差数列的概念;
②等差数列的通项公式
【教学难点】
①理解等差数列“等差”的特点及通项公式的含义;
②等差数列的通项公式的推导过程.
【学情分析】
我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
【设计思路】
1、教法
①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.
2、学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.
【教学过程】
一、创设情境,引入新课
1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?
2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?
3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?
教师:以上三个问题中的数蕴涵着三列数.
学生:
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.
二、观察归纳,形成定义
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述数列有什么共同特点?
思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?
思考3你能将上述的文字语言转换成数学符号语言吗?
教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.
教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.
(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的&39;准确表达.)
三、举一反三,巩固定义
1、判定下列数列是否为等差数列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.
(设计意图:强化学生对等差数列“等差”特征的理解和应用).
2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?
(设计意图:强化等差数列的证明定义法)
四、利用定义,导出通项
1、已知等差数列:8,5,2,…,求第200项?
2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?
教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.
(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)
五、应用通项,解决问题
1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?
2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差数列3,7,11,…的第4项和第10项
教师:给出问题,让学生自己操练,教师巡视学生答题情况.
学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式
(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)
六、反馈练习:
教材13页练习1
七、归纳总结:
1、一个定义:
等差数列的定义及定义表达式
2、一个公式:
等差数列的通项公式
3、二个应用:
定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出补充
(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)
【设计反思】
本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.
高中免费教案数学篇14
教学内容:简单的排列和组合
教学目标:
1.知识能力目标:
①通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数。
②初步培养有序地全面地思考问题的能力。
③培养初步的观察、分析、及推理能力。
2.情感态度目标:
①感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。
②初步培养有顺序地、全面地思考问题的意识。
③使学生在数学活动中养成与人合作的良好习惯。
教学重点:
经历探索简单事物排列与组合规律的过程。
教学难点:
初步理解简单事物排列与组合的不同。
教学准备:
多媒体课件、数字卡片、1角、2角、5角的人民币。
教学过程:
一、创设情境,引发探究
师:今天老师带你们去一个很有趣的地方,哪呢?我们今天要到“数学广角”里去走一走、看一看。
二、操作探究,学习新知。
(一)组合问题
l、看一看,说一说
师:今天老师给大家带来了几件漂亮的衣服,你们来挑选吧。(课件出示主题图)
师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)
2、想一想,摆一摆
(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?
①学生小组讨论交流,老师参与小组讨论。
②学生汇报
(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在纸板上。(要求:小组长拿出学具衣服图片、纸板。)
①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:
第一种方案(按上装搭配下装)有几种穿法?(4种)
第二种方案(按下装搭配上装)有几种穿法?(4种)
师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。、操作探究,学习新知。
(二)排列问题
1、初步感知排列
(1)师:我们穿上漂亮的衣服,来到了数学广角,可是这有一扇密码门,(出示课件:密码门)我们只要说对密码,就可以到数学广角游玩了。看小精灵给了我们提示(点小精灵)你们猜密码是什么?
(2)学生猜密码(情景预设:有的学生说是12,有的学生说是21。)
(3)试密码,打开密码门,进入数学广角乐园。
2、合作探究排列
(1)师问:数学广角乐园美不美呀?(学生回答)它虽然很美,可处处充满着挑战,你们愿意接受吗?(学生回答)那么我们先到数学乐园里去看一看吧!(点数学乐园)
(2)师:同学们,我们到了数学乐园里看到了什么呀?(回答)现在我们每个人都当一个小魔术师看谁的本领大?谁能把1、2、3这三个数字变成两位数,看谁变得最多?
(3)学生活动,师巡视指导
(4)学生汇报摆法,师板书。。
方法一:每次拿出两张数字卡片能摆出不同的两位数;
方法二:固定十位上的数字,交换个位数字得到不同的.两位数;
方法三:固定个位上的数字,交换十位数字得到不同的两位
(5)小结。
三、课堂实践,巩固新知
1、握手游戏:
师:同学们真棒!都能把数字1、2、3组成不同的两位数,而且不重复、不遗漏。下面老师带大家到运动乐园去看一看。(出示课件)看小朋友们在干什么?(生回答)
师:看到他们握手,老师有一个问题需要大家帮助解决一下。
(1)出示问题
(2)小组活动:握手
(3)抽生上台表演
(4)小结。
2、乒乓球比赛
三个人进行乒乓球比赛要举行几场?
(1)小组讨论
(2)学生汇报
(3)小结
3、生活乐园
看来数学广角处处充满挑战一点不假,你们愿不愿意接受新的挑战?(生)那我们一起到生活乐园去看一看吧!出示《生活乐园》课件。
(1)看课件
(2)学生活动
(3)学生汇报,师相机演示课件。
四、全课总结
今天我们到数学乐园玩的开不开心?看到了什么?你有什么收获?
