高中数学电子版教案免费
编写教案的过程也是教师学习和成长的过程,有助于提高教师的专业水平。如何写出优秀的高中数学电子版教案免费?下面给大家分享一些高中数学电子版教案免费,希望对大家有所帮助。
高中数学电子版教案免费篇1
2。2。1等差数列学案
一、预习问题:
1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的,
即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:
①1,2,3,4,5是等差数列;()
②1,1,2,3,4,5是等差数列;()
③数列6,4,2,0是公差为2的等差数列;()
④数列是公差为的等差数列;()
⑤数列是等差数列;()
⑥若,则成等差数列;()
⑦若,则数列成等差数列;()
⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()
⑨等差数列的公差是该数列中任何相邻两项的差。()
6、思考:如何证明一个数列是等差数列。
二、实战操作:
例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?
(3)已知数列的公差则
例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?
例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
高中数学电子版教案免费篇2
教学目标:
1.结合实际问题情景,理解分层抽样的必要性和重要性;
2.学会用分层抽样的方法从总体中抽取样本;
3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.
教学重点:
通过实例理解分层抽样的方法.
教学难点:
分层抽样的步骤.
教学过程:
一、问题情境
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.
由于样本的容量与总体的个体数的比为100∶2500=1∶25,
所以在各年级抽取的个体数依次是,,,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2.三种抽样方法对照表:
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
总体中的个体数较少
系统抽样
将总体均分成几个部分,按事先确定的规则在各部分抽取
在第一部分抽样时采用简单随机抽样
总体中的个体数较多
分层抽样
将总体分成几层,分层进行抽取
各层抽样时采用简单随机抽样或系统
总体由差异明显的几部分组成
3.分层抽样的步骤:
(1)分层:将总体按某种特征分成若干部分.
(2)确定比例:计算各层的个体数与总体的个体数的比.
(3)确定各层应抽取的样本容量.
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.
四、数学运用
1.例题.
例1(1)分层抽样中,在每一层进行抽样可用_________________.
(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;
②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;
③某班元旦聚会,要产生两名“幸运者”.
对这三件事,合适的抽样方法为()
A.分层抽样,分层抽样,简单随机抽样
B.系统抽样,系统抽样,简单随机抽样
C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样
例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:
很喜爱
喜爱
一般
不喜爱
2435
4567
3926
1072
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?
解:抽取人数与总的比是60∶12000=1∶200,
则各层抽取的人数依次是12.175,22.835,19.63,5.36,
取近似值得各层人数分别是12,23,20,5.
然后在各层用简单随机抽样方法抽取.
答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人
数分别为12,23,20,5.
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.
分析:(1)总体容量较小,用抽签法或随机数表法都很方便.
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.
五、要点归纳与方法小结
本节课学习了以下内容:
1.分层抽样的概念与特征;
2.三种抽样方法相互之间的区别与联系.
高中数学电子版教案免费篇3
一、学习目标与自我评估
1 掌握利用单位圆的几何方法作函数 的图象
2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期
3 会用代数方法求 等函数的周期
4 理解周期性的几何意义
二、学习重点与难点
“周期函数的概念”, 周期的求解。
三、学法指导
1、 是周期函数是指对定义域中所有 都有,即 应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
四、学习活动与意义建构
五、重点与难点探究
例1、若钟摆的高度 与时间 之间的函数关系如图所示
(1)求该函数的周期;
(2)求 时钟摆的高度。
例2、求下列函数的周期。
(1) (2)
总结:(1)函数 (其中 均为常数,且的周期T= 。
(2)函数 (其中 均为常数,且的周期T= 。
例3、求证: 的周期为 。
例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数,且
总结:函数 (其中 均为常数,且__的周期T= 。
例5、(1)求 的周期。
(2)已知 满足 ,求证: 是周期函数
课后思考:能否利用单位圆作函数 的图象。
六、作业:
七、自主体验与运用
1、函数 的周期为 ( )
A、 B、 C、 D、
2、函数 的最小正周期是 ( )
A、 B、 C、 D、
3、函数 的最小正周期是 ( )
A、 B、 C、 D、
4、函数 的周期是 ( )
A、 B、 C、 D、
5、设 是定义域为R,最小正周期为 的函数,若 ,则 的值等于 ( )
A、1 B、 C、0 D、
6、函数 的最小正周期是 ,则
7、已知函数 的最小正周期不大于2,则正整数
的最小值是
8、求函数 的最小正周期为T,且 ,则正整数的值是
9、已知函数 是周期为6的奇函数,且 则
10、若函数 ,则
11、用周期的定义分析 的周期。
12、已知函数 ,如果使 的周期在 内,求正整数 的值
13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的函数关系如图所示:
(1) 求该函数的周期;
(2) 求 时,该质点离开平衡位置的位移。
14、已知 是定义在R上的函数,且对任意 有成立,
(1) 证明: 是周期函数;
(2) 若 求 的值。
高中数学电子版教案免费篇4
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.
(2)进一步理解曲线的方程和方程的曲线.
(3)初步掌握求曲线方程的方法.
(4)通过本节内容的教学,培养学生分析问题和转化的能力.
教学重点、难点:求曲线的方程.
教学用具:计算机.
教学方法:启发引导法,讨论法.
教学过程:
【引入】
1.提问:什么是曲线的方程和方程的曲线.
学生思考并回答.教师强调.
2.坐标法和解析几何的意义、基本问题.
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程.
(2)通过方程,研究平面曲线的性质.
事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.
【问题】
如何根据已知条件,求出曲线的方程.
【实例分析】
例1:设 、 两点的坐标是 、(3,7),求线段 的垂直平分线 的方程.
首先由学生分析:根据直线方程的知识,运用点斜式即可解决.
解法一:易求线段 的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线 的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).
证明:(1)曲线上的点的坐标都是这个方程的解.
