教案吧 > 学科教案 > 数学教案 >

初中数学教案范例怎么写

时间: 新华 数学教案

编写教案可以帮助教师更好地掌握教学内容和方法,增强教学自信心。什么才算好的初中数学教案范例怎么写?接下来给大家分享一些初中数学教案范例怎么写,供大家参考。

初中数学教案范例怎么写篇1

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?

(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。对于3,教师可提出问题,

(1)当AB=xm时,BC长等于多少m?

(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的&39;函数关系式.

二、提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

[利润=(售价-进价)×销售量]

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

售约多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

[x的值不能任意取,其范围是0≤x≤2]

5.若设该商品每天的利润为y元,求y与x的函数关系式。

[y=(10-8-x)(100+100x)(0≤x≤2)]

将函数关系式y=x(20-2x)(0<x<10=化为:

y=-2x2+20x(0<x<10)……………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)…………(2)

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?

(1)y=5x+1(2)y=4x2-1

(3)y=2x3-3x2(4)y=5x4-3x+1

2.P3练习第1,2题。

五、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

六、作业:略

初中数学教案范例怎么写篇2

【说教学目标】

1、使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2、继续培养学生画图、实验,发现新知识的能力。

【说重点难点】

1、难点:让学生掌握边边边公理的内容和运用公理的自觉性;

2、重点:灵活运用SSS判定两个三角形是否全等。

【说教学过程】

一、创设问题情境,引入新课

请问同学,老师在黑板上画得两个三角形,△ABC与△全等吗?你是如何判定的。

(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等。)

上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全

等。满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究。

二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段,分别为,你能画出这个三角形吗?

先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。

步骤:

(1)画一线段AB使它的`长度等于c(4.8cm)。

(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.

(3)连结AC、BC.

△ABC即为所求

把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的结论

请你结合画图、对比,说说你发现了什么?

同学们各抒己见,教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是全等的。这样我们就得到判定三角形全等的一种简便的方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等。简写为边边边,或简记为(S.S.S.)。

2、问题2:你能用相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)

3、问题3、你用这个SSS三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

4、范例:

例1如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA.解:已知AD=BC,AB=DC,又因为AC是公共边,由(S.S.S.)全等判定法,可知△ABC≌△CDA

5、练习:

6、试一试:已知一个三角形的三个内角分别为、、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?

(所画出的三角形都是相似的,但大小不一定相同)。

三个对应角相等的两个三角形不一定全等。

三、加强练习,巩固知识

1、如图,,,△ABC≌△DCB全等吗?为什么?

2、如图,AD是△ABC的中线,。与相等吗?请说明理由。

四、小结

本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等。三个角对应相等的两个三角不一定会全等。

初中数学教案范例怎么写篇3

教学目标

1.通过对四年多来数学学习的回顾,唤醒心中对数学的了解;通过多样化的活动交流,唤起学生学习数学的积极性,增强学好数学的自信心。

2.加强习惯养成教育,进一步明确课堂常规和作业要求,培养学生良好的数学学习习惯。

3.通过畅谈新学期新打算,让每个孩子都确定自身本学期的学习目标,从而引领学生发展。

教学重点

难点

重点:激发学生学习的积极性,让学生养成良好的学习习惯。

难点:在具体操练中,明确小组合作学习以及预习、上课及作业的习惯。

教学资源

学情分析:学生已经学习了四年半的数学,积累了一定的数学学习方法,也有自己的困惑。

课前准备

PPT

学程设计

导航策略

调整反思

【活动一:兴趣导入】(5分钟左右)

1.猜谜:世界上最快而又最慢,最长而又最短,最平凡而又最珍贵,最易被忽视而又最令人后悔的是什么?

2.数学趣题:

李玲上学需要5分钟,他早上7时30分起床,起床后要做以下事情:

上厕所:5分钟

电暖锅煮早饭:15分钟

刷牙洗脸:5分钟

梳头:5分钟

吃早饭:10分钟

他想在8:00到学校,他该怎样安排?

【活动二:畅所欲言】(10分钟左右)

1.讨论:1.数学是什么?

2.怎样学数学?

2.全班交流。

【活动三:新学期的展望】(10分钟左右)

1.展望:在小组里说一说新学期努力的目标,你准备怎样去实现它?