高中免费教案数学篇15
一、教学目标
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
二、教学重、难点
1.教学重点:通过探索得到两角差的余弦公式;
2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.
三、学法与教学用具
1.学法:启发式教学
2.教学用具:多媒体
四、教学设想:
(一)导入:我们在初中时就知道?,,由此我们能否得到大家可以猜想,是不是等于呢?
根据我们在第一章所学的&39;知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式
(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)
展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与__之间的关系,由此得到,认识两角差余弦公式的结构.
思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?
提示:
1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?
2、怎样利用向量的数量积的概念的计算公式得到探索结果?
展示多媒体课件
比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.
思考:再利用两角差的余弦公式得出
(三)例题讲解
例1、利用和、差角余弦公式求、的值.
解:分析:把、构造成两个特殊角的和、差.
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.
例2、已知,是第三象限角,求的值.
解:因为,由此得
又因为是第三象限角,所以
所以
点评:注意角、的象限,也就是符号问题.
(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.
高中免费教案数学篇16
教学分析
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习, 让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上 点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
三维目标
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
重点难点
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
教学难点:准确比较两个代数式的大小.
课时安排
1课时
教学过程
导入新课
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学 生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
推进新课
新知探究
提出问题
1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
3数轴上的任意两 点与对应的两实数具有怎样的关系?
4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例3:若一个数是非负数,则这个数大于或等于零.
实例4:两点之间线段最短.
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a应用示例
例1(教材本节例1和例2)
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.
变式训练
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )
A.f(x)>g(x) B.f(x)=g(x)
C.f(x)
答案:A
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a>0,b>0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.
∴a4-b4<4a3(a-b).
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.
变式训练
已知x>y,且y≠0,比较xy与1的大小.
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.
解:xy-1=x-yy.
∵x>y,∴x-y>0.
当y<0时,x-yy<0,即xy-1<0. ∴xy<1;
当y>0时,x-yy>0,即xy-1>0.∴xy>1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积, 住宅的采光条件是变好了,还是变坏了?请说明理由.
活动:解题关键首先是把文 字语言转换成数学语言,然后比较前后比值的大小,采用作差法.
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.
点评:一般地,设a、b为正实数,且a
变式训练
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )
A.a1+a8>a4+a5 B.a1+a8
C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定
答案:A
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
课堂小结
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.
作业
习题3—1A组3;习题3—1B组2.
设计感想
1.本节设计关注了教学方法 的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学 过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.
2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历 来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.
3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.
高中免费教案数学篇17
分享目标:
1、通过与学生交流《课程纲要》,使学生了解本学期的课程内容、课程目标及课程评价。
2、通过了解教师对学生的评价方法,激发学生自主学习的主动性。
分享重点:
了解本学期的学习内容和评价方法。
分享难点:
通过分享《课程纲要》明确学习目标。
分享时间:一课时
分享准备:《三年级综实课程纲要》PPT
分享过程:
一、谈话导入
1、师:同学们,新年新气象,新的学期又是新的开始。本学期的第二节综实课,老师要带领大家认识一个新朋友,它就像向导一样,能够指引大家在本学期的学习中找准学习目标,理清学习内容、了解学习安排,真正成为学习的小主人,它就是课程纲要。(板书课题)
二、内容新授
1、师:怎样才能做学习的小主人呢?首先我们要了解本学期的学习内容。我们本学期将会学习那些内容呢?《课程纲要》来一一为我们介绍。
2、师:本学期我们只进行一个综合实践活动课的主题,它就是有趣的姓氏。
3、师:主题确定了,那么课下就需要你们想想,围绕这些主题可以引出什么呢?(生说)
4、师:对,是子课题。说明大家上学期上课大家认真听讲了。除了想一想可以确定哪些子课题,还要想想你准备怎样做,使用哪些方法等等。
5、师:接下来我来说说我们这学期综实课分组的问题。这学期分组,以主题确定后,你们自己找搭档,找助手,一起同心协力更好的完成各个主题活动。
6、师:本学期的课程内容大家都了解了,那本学期的评奖方式是什么呢?