设 是线段 的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点 的坐标 是方程 的解.
(2)以这个方程的解为坐标的点都是曲线上的点.
设点 的坐标 是方程①的任意一解,则
到 、 的距离分别为
所以 ,即点 在直线 上.
综合(1)、(2),①是所求直线的方程.
至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设 是线段 的垂直平分线上任意一点,最后得到式子 ,如果去掉脚标,这不就是所求方程 吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设 是线段 的垂直平分线上任意一点,也就是点 属于集合
由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.
这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.
让我们用这个方法试解如下问题:
例2:点 与两条互相垂直的直线的距离的积是常数 求点 的轨迹方程.
分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.
求解过程略.
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如 表示曲线上任意一点 的坐标;
(2)写出适合条件 的点 的集合
;
(3)用坐标表示条件 ,列出方程 ;
(4)化方程 为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点.
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.
下面再看一个问题:
例3:已知一条曲线在 轴的上方,它上面的每一点到 点的距离减去它到 轴的距离的差都是2,求这条曲线的方程.
【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.
解:设点 是曲线上任意一点, 轴,垂足是 (如图2),那么点 属于集合
由距离公式,点 适合的条件可表示为
①
将①式 移项后再两边平方,得
化简得
由题意,曲线在 轴的上方,所以 ,虽然原点 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为 ,它是关于 轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.
【练习巩固】
题目:在正三角形 内有一动点 ,已知 到三个顶点的距离分别为 、 、 ,且有 ,求点 轨迹方程.
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设 、 的坐标为 、 ,则 的坐标为 , 的坐标为 .
根据条件 ,代入坐标可得
化简得
①
由于题目中要求点 在三角形内,所以 ,在结合①式可进一步求出 、 的范围,最后曲线方程可表示为
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?
【作业】课本第72页练习1,2,3;
高中数学电子版教案免费篇5
学习目标
明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.
学习过程
一、学前准备
复习:
(课本P28A13)填空:
(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;
(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;
(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;
(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;
二、新课导学
探究新知(复习教材P14~P25,找出疑惑之处)
问题1:判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
应用示例:
例1:从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
例2:7位同学站成一排,分别求出符合下列要求的不同排法的种数.
(1)甲站在中间;
(2)甲、乙必须相邻;
(3)甲在乙的左边(但不一定相邻);
(4)甲、乙必须相邻,且丙不能站在排头和排尾;
(5)甲、乙、丙相邻;
(6)甲、乙不相邻;
(7)甲、乙、丙两两不相邻。
反馈练习
1、(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?
2、5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列
3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.
当堂检测
1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()
A.42B.30C.20D.12
2、(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?
课后作业
1、(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?
2、(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?
高中数学电子版教案免费篇6
说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。
下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。
一、背景分析
1、学习任务分析
平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。
本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
2、学生情况分析
学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。
二、教学目标设计
《普通高中数学课程标准(实验)》对本节课的要求有以下三条:
(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。
(2)体会平面向量的数量积与向量投影的关系。
(3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。
综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:
1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;
2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,
并能运用性质和运算律进行相关的运算和判断;
3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、课堂结构设计
本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:
即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。
四、教学媒体设计
和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:
1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。
2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。
平面向量数量积的物理背景及其含义
一、数量积的概念二、数量积的性质四、应用与提高
1、概念:例1:
2、概念强调(1)记法例2:
(2)“规定”三、数量积的运算律例3:
3、几何意义:
4、物理意义:
五、教学过程设计
课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:
活动一:创设问题情景,激发学习兴趣
正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:
问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?
问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
问题3:如图所示,一物体在力F的作用下产生位移S,
(1)力F所做的功W=。
(2)请同学们分析这个公式的特点:
W(功)是量,
F(力)是量,
S(位移)是量,
α是。
问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。
问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。
问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。
活动二:探究数量积的概念
1、概念的抽象
在分析“功”的计算公式的基础上提出问题4
问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?
学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。
2、概念的明晰
已知两个非零向量
与
,它们的夹角为
,我们把数量︱
︱·︱
︱cos
叫做
与
的数量积(或内积),记作:
·
,即:
·
=︱
︱·︱
︱cos
在强调记法和“规定”后,为了让学生进一步认识这一概念,提出问题5
问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:
角
的范围0°≤
<90°
=90°0°<
≤180°
·
的符号
通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。
3、探究数量积的几何意义
这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。
如图,我们把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,记做:OB1=│
│cos
问题6:数量积的几何意义是什么?
这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。
4、研究数量积的物理意义
数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。
问题7:
(1)请同学们用一句话来概括功的数学本质:功是力与位移的数量积。
(2)尝试练习:一物体质量是10千克,分别做以下运动:
①、在水平面上位移为10米;
②、竖直下降10米;
③、竖直向上提升10米;
④、沿倾角为30度的斜面向上运动10米;
分别求重力做的功。
活动三:探究数量积的运算性质
1、性质的发现
教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:
(1)将尝试练习中的①②③的结论推广到一般向量,你能得到哪些结论?
(2)比较︱
·
︱与︱
︱×︱
︱的大小,你有什么结论?
在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。
2、明晰数量积的性质
3、性质的证明
这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。
活动四:探究数量积的运算律
1、运算律的发现
关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9
问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。
学生可能会提出以下猜测:①
·
=
·
②(
·
)
=
(
·
)③(
+
)·
=
·
+
·
猜测①的正确性是显而易见的。
关于猜测②的正确性,我提示学生思考下面的问题:
猜测②的左右两边的结果各是什么?它们一定相等吗?
学生通过讨论不难发现,猜测②是不正确的。
这时教师在肯定猜测③的基础上明晰数量积的运算律:
2、明晰数量积的运算律
3、证明运算律
学生独立证明运算律(2)
我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:
当λ<0时,向量
与λ
,
与λ
的方向的关系如何?此时,向量λ
与
及
与λ
的夹角与向量
与
的夹角相等吗?
