数学教案反思简短怎么写
编写教案有助于吸引学生的注意力,激发他们的学习兴趣,提升教学效果。下面小编给大家提供一些数学教案反思简短怎么写参考,希望对大家写数学教案反思简短怎么写有帮助。
数学教案反思简短怎么写篇1
教学目标
1、在具体场景里体会左右的位置关系,理解其相对性,能比较准确地确定物体所在的左右位置。
2、能按左右的方位要求处理日常生活里的简单问题,能运用左右等词描述物体所在位置,发展初步的空间观念。
3、在熟悉的情境中感受数学与日常生活的密切联系,学习发现和解决数学问题,从中获得成功的体验,树立起学习数学的信心。
教学重点认识左右的位置关系,理解其相对性。
教学过程
一、创设情境,初步认识左右的位置关系
1.用左右手引入,感知自身的左与右。
(1)提问:大家说说,我们常用右手做哪些事?我们常用左手做哪些事?
(2)谈话:左手、右手是一对好朋友,配合起来力量可大了!小朋友再看一看自己的身体,还有像这样的好朋友吗?谁来说说?(要求学生摸着说)[评析:通过自己身体上的实例,使学生获得大量感性材料,为正确确定物体间左右位置关系奠定础。]
(3)小游戏:听口令做动作。(由慢到快)
伸出你的左手,伸出你的右手;
拍拍你的左肩,拍拍你的右肩;
拍拍你的左腿,拍拍你的右腿;
左手摸左耳,右手摸右耳;
左手抓右耳,右手抓左耳。
[评析:在教师的引导下,让学生充分体验左和右。通过游戏的形式,让学生在玩中学、在乐中悟,体会到生活中处处有数学。]
2.结合具体场景,进一步理解左右的位置关系。
(1)出示挂图:小朋友在教室里上课的场景。谈话:小朋友,人的手、脚、眼睛、耳朵都有左之分,那么我们坐的位置有没有左右之分呢?我们一起来看,画面中坐在前面的小明(男)和小红(女)是同桌,你能说说他们的位置关系吗?
同桌讨论,尝试说说小明与小红的位置关系。交流反馈,引导学生正确说出小明坐在小红的左边,小红坐在小明的右边。
提问:有的同学说小明坐在左边,这种说法对吗?为什么?
讨论使学生明确:在描述两个人的位置关系时,要说清楚谁在谁的左边或右边。
提问:你还能看图说说哪些物体有左右的位置关系吗?同桌讨论后汇报。
[评析:紧密结合小朋友上课的情景,引导学生讨论交流,让学生在轻松愉快的学习氛围中,理解和掌握左右的位置关系,体会数学与生活的密切联系,逐步发展空间观念。]
(2)联系教室真实场景,强化对左右位置关系的认识。(想想做做第1题)
让每个学生说一说坐在自己左面的小朋友是谁,坐在自己右面的小朋友是谁,再同桌交流,最后指名回答。
选同桌两个小朋友,让其他小朋友说一说谁在谁的左边,谁在谁的右边。
选横排里的三个小朋友,请学生说说中间小朋友B所处的位置。
引导学生讨论:为什么一会儿说B在左边,一会儿说B在右边。
讲述:我们在描述某一物体位置时,一定要说清楚,说完整,它在谁的左边或它在谁的右边,而不能光说它在左边或右边。
[评析:联系实际,在活动中让学生进一步体会某个物体的位置是相对于另一个物体而说的。]
让学生就教室里的某一人或物说一说所处的位置。
[评析:通过说说教室里的某一人或物所处的位置,培养学生观察、描述位置关系的习惯和应用意识,培养学生初步的空间观念。]
二、巩固深化,运用所学知识解决实际问题
1、摆一摆。(想想做做第2题)
(1)同桌合作操作:把数学书摆在课桌的中间,把文具盒摆在数学书的右边,把铅笔摆在文具盒的右边,把学具盒摆在数学书的左边,把橡皮摆在学具盒的左边。
(2)让学生说一说,摆在最左边的是什么,摆在最右边的是什么。从左数,文具盒是第个,从右数,文具盒是第个。数学书的左边有什么,右边有什么。
(3)请同桌合作,自由摆放学具,再互相说给同桌听,指名几人交流。
[评析:通过摆一摆、数一数、说一说,把操作、观察和语言表达紧密结合。自由摆放学具的活动,打破了学生的思维定势,发展了思维,培养了创新意识。]
2.说一说。
(1)想想做做第3题。
谈话:丁丁和拉拉跟着妈妈去超市购物,他们来到了玩具柜台。呵!那么多玩具,挑选什么呢?妈妈规定每人只能买一样,并且不能说出它的名字,只能说出它上、下、左、右的邻居各是谁。
提问:小朋友,如果你是丁丁或拉拉,你会怎么说呢?其他小朋友能根据他的说法,猜出他想买的是什么吗?(评析:给单调的练习赋予一定的情境,可以极大地调动学生主动观察、猜测、推理、交流的积极性,让学生在愉快的氛围和情境中感受到学习的乐趣,提高学生综合运用知识解决实际问题的能力。)
(2)想想做做第4题。先让学生在小组内讨论交流,最后指名全班交流。
[评析:以小组合作学习的方式,让学生综合运用前后、上下、左右的方位词描述物体位置,每个学生都有说的机会,人人参与,人人表现,学生真正成为学习的主人。]
三、实践活动,增强应用意识
1.想一想。
谈话:老师有一个问题问大家,我跟大家面对面地站着,(举起右手)请问:老师举的是右手吗?(可能有的学生说是右手,有的说不是右手,说法不一)
请小朋友把右手举起来再判断一下,老师举的是不是右手。
(教师举起右手转身与学生同向,让学生检验自己的看法。)说明:我们面对面站着,因为方向相对,举起的右手就刚好相反。
[评析:左右的相对性是本课教学难点,运用设疑的方法让学生判断老师举的是不是右手,引起学生注意,引发思考;让学生举起右手与老师对照,促使学生去体验感悟;最后教师转身验证让学生明白:面对面站着,因为方向不同,左右也就不同。总之,这段教学活动融知识性、趣味性、活动性于一体,有效地突破了难点。]
2.动脑筋。
(挂图显示学生上下楼梯的情况)让学生观察思考:上下楼梯时应该靠哪边走?谁走错了?为什么?