①每节课课余1-3分钟,根据本节举手回答问题的次数,以及课堂表现,来老师这里为个人加分,各组组长也负责记录并统计出每星期、每个月加分最多的组员上报老师,老师会授予这些同学优秀之星的称号,获得优秀之星称号的同学会得到学习星以及才艺星的奖励。
②课前准备综实成长记录袋以及A4白纸15张,作为平时作业及记录板书内容的笔记本。老师批阅,每月月末总检,作为评分奖励的内容之一。
③平时按照老师要求,准备工具、材料,期末奖励进步奖。
三、课堂小结
师:同学们,通过对本学期《课程纲要》的学习,你是否对本学期的学习充满信心呢?老师相信,每个孩子都能成为学习的小主人。
高中免费教案数学篇18
【一】教学背景分析
1。教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。
2。学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3。教学目标
(1)知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题。
(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识。
(3)情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣。
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4。教学重点与难点
(1)重点:圆的标准方程的求法及其应用。
(2)难点:①会根据不同的已知条件求圆的`标准方程;
②选择恰当的坐标系解决与圆有关的实际问题。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
好学教育:
【二】教法学法分析
1。教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
2。学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境启迪思维深入探究获得新知应用举例巩固提高
反馈训练形成方法小结反思拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图。
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。
(二)深入探究——获得新知
问题二1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2。如果圆心在,半径为时又如何呢?
好学教育:
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。
(三)应用举例——巩固提高
I。直接应用内化新知
问题三1。写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点。
2。写出圆的圆心坐标和半径。
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。
II。灵活应用提升能力
问题四1。求以点为圆心,并且和直线相切的圆的方程。
2。求过点,圆心在直线上且与轴相切的圆的方程。
3。已知圆的方程为,求过圆上一点的切线方程。
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。
III。实际应用回归自然
问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。
好学教育:
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。
(四)反馈训练——形成方法
问题六1。求过原点和点,且圆心在直线上的圆的标准方程。
2。求圆过点的切线方程。
3。求圆过点的切线方程。
接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。
(五)小结反思——拓展引申
1。课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r的圆的标准方程为:
圆心在原点时,半径为r的圆的标准方程为:。
②已知圆的方程是,经过圆上一点的切线的方程是:。
2。分层作业
(A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。
3。激发新疑
问题七1。把圆的标准方程展开后是什么形式?
2。方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计
(一)突出重点抓住关键突破难点
好学教育:
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。
(二)学生主体教师主导探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。
(三)培养思维提升能力激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。
高中免费教案数学篇19
高二数学《椭圆的几何性质1》教学反思
近期,我开设了一节公开课《椭圆的几何性质1》。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。
一、要有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。
二、要能突出重点、化解难点
每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备例2时,就设置了三个小题,从易到难,便于学生理解接受。
三、要善于应用现代化教学手段
在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:
一是能有效地增大每一堂课的课容量;
二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;
三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;
四是有利于对整堂课所学内容进行回顾和小结。
在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如解析几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。
四、根据具体内容,选择恰当的教学方法
每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。这节课是高三的复习课,我采取了让学生自己回忆讲述椭圆的几何性质,教师补充的方法,改变了传统的教师讲,学生听的模式,调动了学生的积极性。在例题的解决过程中,我也尽量让学生多动手,多动脑,激发学生的思维。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的.掌握和运用,都是好的教学方法。
五、关爱学生,及时鼓励