师生共同证明运算律(3)
运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。
在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。
活动五:应用与提高
例1、(师生共同完成)已知︱
︱=6,︱
︱=4,
与
的夹角为60°,求
(
+2
)·(
-3
),并思考此运算过程类似于哪种运算?
例2、(学生独立完成)对任意向量
,b是否有以下结论:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(师生共同完成)已知︱
︱=3,︱
︱=4,且
与
不共线,k为何值时,向量
+k
与
-k
互相垂直?并思考:通过本题你有什么收获?
本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的.两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。
为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:
1、下列两个命题正确吗?为什么?
①、若
≠0,则对任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,则
=
.
2、已知△ABC中,
=
,
=
,当
·
<0或
·
=0时,试判断△ABC的形状。
安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,
通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。
活动六:小结提升与作业布置
1、本节课我们学习的主要内容是什么?
2、平面向量数量积的两个基本应用是什么?
3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?
4、类比向量的线性运算,我们还应该怎样研究数量积?
通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下
一节做好铺垫,继续激发学生的求知欲。
布置作业:
1、课本P121习题2.4A组1、2、3。
2、拓展与提高:
已知
与
都是非零向量,且
+3
与7
-5
垂直,
-4
与7
-2
垂直求
与
的夹角。
在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。
六、教学评价设计
评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定
性的评价。
2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
高中数学电子版教案免费篇7
依据如下:
(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。
(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。
(3)从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。
突破难点方法:
(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。从而得知求等比数列前n项和……+的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法——错位相减法,说明这种方法的用途。
(2)值得一提的是公式的证明还有两种方法:
后两种方法可以启发引导学生自行完成。这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。
等比数列前n项和公式及应用是本节课的重点内容。
依据如下:
(1)新大纲中有较高层次的要求。
(2)教学地位重要,是教学中全部学习任务中必须优先完成的任务。
(3)这项知识内容有广泛的实际应用,很多问题都要转化为等比数列的求和上来。
突出重点方法:
(1)明确重点。利用高一学生求知积极性和初步具有的数学思维能力,运用比较法来突出公式的内容(彩色粉笔板书):,强调公式的应用范围:中可知三求二。
(2)运用纠错法对公式中学生容易出错的地方,即公式的条件,以精练的语言给予强调,并指出q=1时,。再有就是有些数列求和的项数易错,例如的项数是n+1而不是n。
(3)创设条件、充分保证。设置低、中、高三个层次的例题,即公式的直接应用、公式的变形应用和实际应用来突出这一重点。对应用题师生要共同分析讨论,从问题中抽象出等比数列,然后用公式求和。
2.实际应用题.
这样设置主要依据:
(1)练习题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。
(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的习题。
(3)应用题比较切合对智力技能进行检测,有利于数学能力的提高。同时,它可以使学生在后半程学习中保持兴趣的持续性和学习的主动性,。
根据高一学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,简称“例—规”法。
案例为浅层次要求,使学生有概括印象。
公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。
应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。
其中,案例是基础,是学生感知教材;公式为关键,是学生理解教材;练习为应用,是学生巩固知识,举一反三。
在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书、棋盘教具和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,加深了学生理解巩固与应用,有利于培养学生思维能力,落实好教学任务。
在提倡教育改革的今天,对学生进行思维技能培养已成了我们非常重要的一项教学任务。研究性学习已在全国范围内展开,等比数列就是一个进行研究性学习的好题材。在我们学校可以按照Intel未来教育计划培训的模式,学完本节课后,教师可以给学生布置一个研究分期付款的课题,让学生利用网络资源,多方查找资料,并通过完成多媒体演示文稿和网页制作来共同解决这一问题。这样不仅培养了学生主动探究问题、解决问题的能力,而且还提高了他们的创新意识和团结协作的精神。
高中数学电子版教案免费篇8
一、教学目标
1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点难点
重点:画出简单几何体、简单组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:
观察、动手实践、讨论、类比。
四、教学过程
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的`投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本P15练习1、2;P20习题1.2[A组]2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本P20习题1.2[A组]1。
高中数学电子版教案免费篇9
【教学目标】
1、知识与技能:
(1)掌握圆的标准方程。
(2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。
(3)会判断点与圆的位置关系。
2、过程与方法:
(1)进一步培养学生用代数方法研究几何问题的能力。
(2)加深对数形结合思想的理解和加强待定系数法的运用。
3、情感、态度与价值观:
(1)培养学生主动探究知识、合作交流的意识。
(2)让学生感受数学,体验数学;从走入数学到走出数学,生活处处有数学,数学就在我身边,体会到数学知识、思想方法和精神来源于生活,还要服务于生活;寓思想教育于教学。让学生体会到数学的美以及数学的价值与魅力。
【学情分析】
对圆的方程有个初步的认识以及在上章学习了直线与方程的基础上,学习圆的方程,学生还是可以接受。在教学过程中,主要采用启发性原则,并且与已经学过的直线方程进行类比,发挥学生的思维能力、想象能力,由易到难,逐步加深。
【重点难点】
重点:圆的标准方程和圆的标准方程特点的明确。
难点:会根据不同的条件写出圆的标准方程。
【教学过程】
第一学时评论(0)教学目标
教学活动活动1【导入】新闻联播片段
请结合数学中圆知识,谈谈你对这句话的理解?
活动2【讲授】问题1.
在直角坐标系中,以A(a,b)为圆心,r为半径的圆上的动点M(x,y)满足怎样的关系式?
活动3【活动】想一想!
圆心在坐标原点,半径长为r的圆的方程是什么?