2.选出几位学生代表说说新学期的展望。

【活动四:新学期的新要求】(5分钟)

提出具体的新学期要求。

(1)实实在在做好预习作业。(尤其是对数学头疼的)

(2)踏踏实实上好每堂课。(倾听、思考比发言更重要,不要让大脑休息)

(3)认认真真做好每一次作业。(作业不在于多,质量最重要)

(4)当天的学习内容当天消化,如有不懂,不耻下问。

【活动五:新学期的免做单获得制度】(6分钟)

1.学生关于原有的奖惩制度提出自己的想法。

2.阅读新制度:每周免做作业评选,了解规则,提出疑问。

【活动六:送你一句话】(1分钟)

高斯:给我快乐的,不是已懂得的知识,而是不断地学习;不是已有的东西,而是不断地获取;不是已达到的高度,而是继续不断地攀登。

【家作】给老师的一封信

内容(1)我眼中的数学(数学老师)

(2)我在数学上的优缺点

(3)新学期的努力方向

(4)对老师的建议、要求

→谜底:时间。

→合理安排时间。

点拨:几分钟的时间并不长,但如果能利用它并能成为一种习惯,这些短短的时间就有可能成就一个人。”

→导入:和数学已经打了四年多交道,同学们眼中的数学是什么?我们怎样学数学?相信大家一定有很多自己的看法。

用一些关键词记录学生的话语。

→提示:学习需要自信,做事需要信念。

→好习惯是取得好成绩的关键。

→要想学好数学,除了保持我们已经养成的良好习惯,还需要我们付出更多的努力。

→为了鼓励同学们在数学上的努力、进步,上学期我们设立了一系列奖惩制度。本学期,你对这些制度有什么建议?或者有什么新的提议?

初中数学教案范例怎么写篇4

一、教学目标

1、了解推理、证明的格式,理解判定定理的证法、

2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证、

3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力、

4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的&39;教育、

二、学法引导

1、教师教法:启发式引导发现法、

2、学生学法:积极参与、主动发现、发展思维、

三、重点、难点及解决办法

(一)重点

判定定理的推导和例题的解答、

(二)难点

使用符号语言进行推理、

(三)解决办法

1、通过教师正确引导,学生积极思维,发现定理,解决重点、

2、通过教师指导,学生自行完成推理过程,解决难点及疑点、

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片、

六、师生互动活动设计

1、通过设计练习,复习基础,创造情境,引入新课、

2、通过教师指导,学生探索新知,练习巩固,完成新授、

3、通过学生自己总结完成小结、

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力、

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知、

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)、

学生活动:学生口答第1、2题、

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行、

教师将第3题图形画在黑板上、

学生活动:学生口答理由,同角的补角相等、

师:要求学生写出符号推理过程,并板书、

教法说明:本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行、第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点、

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角、

师:它们有什么关系、

学生活动:互补、

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题、

初中数学教案范例怎么写篇5

绝对值

一、教学目标 :

1.知识目标:

①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点 :绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法

启发引导式、讨论式和谈话法

四、教学过程 

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1.引入

结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义

①几何意义

一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作a。

举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以0=0。

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

用字母a表示数,则绝对值的代数意义可以表示为: 

指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3.例题精讲

例1.求8,-8,,-的绝对值。

按教材方法讲解。

例2.计算:2.5+-3--3。

解:2.5+-3--3=2.5+3-3=6-3=3

例3.已知一个数的绝对值等于2,求这个数。

解:∵2=2,-2=2

∴这个数是2或-2。

五、巩固练习

练习一:教材P64 1、2,P66习题2.4 A组 1、2。

练习二:

1.绝对值小于4的整数是____。

2.绝对值最小的数是____。

3.已知2x-1+y-2=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

七、布置作业 

教材P66 习题2.4 A组 3、4、5。

绝对值

一、教学目标 :

1.知识目标:

①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点 :绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法

启发引导式、讨论式和谈话法

四、教学过程 

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1.引入

结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义

①几何意义

一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作a。

举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以0=0。

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

用字母a表示数,则绝对值的代数意义可以表示为: 

指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3.例题精讲

例1.求8,-8,,-的绝对值。

按教材方法讲解。

例2.计算:2.5+-3--3。

解:2.5+-3--3=2.5+3-3=6-3=3

例3.已知一个数的绝对值等于2,求这个数。

解:∵2=2,-2=2

∴这个数是2或-2。

五、巩固练习

练习一:教材P64 1、2,P66习题2.4 A组 1、2。

练习二:

1.绝对值小于4的整数是____。

2.绝对值最小的数是____。

3.已知2x-1+y-2=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

七、布置作业 

教材P66 习题2.4 A组 3、4、5。

初中数学教案范例怎么写篇6

一、教材分析

1、教材的地位和作用

本节教材是初中数学__年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了__的基础上,对__的进一步深入和拓展;另一方面,又为学习-__等

知识奠定了基础,是进一步研究__的工具性内容。因此本节课在教材中具有承上启下的作用。

2、学情分析

学生在此之前已经学习了__,对__已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于__的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为、

难点确定为、

二、教学目标分析

根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标

1.知识与技能目标

2.过程与方法目标

3.情感态度与价值目标

三、教学方法分析

本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

四、教学过程分析

为有序、有效地进行教学,本节课我主要安排以下教学环节、

(1)复习就知,温故知新

设计意图、建构主义主张教学应从学生已有的知识体系出发,__是本节课深入研究__的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

设计意图、以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知

设计意图、现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解

设计意图、数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第__环节。

(5)强化训练,巩固双基

设计意图、几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(6)小结归纳,拓展深化

小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.

(7)当堂检测对比反馈

(8)布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上是我对本节课的见解,不足之处敬请各位评委谅解!

初中数学教案范例怎么写篇7

一、教材内容

人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

二、教学目标

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

三、教学重、难点

认识负数的意义。

四、教学过程

(一)谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的&39;自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

(二)教学新知

1.表示相反意义的量

(1)引入实例

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

①六年级上学期转来6人,本学期转走6人。

②张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③与标准体重比,小明重了2.5千克,小华轻了1.8千克。

④一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

……

(3)展示交流

……

2.认识正、负数

(1)引入正、负数

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

①同桌交流。

②全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:……)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”

(1)看一看、读一读

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

哈尔滨:-18℃~-5℃

北京:-6℃~6℃

深圳:15℃~25℃

温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说

我们来看首都北京当天的温度,“-5℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

你能很快找到12℃、-3℃吗?

(3)提升认识

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

5.练一练

读一读,填一填。

6.出示课题

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

初中数学教案范例怎么写篇8

1.初中数学教案模板

1.课题

填写课题名称(初中代数类课题)

2.教学目标

(1)知识与技能:

通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过......(讨论、发现、探究)的过程,提高......(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4.教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5.教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的解法和步骤)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书

2.初中数学教案格式

课程编码:______________________________________

总学时/周学时:/

开课时间:年月日第周至第周

授课年级、专业、班级:___________________________

使用教材:_______________________________________

授课教师:_______________________________________

1.章节名称

2.教学目的

3.课时安排

4.教学重点、难点

5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)

6.复习巩固与作业要求

7.教学环境及教具准备

8.教学参考资料

9.教学后记

3.初中数学教案范文

教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得1.2x=6

因为1.2×5=6,所以小红能买到5本笔记本。

二、新授

问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得44x+64=328

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业

教科书第3页,习题6.1第1、3题。

初中数学教案范例怎么写篇9

教学目标:

(一)知识与技能

理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。

(二)过程与方法

1.在经历用字母表示数量关系的过程中,发展符号感;

2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力

(三)情感态度价值观

1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心.

2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。

教学重、难点:

重点:单项式及单项式系数、次数的概念。

难点:单项式次数的概念;单项式的书写格式及注意点。

教学方法:

引导——探究式

在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念.

教具准备:

多媒体课件、小黑板.

教学过程:

一、创设情境,引入新课

出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。

情境问题:

青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发

爱国主义情感,得到一次情感教育。

解:根据路程、速度、时间之间的关系:路程=速度×时间

2小时行驶的路程是:100×2=200(千米)

3小时行驶的路程是:100×3=300(千米)

t小时行驶的路程是:100×t=100t(千米)

注意:在含有字母的式子中若出现乘号,通常将乘号写作“·”或省略不写。

如:100×a可以写成100a或100a。

代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。

代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。

设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系

让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。

二、合作交流,探究新知

探究

思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。

1、边长为a的正方体的表面积是__,体积是__.