高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
六、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。
其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。
不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
七、渗透教学思想方法,培养综合运用能力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
总之,在新课程背景下的数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。
高中免费教案数学篇20
一、教学背景
《同角三角函数基本关系式》是人教版高中数学必修第四册第一章第二节中的内容。本节课的内容在教材中有着承上启下的作用,是在学习了任意角和弧度,并了解正弦、余弦、正切的基本概念之后进行教学的,同时同角三角函数的基本关系也为之后学习两角和差公式奠定了基础,起着衔接作用。运用同角三角函数关系,能够更好的解决有关三角函数中求同角的其他三角函数值使解题更方便。学生在获得三角函数定义的过程中已经充分认识到了借助单位圆、利用数形结合思想是研究三角函数的重要工具。本节课内容中所体现的数学思想与方法在整个中学数学学习中起重要作用。
高中学生已经具备了初等代数、初等几何的相关知识,以及一定的抽象思维能力和逻辑推理能力。学生已经比较熟练的掌握了三角函数定义的两种推导方法,从方法上看,学生已经对数形结合,猜想证明有所了解。从学习情感方面看,大部分学生愿意主动学习。从能力上看,学生主动学习能力、探究能力较弱。因而通过本节课的学习,学生能较好地培养学生的思维能力、推理能力、探究能力及创新意识。
根据新课标的要求,以及对教材和学情的分析,我确立了如下三维教学目标:
1、知识与技能目标:掌握三种基本关系式之间的联系,熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
2、过程与方法目标:牢固掌握同角三角函数的八个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力,能灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力。
3、情感与态度目标:通过用数学知识解决实际问题,让学生体会数学与自然及人类社会的密切联系,激发学生学习数学的兴趣,增强学生学习数学的信心。
根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的重点为:同角三角函数基本关系式sin2α+cos2α=1;tanα=sinα/cosα的运用。教学难点为:理三角函数值的符号的确定,同角三角函数的基本关系式的变式应用。
二、活动评价
在课堂教学过程中,我将对学生的学习情况进行及时而有效的评价。注重课程中的过程性评价,无论是在学生开始遇到问题、产生疑惑、给出猜想的时候,还是在逐步思考、交流、探索的教学过程中,我都会注重对于学生学习成果的评价。比如,在课堂讨论较难理解的问题时,我将先请一位平时善于解决数学问题的学生来回答,并请其他同学对其进行评价,然后再请大家给出不同的意见,从而形成良性的互动,在学生们的思维碰撞之中,正确、完善的结论将自然形成。从始至终,我都将贯彻以学生为主体、教师为主导的教学思想。
三、课程设计
在新课改理念的指导下,针对本课的教学目标和重难点,我将采用故事法、探究法、自主学习和合作探究等教学法,先从一个情境问题出发,然后引导学生循序渐进地对一组问题进行思考和探究,逐步归纳总结出同角三角函数的基本关系式,并在期间采用学生自评、小组互评、教师评价等多种方式,培养学生积极主动参与学习的兴趣。下面我将详细阐述本节课的教学过程。
1、趣味导入:上课伊始,我会通过多媒体讲述“蝴蝶效应”的故事,引导学生理解事物是普遍联系的观点,如果说南美亚马逊雨林中的一只蝴蝶与北美德克萨斯的龙卷风这两种看来是毫不相干的事物,都会有这样的联系,那么同一个角的三角函数应当也会有着非常密切的关系。通过这样的故事导入,能够激发学生的学习兴趣和探索热情,活跃其思维,为本节课的学习埋下伏笔。
2、温故知新:在这一环节,我将引导学生回顾三种常见三角函数的概念,单位圆中的任意角概念,以及初中学段学习的同角三角函数的两个基本关系式,进而引导学生思考如何证明任意角的三角函数也具备相应的基本关系。在这个过程中,我会请不同层次的学生起来回答,并请其他学生进行补充,引导全体学生进行复习和思考。学生依据以往证明三角函数平方关系的思路,能够较快想到利用单位圆中的勾股定理关系,证明得到sin2α+cos2α=1,同样的,根据任意角的正切函数定义,得到tanα=sinα/cosα。
接下来,我将引导学生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)学生可能会跃跃欲试,先用平方关系式计算余弦值,但却会遇到开方时判别正负号的问题,于是才会根据α是第二象限角这个条件进行判断。这时我将会引导学生学会先判断任意角的区间及其三角函数的符号,再利用公式进行计算的解题思路。这样学生就能够更轻松地探索出例2的解答方法。例2当中,由于根据余弦值的范围,确定α可能在第二或第三象限出现,于是学生就能够想到采用分类思想进行解答。通过学生的自主思考和我的适当引导,可以自然而然地突破本课的难点。
3、归纳总结
经过前面的师生共同参与的探究讨论,就逐步归纳总结出了同角三角函数的基本关系式。在这个过程中,我会根据不同学生的特点,分别请他们发言,并请其他同学进行补充,在师生互动中,共同推导出结论,这种方法既可以有效地突出本课的重点,又自然而然地突破了本课的难点。
4、实践应用
为巩固所学知识,我会从教材中分梯度选取习题,给学生进行课堂练习,并请2-3位同学在黑板上完成,在练习后我会进行及时讲解。
在布置作业时,为了使所有学生都能够根据自身情况巩固所学知识,我将布置一类“必做题”和一类“探究题”,其中“探究题”是提供给那些学有余力的学生在课余时间完成的,帮助其拓展思维,培养兴趣。
5、课程总结
本节课的内容是极富探索性,我通过提问式复习和情境问题导入,学生产生好奇心和探索热情。接着,以学生为主体,我来引导学生根据已学的知识和方法,循序渐进地进行探究,逐步归纳总结出同角三角函数的基本关系式,从而自然地完成本课的教学过程,同时帮助学生体会数形结合的思想方法。
在板书设计方面,我会用简洁、工整的方式给出相关探究问题,同时以多媒体辅助展示平移动画,便于学生进行观察和探究。
四、教学体会
本节课我主要采用的是“引导发现、合作探究”的教学方法,以学生熟知的足球运动为情境引入新课,以问题为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的形成、发展和应用的过程,在和谐、愉悦的氛围中获取知识,掌握方法。整个教学中既突出了学生的主体地位,又发挥了教师的指导作用。在课堂随机提问以及讨论结果的过程中,我采用多层次多角度的评价方式,不仅能促使学生思考问题,掌握学习知识的技巧和方法,还能调动学生积极性,激发课堂气氛。