活动4【导入】试试你的眼力!判断下列方程是否为圆的标准方程:
(x-2)2+y=8;
(x-2)2-y2=8;
(2x-2)2+y2=8;
(x-2)2+y2=0;
(x-2)2+y2=a;
(2x-2)2+(2y-4)2=8。
答案:都不是,第6个可以化为圆的标准方程。
活动5【活动】再试一下!
圆(x1)2+(ay2)2=1a的圆心坐标和半径分别是什么?
答案:圆心坐标为(1,—2),半径是√2
活动6【活动】问题2.
要写出圆的标准方程,只需知道圆的哪些量?
怎样判断一点是否在一个圆上?
学生回答,教师点评.
活动7【活动】例1
写出圆心为A(2,-3),半径长为5的圆的方程,并判断点M1(5,7),M2((√5,1)是否在这个圆上。
学生回答,教师点评后,学生阅读教科书上本题解法.
活动8【活动】探究
你能判断点M2在圆内还是在圆外吗?
学生回答,教师点评。
点与圆心距离比半径大等价于点在圆外。
点与圆心距离比半径小等价于点在圆内。
点与圆心距离等于半径等价于点在圆外等价于点的坐标满足方程。
活动9【讲授】解题收获
1.从确定圆的两个要素即圆心和半径入手,直接写出圆的标准方程——直接法。
2.类似于点与直线方程的关系:点在圆上等价于点坐标满足圆方程活动10【活动】试一试!
例2△ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.
师:△ABC的外接圆的圆心简称什么?
学生回答
师:△ABC的外心是什么的交点?
学生回答
师:求圆的标准方程,只需知道圆心坐标和圆的半径。这三点都在圆上,其坐标一定是满足所求圆的方程。这样就可以设出圆的标准方程。
学生阅读教材例2解法。
师:提示:方程组中
(1)(2)得到什么?
(1)(3)得到什么?
然后,怎样就可以求出圆心坐标和半径。
活动11【讲授】解题收获
先设出圆的标准方程,再根据已知条件建立方程组,从而求出圆心坐标和半径的方法——待定系数法。
活动12【活动】动手折一折
请同学们准备一个锐角三角形纸片,能否用手工的方法找到此三角形外接圆的圆心?
学生回答过程.
把三角形的任意两个顶点重合进行对折,就可以得到边的垂直平分线,垂直平分线的交点即是三角形的外心。
师:把圆的弦对折,折线一定经过圆心。即圆心一定在弦的垂直平分线上。
活动13【活动】Let’stry
例3已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线m:x-y+1=0上,求圆心为C的圆的标准方程。
由学生阅读例3,学生总结解题步骤。
活动14【讲授】解题收获
由圆的几何性质直接求出圆心坐标和半径,然后写出标准方程——几何性质法。
活动15【活动】小结
一个方程
三种方法
一种思想
活动16【讲授】作业布置
作业:教材P124习题A组第2题和第3题.
课下探究:
(1)平面内到一定点的距离等于定长的点轨迹是圆。点的轨迹是圆的方法很多,请试着找出来,并和其他同学交流。
(2)直线方程有五种形式,圆除了标准方程,还有其它形式吗?
活动17【导入】结束语
圆心半径确定圆,
待定系数很普遍;
大家站在同一圆,
彰和谐平等友善;
半径就像无形线,
把大家心聚一点;
垂直平分折中线,
就能折出同心愿;
中国腾飞之梦圆。
活动18【测试】课堂测试
1.圆C:(x2)2+(y+1)2=3的圆心坐标为()
A(2,1)B(2,—1)C(—2,1)D(—2,—1)
2.以原点为圆心,2为半径的圆的标准方程是()
Ax2+y2=2Bx2+y2=4
C(x2)2+(y2)2=8Dx2+y2=√2
3圆心为(1,1)且与直线x+y=4相切的圆的方程是()
A(x1)2+(y1)2=2B(x1)2+(y1)2=4
C(x+1)2+(y+1)2=2D(x+1)2+(y+1)2=4
4圆A:(ax+2)2+y2=a+3,则此圆的半径为______________。
5已知一个圆的圆心在点C(—3,—4),且经过原点。
(1)求该圆的标准方程;
(2)判断点M(—1,0),N(1,—1),P(3,—4)和圆的位置关系。
6.已知△AOB的顶点坐标分别是A(8,0),B(0,6),O(0,0),求△AOB外接圆的方程.
7求过点A(1,—1)B(—1,1)且圆心在直线x+y2=0上的圆方程
参考答案:1B2B3A42或√2
5(1)(x+3)2+(y+4)2=25
(2)M在圆内,N在圆上,P在圆外。
6(x4)2+(y3)2=25。
7(x1)2+(y1)2=4
高中数学电子版教案免费篇10
一、教材分析
1.地位及作用
"余弦定理"是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。
2.教学重、难点
重点:余弦定理的证明过程和定理的简单应用。
难点:利用向量的数量积证余弦定理的思路。
二、教学目标
知识目标:能推导余弦定理及其推论,能运用余弦定理解已知"边,角,边"和"边,边,边"两类三角形。
能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。
情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
三、教学方法
数学课堂上首先要重视知识的发生过程,既能展现知识的`获取,又能暴露解决问题的思维。在本节教学中,我将遵循"提出问题、分析问题、解决问题"的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。
四、教学过程
本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历"现实问题转化为数学问题"的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。
帮助学生从平面几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化方法吗?问题可转化为已知三角形两边长和夹角求第三边的问题,即:在其中已知AC=b,AB=c和A,求a.
学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。将实际问题转化成数学问题,引导学生分析问题。其中已知a=5,b=7,c=8,求B.
学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。
让学生观察推论的特征,讨论该推论有什么用。
高中数学电子版教案免费篇11
直线的方程
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.
(3)掌握直线方程各种形式之间的互化.
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.
教学建议
1.教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.
2.教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.