2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。

3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。

4、数n的相反数是__。

解:(1)6a2、a3(2)2.5x(3)vt(4)-n

思考:它们有什么共同的特点?

6a2=6·a·aa3=a·a·a2.5x=2.5·xvt=v·t-n=-1·n

单项式:数与字母、字母与字母的乘积。

注意:单独的一个数或字母也是单项式。

设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

火眼金睛

下列各代数式中哪些是单项式哪些不是?

(1)a(2)0(3)a2

(4)6a(5)

(6)

(7)3a+2b(8)xy2

设计意图:加强学生对不同形式的单项式的直观认识。

解剖单项式

系数:单项式中的数字因数。

如:-3x的系数是,-ab的系数是,的系数是。

次数:一个单项式中的所有字母的指数的和。

如:-3x的次数是,ab的次数是。

小试身手

单项式2a2-1.2hxy2-t2-32x2y

系数

次数

设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。

单项式的注意点:

(1)数与字母相乘时,数应写在字母的___,且乘号可_________;

(2)带分数作为系数时,应改写成_______的形式;

(3)式子中若出现相除时,应把除号写成____的形式;

(4)把“1”或“-1”作为项的系数时,“1”可以__不写。

行家看门道

①1x②-1x

③a×3④a÷2

⑤⑥m的系数为1,次数为0

⑦的系数为2,次数为2

设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。

三、例题讲解,巩固新知

例1:用单项式填空,并指出它们的系数和次数:

(1)每包书有12册,n包书有册;

(2)底边长为a,高为h的三角形的面积;

(3)一个长方体的长和宽都是a,高是h,它的体积是;

(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价

为元;

(5)一个长方形的长0.9,宽是a,这个长方形的面积是.

解:(1)12n,它的系数是12,次数是1

(2),它的系数是,次数是2;

(3)a2h,它的系数是1,次数是3;

(4)0.9a,它的系数是0.9,次数是1;

(5)0.9a,它的系数是0.9,次数是1。

设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。

试一试

你还能赋予0.9a一个含义吗?

设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。

大胆尝试

写出一个单项式,使它的系数是2,次数是3.

设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。

四、拓展提高

尝试应用

用单项式填空,并指出它们的系数和次数:

(1)全校学生总数是x,其中女生占总数48%,则女生人数是,男生人数是;

(2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是;

(3)产量由m千克增长10%,就达到千克;

设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。

能力提升

1、已知-xay是关于x、y的三次单项式,那么a=,b=.

2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a=,b=.

设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。

五、小结:

本节课你感受到了吗?

生活中处处有数学

本节课我们学了什么?你能说说你的收获吗?

1、单项式的概念:数与字母、字母与字母的乘积。

2、单项式的系数、次数的概念。

系数:单项中的数字因数;

次数:单项中所有字母的指数和。

3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。

设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。

结束寄语

悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!

设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。

六、板书设计

2.1整式

单项式概念探究例1多

单项式的系数概念观察交流尝试应用媒

单项式的次数概念能力提升体

七、作业:

1.作业本(必做)。

2.请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。

设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。

八、设计理念:

本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。

初中数学教案范例怎么写篇10

教学目标

1、经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2、通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3、通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4、通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

重点

1、通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2、通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

难点:利用数形结合的方法验证公式

教学方法:动手操作,合作探究课型新授课教具投影仪

情景设置:

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

小结:

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

初中数学教案范例怎么写篇11

教学目标

理解平行四边形的定义,能根据定义探究平行四边形的性质.

教学思考

1.通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力.

2.能够根据平行四边形的性质进行简单的推理和计算.

解决问题

通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识.

情感态度

在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.

重点

平行四边形的性质的探究和平行四边形的性质的应用.

难点

平行四边形的性质的应用.

教学流程安排

活动流程图

活动内容和目的

活动1欣赏图片,了解生活中的特殊四边形

活动2剪三角形纸片,拼凸四边形

活动3理解平行四边形的概念

活动4探究平行四边形边、角的性质

活动5平行四边形性质的应用

活动6评价反思、布置作业

熟悉生活中特殊的四边形,导出课题.

通过用三角形拼四边形的过程,渗透转化思想,激发探索精神.

掌握平行四边形的定义及表示方法.

探究平行四边形的性质.

运用平行四边形的性质.

学生交流,内化知识,课后巩固知识.