高中数学电子版教案免费篇12
教学目标:①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1
板书:
解:Ⅰ)当0∵5.1<5.9 ∴loga5.1>loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,∵5.1<5.9 ∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板书:略。
师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。
2 函数的定义域, 值 域及单调性。
例 2 ⑴求函数y=的定义域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。
板书:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
师:接下来我们一起来解这个不等式。
分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,
再根据对数函数的单调性求解。
师:请你写一下这道题的解题过程。
生:<板书>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解为:1
例 3 求下列函数的值域和单调区间。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。
下面请同学们来解⑴。
生:此函数可看作是由y= log0.5u, u= x- x2复合而成。
板书:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函数y=log0.5(x- x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)
注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则函数都不存在,性质就无从谈起。
师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什么区别?
生:⑴的底数是常值,⑵的底数是字母。
师:那么⑵如何来解?
生:只要对a进行分类讨论,做法与⑴类似。
板书:略。
⒊小结
这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。
⒋作业
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)
⑵已知函数y=loga(x2-2x),(a>0,a≠1)
①求它的单调区间;②当0
⑶已知函数y=loga (a>0, b>0, 且 a≠1)
①求它的定义域;②讨论它的奇偶性; ③讨论它的单调性。
⑷已知函数y=loga(ax-1) (a>0,a≠1),
①求它的定义域;②当x为何值时,函数值大于1;③讨论它的单调性。
5.课堂教学设计说明
这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 .比较数的大小,想通过这一部分的练习,培养同学们构造函数的思想和分类讨论、数形结合的思想。二.函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。
高中数学电子版教案免费篇13
【一】教学背景分析
1。教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。
2。学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3。教学目标
(1)知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题。
(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识。
(3)情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣。
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4。教学重点与难点
(1)重点:圆的标准方程的求法及其应用。
(2)难点:①会根据不同的已知条件求圆的`标准方程;
②选择恰当的坐标系解决与圆有关的实际问题。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
好学教育:
【二】教法学法分析
1。教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
2。学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境启迪思维深入探究获得新知应用举例巩固提高
反馈训练形成方法小结反思拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图。
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。
(二)深入探究——获得新知
问题二1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2。如果圆心在,半径为时又如何呢?
好学教育:
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。
(三)应用举例——巩固提高
I。直接应用内化新知
问题三1。写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点。
2。写出圆的圆心坐标和半径。
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。
II。灵活应用提升能力
问题四1。求以点为圆心,并且和直线相切的圆的方程。
2。求过点,圆心在直线上且与轴相切的圆的方程。
3。已知圆的方程为,求过圆上一点的切线方程。
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。
III。实际应用回归自然
问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。
好学教育:
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。
(四)反馈训练——形成方法
问题六1。求过原点和点,且圆心在直线上的圆的标准方程。
2。求圆过点的切线方程。
3。求圆过点的切线方程。
接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。
(五)小结反思——拓展引申
1。课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r的圆的标准方程为:
圆心在原点时,半径为r的圆的标准方程为:。
②已知圆的方程是,经过圆上一点的切线的方程是:。
2。分层作业
(A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。
3。激发新疑
问题七1。把圆的标准方程展开后是什么形式?
2。方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计
(一)突出重点抓住关键突破难点
好学教育:
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。
(二)学生主体教师主导探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。
(三)培养思维提升能力激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。
高中数学电子版教案免费篇14
椭圆的简单几何性质教案
届高三数学椭圆的简单几何性质
2.2椭圆的简单几何性质
教学目标:
(1)通过对椭圆标准方程的讨论,理解并掌握椭圆的几何性质;
(2)能够根据椭圆的标准方程求焦点、顶点坐标、离心率并能根据其性质画图;
(3)培养学生分析问题、解决问题的能力,并为学习其它圆锥曲线作方法上的准备.
教学重点:椭圆的几何性质.通过几何性质求椭圆方程并画图
教学难点:椭圆离心率的概念的理解.
教学方法:讲授法
课型:新授课
教学工具:多媒体设备
一、复习:
1.椭圆的定义,椭圆的焦点坐标,焦距.
2.椭圆的标准方程.
二、讲授新课:
(一)通过提出问题、分析问题、解决问题激发学生的学习兴趣,在掌握新知识的同时培养能力.
[在解析几何里,是利用曲线的方程来研究曲线的几何性质的,我们现在利用焦点在x轴上的椭圆的标准方程来研究其几何性质.]
已知椭圆的标准方程为:
1.范围
[我们要研究椭圆在直角坐标系中的范围,就是研究椭圆在哪个区域里,只要讨论方程中x,y的范围就知道了.]
问题1方程中x、y的取值范围是什么?
由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式
≤1,≤1
即x2≤a2,y2≤b2
所以x≤a,y≤b
即-a≤x≤a,-b≤y≤b
这说明椭圆位于直线x=±a,y=±b所围成的矩形里。
2.对称性
复习关于x轴,y轴,原点对称的点的坐标之间的关系:
点(x,y)关于x轴对称的点的坐标为(x,-y);
点(x,y)关于y轴对称的点的坐标为(-x,y);
点(x,y)关于原点对称的点的坐标为(-x,-y);
问题2在椭圆的标准方程中①以-y代y②以-x代x③同时以-x代x、以-y代y,你有什么发现?
(1)在曲线的方程里,如果以-y代y方程不变,那么当点P(x,y)在曲线上时,它关于x的轴对称点P’(x,-y)也在曲线上,所以曲线关于x轴对称。
(2)如果以-x代x方程方程不变,那么说明曲线的对称性怎样呢?[曲线关于y轴对称。]
(3)如果同时以-x代x、以-y代y,方程不变,这时曲线又关于什么对称呢?[曲线关于原点对称。]
归纳提问:从上面三种情况看出,椭圆具有怎样的对称性?
椭圆关于x轴,y轴和原点都是对称的。
这时,椭圆的对称轴是什么?[坐标轴]
椭圆的对称中心是什么?[原点]
椭圆的对称中心叫做椭圆的`中心。
3.顶点
[研究曲线的上的某些特殊点的位置,可以确定曲线的位置。要确定曲线在坐标系中的位置,常常需要求出曲线与x轴,y轴的交点坐标.]
问题3怎样求曲线与x轴、y轴的交点?
在椭圆的标准方程里,
令x=0,得y=±b。这说明了B1(0,-b),B2(0,b)是椭圆与y轴的两个交点。
令y=0,得x=±a。这说明了A1(-a,0),A2(a,0)是椭圆与x轴的两个交点。
因为x轴,y轴是椭圆的对称轴,所以椭圆和它的对称轴有四个交点,这四个交点叫做椭圆的顶点。
线段A1A2,B1B2分别叫做椭圆的长轴和短轴。
它们的长A1A2=2a,B1B2=2b(a和b分别叫做椭圆的长半轴长和短半轴长)
观察图形,由椭圆的对称性可知,椭圆短轴的端点到两个焦点的距离相等,且等于长半轴长,即B1F1=B1F2=B2F1=B2F2=a
在Rt△OB2F2中,由勾股定理有
OF22=B2F22-OB22,即c2=a2-b2
这就是在前面一节里,我们令a2-c2=b2的几何意义。
4.离心率
定义:椭圆的焦距与长轴长的比e=,叫做椭圆的离心率。
因为a>c>0,所以0<e<1.<p="">
问题4观察图形,说明当离心率e变化时,椭圆形状是怎样随之变化的?
[调用几何画板,演示离心率变化(分越接近1和越接近0两种情况讨论)对椭圆形状的影响]
得出结论:(1)e越接近1时,则c越接近a,从而b越小,因此椭圆越扁;
(2)e越接近0时,则c越接近0,从而b越接近于a,这时椭圆就越接近于圆。
当且仅当a=b时,c=0,这时两个焦点重合于椭圆的中心,图形变成圆。
当e=1时,图形变成了一条线段。[为什么?留给学生课后思考]
5.例题
例1求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.
[根据刚刚学过的椭圆的几何性质知,椭圆长轴长2a,短轴长2b,该方程中的a=?b=?c=?因为题目给出的椭圆方程不是标准方程,所以必须先把它转化为标准方程,再讨论它的几何性质]
解:把已知方程化为标准方程,这里a=5,b=4,所以c==3
因此,椭圆的长轴和短轴长分别是2a=10,2b=8
离心率e==
两个焦点分别是F1(-3,0),F2(3,0),
四个顶点分别是A1(-5,0)A1(5,0)A1(0,-4)F1(0,4).
[提问:怎样用描点法画出椭圆的图形呢?我们可以根据椭圆的对称性,先画出第一象限内的图形。]
将已知方程变形为,根据
在0≤x≤5的范围内算出几个点的坐标(x,y)
x012345
y43.93.73.22.40
先描点画出椭圆的一部分,再利用椭圆的对称性画出整个椭圆(如图)
说明:本题在画图时,利用了椭圆的对称性。利用图形的几何性质,可以简化画图过程,保证图形的准确性。
根据椭圆的几何性质,用下面的方法可以快捷地画出反映椭圆基本形状和大小的草图:
(1)以椭圆的长轴、短轴为邻边画矩形;
(2)由矩形四边的中点确定椭圆的四个顶点;
(3)用平滑的曲线将四个顶点连成一个椭圆。
[画图时要注意它们的对称性及顶点附近的平滑性]
(四)练习
填空:已知椭圆的方程是9x2+25y2=225,
(1)将其化为标准方程是_________________.
(2)a=___,b=___,c=___.
(3)椭圆位于直线________和________所围成的________区域里.
椭圆的长轴、短轴长分别是____和____,离心率e=_____,两个焦点分别是_______、______,四个顶点分别是______、______、______、_______.
例2、求符合下列条件的椭圆的标准方程:
(1)经过点(-3,0)、(0,-2);
(2)长轴的长等于20,离心率等于0.6
例3点与定点的距离和它到直线的距离之比是常数,求点的轨迹.
(教师分析――示范书写)
例4、如图,一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上,由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2。已知AC^F1F2,F1A=2.8cm,F1F2=4.5cm,求截口ABC所在椭圆的方程。
三、课堂练习:
①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?
⑴与⑵与(学生口答,并说明原因)
②求适合下列条件的椭圆的标准方程.
⑴经过点
⑵长轴长是短轴长的倍,且经过点
⑶焦距是,离心率等于
(学生演板,教师点评)
焦点在x轴、y轴上的椭圆的几何性质对比.
四、小结
(1)理解椭圆的简单几何性质,给出方程会求椭圆的焦点、顶点和离心率;
(2)了解离心率变化对椭圆形状的影响;
(3)通过曲线的方程研究曲线的几何性质并画图是解析几何的基本方法.
五、布置作业
课本习题2.1的6、7、8题
课后思考:
1、椭圆上到焦点和中心距离最大和最小的点在什么地方?