教学过程设计

问题与情景

师生行为

设计意图

[活动1]

下面的图片中,有你熟悉的哪些图形?

(出示图片)

演示图片,学生欣赏.

教师介绍四边形与我们生活密切联系,学生可再补充列举.

从实例图片中,抽象出的特殊四边形,培养学生的抽象思维.通过举例,让学生感受到数学与我们的生活紧密联系.

问题与情景

师生行为

设计意图

[活动2]

拼一拼

将一张纸对折,剪下两张叠放的三角形纸片.将这两个三角形相等的一组边重合,你会得到怎样的图形.

(1)你拼出了怎样的凸四边形?与同伴交流.

(2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由.

学生经过实验操作,开展独立思考与合作学习.

教师深入学生之中,观察学生频出的方法与过程,接受学生质疑并指导个别学生探究.

教师待学生充分探究后,请学生展示拼图的方法和不同的图形.并引导学生分析(2)中的四边形的边的位置特征,从而引出本节课研究的内容

初中数学教案范例怎么写篇12

教学目标

1、知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。

2、过程与方法

经历探索一次函数的应用问题,发展抽象思维。

3、情感、态度与价值观

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。

重、难点与关键

1、重点:一次函数的应用。

2、难点:一次函数的应用。

3、关键:从数形结合分析思路入手,提升应用思维。

教学方法

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的.应用。

教学过程

一、范例点击,应用所学

【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。

y=

【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

二、随堂练习,巩固深化

课本P119练习。

三、课堂总结,发展潜能

由学生自我评价本节课的表现。

四、布置作业,专题突破

课本P120习题14.2第9,10,11题。

板书设计

1、一次函数的应用例:

初中数学教案范例怎么写篇13

教学目标:

教学目标:

1、会画已知点关于已知直线的对称点,会画已知线段的对称线段,会画已知三角形的对称三角形。

2、经历探索轴对称的性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力。

三、教学重点与难点

教学重点:作已知图形的轴对称图形的一般步骤。

教学难点:怎样确定已知图形的关键点并根据这些点作出对称图形。

学习过程:

一.学前准备

1、完成课本第10页的操作,即图1—6,并将你完成的操作带到课堂上来。

2、思考:

下列图形中,哪些是轴对称图形,请把它们找出来,画出它们所有的对称轴。

3、请你在下图的方格内,设计一个轴对称图形。

二.自学、合作探究

(一)自学、相信自己(书本)

实践、操作:

1、思考:如图1-9,3点都在方格纸的格点位置上。请你再找一个格点,使图中的4点组成一个轴对称图形。

2、如果直线外有一点,那么怎样画出点关于直线的.对称点?

问题一:画点关于直线的对称点的方法,并说明道理。

问题二:怎样画已知线段的对称线段?怎样画已知三角形的对称三角形?说说你的想法和依据。

(二)思索、交流(书本例题练习难)

3、分别画出图1-10(1)、(2)、(3)中线段关于直线对称的线段。

4、分别在图图1-10(1)、(2)、(3)的直线上取一点,并画关于直线对称的.

(三)应用、探究(难度大综合纵横思考)

例题讲解

例题1、如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短?

例题1

例题2

三.学习体会(空)

四.自我测试(书本练习)

1.练习1下列数字图象都是由镜中看到的,请分别写出它们所对应的实际数字,并说明数字图象与镜面的位置关系。

1、如图1,线段AB与A’B’关于直线l对称,

⑴连接AA’交直线l于点O,再连接OB、OB’。

⑵把纸沿直线l对折,重合的线段有:。

⑶因为△OAB和△OA’B’关于直线l,所以△OAB-△OA’B’,直线l垂直平分线段,∠ABO=∠,∠AO’B=∠。

图1图2图3

2、如图2,三角形Ⅰ的两个顶点分别在直线l1和l2,且l1⊥l2,

⑴画三角形Ⅱ与三角形Ⅰ关于l1对称;

⑵画三角形Ⅲ与三角形Ⅱ关于l2对称;

⑶画三角形Ⅳ与三角形Ⅲ关于l1对称;

⑷所画的三角形Ⅳ与三角形Ⅰ成轴对称吗?

3、如图3,四边形ABCD是长方形弹子球台面,有黑白两球分别位于E、F两点位置上,试问怎样撞击黑球E,才能使黑球先碰撞台边AB反弹后再击中白球F?