2、点M(x,y)与定点F(c,0)的距离和它到定直线l:x=的距离的比是常数(a>c>0),求点M轨迹,并判断曲线的形状。
3、接本学案例3,问题2,若过焦点F2作直线与AB垂直且与该椭圆相交于M、N两点,当△F1MN的面积为70时,求该椭圆的方程。
高中数学电子版教案免费篇15
高二数学《椭圆的几何性质1》教学反思
近期,我开设了一节公开课《椭圆的几何性质1》。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。
一、要有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。
二、要能突出重点、化解难点
每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备例2时,就设置了三个小题,从易到难,便于学生理解接受。
三、要善于应用现代化教学手段
在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:
一是能有效地增大每一堂课的课容量;
二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;
三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;
四是有利于对整堂课所学内容进行回顾和小结。
在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如解析几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。
四、根据具体内容,选择恰当的教学方法
每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。这节课是高三的复习课,我采取了让学生自己回忆讲述椭圆的几何性质,教师补充的方法,改变了传统的教师讲,学生听的模式,调动了学生的积极性。在例题的解决过程中,我也尽量让学生多动手,多动脑,激发学生的思维。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的.掌握和运用,都是好的教学方法。
五、关爱学生,及时鼓励
高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
六、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。
其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。
不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
七、渗透教学思想方法,培养综合运用能力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
总之,在新课程背景下的数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。
高中数学电子版教案免费篇16
近期,我开设了一节公开课《椭圆的几何性质1》。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。
一、要有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。
二、要能突出重点、化解难点
每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备例2时,就设置了三个小题,从易到难,便于学生理解接受。
三、要善于应用现代化教学手段
在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如解析几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。
四、根据具体内容,选择恰当的教学方法
每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。这节课是高三的复习课,我采取了让学生自己回忆讲述椭圆的几何性质,教师补充的方法,改变了传统的教师讲,学生听的模式,调动了学生的积极性。在例题的解决过程中,我也尽量让学生多动手,多动脑,激发学生的思维。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
五、关爱学生,及时鼓励
高中新课程的&39;宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
六、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解
决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
七、渗透教学思想方法,培养综合运用能力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
高中数学电子版教案免费篇17
1.树立新型的数学教学观念,明确数学的实用意义
高中数学是人类对社会认识的重要方面,也是一门极具实用性的基础性学科。教师在进行数学教学的过程中,要将数学知识背后蕴含的文化背景与文化知识传达给学生,让学生从基础的数学知识中掌握真正的数学思维,学会运用数学技巧解决生活中的实际问题,要让学生明确数学所蕴含的社会意义,以更好地培养数学理念,使学生更好地运用数学,对数学产生真正的兴趣。
2.提升教师的教学素质,转变教师角色定位
在新课程标准下,教师在数学教学中的角色由控制者转变为引导者。因此,教师必须要学会提升自身的素质,转变教学观念,通过良好的师风师德引导学生积极投入到学习过程中。学校要定期进行培训,加强学校之间的交流,通过互相学习、合作提升教师的素质,促进教师角色的转变。教师要在教学的过程中重视对学生个性的激发以及学生创新精神的鼓励,教师要引导学生主动发表自身对学习问题的看法,要让学生成为真正的主人,促进学生多元思维的发展。
3.合理运用信息技术,培养学生的科学思维
高中数学教学过程中,信息技术的应用必不可少,但是也不能过分强调信息技术的作用。教师在教学过程中,要充分把握数学知识的特点,要将抽象的数学概念、知识框架等内容通过多媒体技术转化为形象具体的画面以利于学生的理解和吸收,但是对于那些需要进行基础性训练、推理论证的问题,要让学生亲手进行实践分析。教师可以利用科学性的计算器或者技术教育平台,推广计算机技术在数学领域的运用,要充分重视学生的地域性特征,在学生对计算机技术已经形成基本认识的基础上进行新课标内容的讲解和分析,防止出现盲目追求进度,忽视学生基础等问题的发生。
高中数学电子版教案免费篇18
教材第108页例1,练习二十四第1、2题。
二、教材分析:
“渗透集合知识”是人教版《义务教育课程试验教科书数学》三年级下册第九单元《数学广角》第一课时的教学内容。小学生从一开始学习数学,就已经在运用集合的思想方法了。例如,学生在一年级学习数数时,把1个人、2朵花、3枝铅笔等等用一条封闭的曲线圈起来表示,这样表示的数学概念更直观、形象,给学生留下的印象更深刻。又如,我们学习过的分类实际上就是集合理论的基础。本节课教学的例1是借助学生熟悉的题材,渗透集合的思想,并利用直观图的方式求出两个小组的总人数。在教学例1时,我注重了三个方面的问题。(1)集合的理解。(2)有关计算。(3)巩固练习。基于以上的安排,结合新课程标准,我确定了本节课的教学目标:
三、教学目标:
(1)知识与技能:初步体会集合的思想方法,能够借助直观图及利用集合的思想方法解决简单的实际问题。
(2)过程与方法:使学生能借助具体内容,体会集合的思想方法,利用集合的思想方法去解决问题。
(3)情感态度与价值观:培养学生观察思考问题的能力。
四、重难点