初中数学教案范例怎么写篇14

教学目标

知识与技能:

了解勾股定理的一些证明方法,会简单应用勾股定理解决问题

过程与方法:

在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

情感态度价值观:

通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

教学过程

1、创设情境

问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?

师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

2、探究勾股定理

观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界

问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?

师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论

追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论

问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

初中数学教案范例怎么写篇15

三维目标

一、知识与技能

1.能灵活列反比例函数表达式解决一些实际问题.

2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.

二、过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

三、情感态度与价值观

1.积极参与交流,并积极发表意见.

2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

教学重点

掌握从物理问题中建构反比例函数模型.

教学难点

从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

教具准备

多媒体课件.

教学过程

一、创设问题情境,引入新课

活动1

问属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.

在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.

(1)求I与R之间的函数关系式;

(2)当电流I=0.5时,求电阻R的值.

设计意图:

运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.

师生行为:

可由学生独立思考,领会反比例函数在物理学中的综合应用.

教师应给“学困生”一点物理学知识的引导.

师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.

生:(1)解:设I=kR∵R=5,I=2,于是

2=k5,所以k=10,∴I=10R.

(2)当I=0.5时,R=10I=100.5=20(欧姆).

师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢?

生:这是古希腊科学家阿基米德的名言.

师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

阻力×阻力臂=动力×动力臂(如下图)

下面我们就来看一例子.

二、讲授新课

活动2

小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.

(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

设计意图:

物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.

师生行为:

先由学生根据“杠杆定律”解决上述问题.

教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.

教师在此活动中应重点关注:

①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

②学生能否面对困难,认真思考,寻找解题的途径;

③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.

师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.

生:解:(1)根据“杠杆定律”有

Fl=1200×0.5.得F=600l

当l=1.5时,F=6001.5=400.

因此,撬动石头至少需要400牛顿的力.

(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有

Fl=600,

l=600F.

当F=400×12=200时,

l=600200=3.

3-1.5=1.5(米)

因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.

生:也可用不等式来解,如下:

Fl=600,F=600l.

而F≤400×12=200时.

600l≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.

生:还可由函数图象,利用反比例函数的性质求出.

师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:

用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl(k为常数且k>0)

根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.

师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.

活动3

问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?

设计意图:

在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.

师生行为:

由学生先独立思考,然后小组内讨论完成.

教师应给予“学困生”以一定的帮助.

生:解:(1)∵y与x-0.4成反比例,

∴设y=kx-0.4(k≠0).

把x=0.65,y=0.8代入y=kx-0.4,得

k0.65-0.4=0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y与x之间的函数关系为y=15x-2

(2)根据题意,本年度电力部门的纯收入为

(0.6-0.3)(1+y)=0.3(1+15x-2)=0.3(1+10.6×5-2)=0.3×2=0.6(亿元)

答:本年度的纯收人为0.6亿元,

师生共析:

(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;

(2)纯收入=总收入-总成本.

三、巩固提高

活动4

一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1kg/m3时二氧化碳气体的体积V的值.

设计意图:

进一步体现物理和反比例函数的关系.

师生行为

由学生独立完成,教师讲评.

师:若要求出ρ=1.1kg/m3时,V的值,首先V和ρ的函数关系.

生:V和ρ的反比例函数关系为:V=990ρ.

生:当ρ=1.1kg/m3根据V=990ρ,得

V=990ρ=9901.1=900(m3).

所以当密度ρ=1.1kg/m3时二氧化碳气体的气体为900m3.

四、课时小结

活动5

你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得.

设计意图:

这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.

师生行为:

学生可分小组活动,在小组内交流收获,然后由小组代表在全班交流.

教师组织学生小结.

反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.

板书设计

17.2实际问题与反比例函数(三)

1.

2.用反比例函数的知识解释:在我们使用撬棍时,为什么动力臂越长越省力?

设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,

Fl=k即F=kl(k>0且k为常数).

由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.

活动与探究

学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.

(1)绿化带面积是多少?你能写出这一函数表达式吗?

(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?

x(m)10203040

y(m)

过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.

结果:(1)绿化带面积为10×40=400(m2)

设该反比例函数的表达式为y=kx,

∵图象经过点A(40,10)把x=40,y=10代入,得10=k40,解得,k=400.

∴函数表达式为y=400x.

(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。

38920