重点:初步体会集合的思想方法。
突破方法:借助具体内容,初步体会集合的思想方法。
难点:用集合直观图来表示事物。
突破方法:通过动手操作,利用集合直观图来表示事物。
五、教法学法
集合问题属人教课改版小学数学第六册的智力游戏,所以学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的集合问题有较简单的,一题多法的,还有课后让学生继续研究集合问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;同时由于集合问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作活动中领会集合问题的基本结构,并根据确立的教学目标和学生的认知特点,在教学设计中,我将特别注重以下几个方面:
1、创设情境,适时引导
数学来源于生活,并应用于生活。我通过学生熟悉的队列问题导入新课,使学生置身于熟悉的生活情境中,多种感官被调动起来,主动参与学习过程。
2、设置认知冲突,感知体验集合图
以“参加两个兴趣小组的一共有多少人?”这一问题冲突为线索,让学生想想可能会出现的情况,当学生解答过程中出现分歧时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生充分感知体验到集合图的作用。
六、教学准备:导学卡、数字卡片。
七、教学流程:
1、创设情景(引出目标)
2、自主探究(感知目标)
3、巩固加深(巩固目标)
4、课堂小结(再现目标)
(一)情境引入、小故事引出大学问(理解重复)
我是用了一道同学们儿时的问题,在站队的时候,有一个小朋友从左数是第5个,从右数还是第5个,算一算这个队一共多少个同学?这个情景的设计,是让学生充分理解重复。把枯燥的数学知识贯穿于小学生实际生活当中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)探索新知(体会集合)
1、在教学例1时,我大胆的将例题进行了改写,我没有按照常规的教学方法先出示统计表告诉学生参加语文兴趣小组和数学兴趣小组的学生名单,让他们通过观察统计表得出信息,参加语文小组的有5人,参加数学小组的有7人,然后让学生提出问题并解决问题。而是直接告诉了学生参加两个兴趣小组的人数,然后让他们算一算参加两个小组的一共有多少人?学生列出算式5+7=12(人),此时我不去及时评判,目的在于我要让学生猜想可能会发生的情况,然后等学生掌握了新知识后,自己去发现、自己去解正,为锻炼学生的判断能力有意设局的。
2、接下来引导学生用图示的方法表示两个课外小组的人员组成情况。在这个环节我设计了一个对号入座的活动,请一名男生和一名女生到台前去贴号,再贴号的过程中当问到有什么好办法能一眼看出来两个组的人数时?很自然的就引出了集合圈,让学生理解了集合的意义,导出了课题《集合》。很快学生发现,既参加了语文小组又参加了数学小组的两名学生,安排在中间的位置是最合适的,这样就组成三个部分,如中间部分表示既参加语文兴趣小组又参加数学兴趣小组的同学,另外两边一边是只参加语文兴趣小组的同学,一边是只参加数学兴趣小组的同学。
3、经过学生和教师共同完成集合,再次的确定两个学生既参加了语文小组又参加了数学小组,计算时重复了,进而让学生进行小组合作,讨论交流得出在计算参加语文小组和数学小组总人数时,一定要减去重复的数据2,得出正确的算式5+7—2=12(人),在这个过程中,还要体现算法的多样化,并不是只有这一种列示方法。这一过程,锻炼了学生的观察能力和思维能力以及运用已有知识解答新问题的&39;能力,培养了学生运用数学知识的意识;不但知其然,而且知其所以然。
(三)巩固加深
这是教学中不可缺少的环节,这一环节是学生巩固知识,形成技能,技巧,发展智力的重要过程,还要确保学习任务的圆满完成。因此,练习的巩固我主要设计了两道习题。第一道题让学生把动物的序号填在合适的位置,一边是只会游泳的,一边是只会飞的,还要让学生说出中间部分表示的是什么?第二题是让学生算算文具商店两天一共进了多少种货?这道题中两天进的货是以图画的形式出现的,这就要求学生在完成的过程中一定要认真观察,养成细心的好习惯。
(四)总结
让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。只要学生在平时多观察,就会发现在日常生活中,有很多事物具有双重性,或者在数量上是重复的。我们可以运用画集合圈的方法来分析类别,再计算它们的数量;但是在计算总数时必须减去重复的数量;还可以将左中右圈里的数量相加。
高中数学电子版教案免费篇19
分享目标:
1、通过与学生交流《课程纲要》,使学生了解本学期的课程内容、课程目标及课程评价。
2、通过了解教师对学生的评价方法,激发学生自主学习的主动性。
分享重点:
了解本学期的学习内容和评价方法。
分享难点:
通过分享《课程纲要》明确学习目标。
分享时间:一课时
分享准备:《三年级综实课程纲要》PPT
分享过程:
一、谈话导入
1、师:同学们,新年新气象,新的学期又是新的开始。本学期的第二节综实课,老师要带领大家认识一个新朋友,它就像向导一样,能够指引大家在本学期的学习中找准学习目标,理清学习内容、了解学习安排,真正成为学习的小主人,它就是课程纲要。(板书课题)
二、内容新授
1、师:怎样才能做学习的小主人呢?首先我们要了解本学期的学习内容。我们本学期将会学习那些内容呢?《课程纲要》来一一为我们介绍。
2、师:本学期我们只进行一个综合实践活动课的主题,它就是有趣的姓氏。
3、师:主题确定了,那么课下就需要你们想想,围绕这些主题可以引出什么呢?(生说)
4、师:对,是子课题。说明大家上学期上课大家认真听讲了。除了想一想可以确定哪些子课题,还要想想你准备怎样做,使用哪些方法等等。
5、师:接下来我来说说我们这学期综实课分组的问题。这学期分组,以主题确定后,你们自己找搭档,找助手,一起同心协力更好的完成各个主题活动。
6、师:本学期的课程内容大家都了解了,那本学期的评奖方式是什么呢?
①每节课课余1-3分钟,根据本节举手回答问题的次数,以及课堂表现,来老师这里为个人加分,各组组长也负责记录并统计出每星期、每个月加分最多的组员上报老师,老师会授予这些同学优秀之星的称号,获得优秀之星称号的同学会得到学习星以及才艺星的奖励。
②课前准备综实成长记录袋以及A4白纸15张,作为平时作业及记录板书内容的笔记本。老师批阅,每月月末总检,作为评分奖励的内容之一。
③平时按照老师要求,准备工具、材料,期末奖励进步奖。
三、课堂小结
师:同学们,通过对本学期《课程纲要》的学习,你是否对本学期的学习充满信心呢?老师相信,每个孩子都能成为学习的小主人。
高中数学电子版教案免费篇20
2。2。1等差数列学案
一、预习问题:
1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的,
即或。
3、等差数列的.单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:
①1,2,3,4,5是等差数列;()
②1,1,2,3,4,5是等差数列;()
③数列6,4,2,0是公差为2的等差数列;()
④数列是公差为的等差数列;()
⑤数列是等差数列;()
⑥若,则成等差数列;()
⑦若,则数列成等差数列;()
⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()
⑨等差数列的公差是该数列中任何相邻两项的差。()
6、思考:如何证明一个数列是等差数列。
二、实战操作:
例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?
(3)已知数列的公差则
例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?
例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。