(在学生自由发表意见的基础上组织全班学生表演体验。)
小结:方向不同,左右不同,判断时应把自己当成走路的人。平时我们上下楼梯时,应该靠右边有秩序地走。
[评析:看图判断左右,学生容易以自己为标准来下结论。为此,组织有效的表演让每一个学生都动起来,去感悟\去体验,使学生清楚地看到方向的变化过程,明白方向不同左右不同的道理,同时又对学生进行了安全教育和良好行为习惯的培养。]
四、总结点拨、拓展应用
谈话:同学们,这节课玩得愉快吗?在玩的过程中你有什么收获和体会?
课后,到学校和家里再观察观察,找出各种物体间的左右位置关系说一说。
[评析:教师富有情趣地引导学生回顾已学知知识汇报交流学习过程和掌握的学习策略,在自由的氛中,鼓励学生用自己的本领去探索周围更广阔领域知识,体验学习的乐趣,这样的课堂总结是必要的,有价值的。]
数学教案反思简短怎么写篇2
教学目标
1.使学生初步学会这一类简易方程的解法.
2.知道计算这类方程的道理.
教学重点
掌握解这一类方程的解法.
教学难点
理解这一类方程的算理.
教学过程
一、复习引入
(一)解下列方程
(二)乘法分配律的意义是什么?用字母怎样表示?
二、教学新授
(一)教学例5
例5.一个工地用汽车运土,每辆车运吨,一天上午运了4车,下午运了3车.这一天共运土多少吨?
1.读题,理解题意.
2.出示图片:示意图
3.教师提问:通过观察这幅图,你都知道了什么?
教师板书:
上午下午一天
4.教师说明:这个式子中含有两个未知数,这就是今天要学习的解简易方程.
板书课题:解简易方程.
5.学生分组讨论计算方法.
(1)表示4个,表示3个,一共是(4+3)个,也就是.
(2)可以根据乘法分配律把4和3相加,就是(4+3)个,.
6.教师说明:两种思考方法既有联系又有区别,最后的结果都是正确的.
教师板书:
=(4+3)=
答:这一天共运土吨.
7.思考:上午比下午多运的吨数是多少?怎样列式?
教师提示:1个,可以写成.“1”可以省略不写.
8.教师小结
一个式子中如果含有两个的加减法,可以根据乘法分配律和式子所表示的意义,将前面的因数相加或相减,再乘,计算出结果.
9.练习
(二)教学例6
例6.解方程
1.教师提问
(1)这个方程有什么特点?
(2)应该怎样解答?
2.学生独立解答.
教师板书:
解:
检验:把代入原方程.
左边=7×5+9×5=80,右边=80,
左边=右边
所以是原方的解.
3.练习
解方程 3.6-0.9=5.4(要写出检验过程)
三、课堂小结
今天这节课你学到了哪些知识?解这类方程时要注意什么?
四、巩固练习
(一)填空.
1.表示()加(),一共是()个,得().
2.表示()减(),是()个,得().
3.().
(二)直接写得数.
(三)判断正误,对的画“√”,错的画“×”.
1.( )
2.( )
3.( )
(四)用线段把下面每个方程与它的解连起来.
+13=33=0
3-=80=10
1.8=54=20
6.7-60.3=6.7=30
9+=0=40
五、布置作业
(一)解方程.(第一行两小题要写出检验过程)
六、板书设计
解简易方程
数学教案反思简短怎么写篇3
1、圆是定点的距离等于定长的点的集合;
2、圆的内部可以看作是圆心的距离小于半径的点的集合;
3、圆的外部可以看作是圆心的距离大于半径的点的集合;
4、同圆或等圆的半径相等;
5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线;
7、到已知角的两边距离相等的点的轨迹,是这个角的平分线;
8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线;
9、定理不在同一直线上的三点确定一个圆。
10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧;
11、推论1:
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
12、推论2:圆的两条平行弦所夹的弧相等;
13、圆是以圆心为对称中心的中心对称图形;
14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等;
15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等;
16、定理:一条弧所对的圆周角等于它所对的圆心角的一半;
17、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等;
18、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;
19、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;
20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;
数学教案反思简短怎么写篇4
第一课时:无括号的小数四则混合运算
教学内容:课本第37页例1、例2
教学要求:使学生掌握无括号的四则混合运算顺序,并能正确地进行计算。
教学过程 :
一、复习。
1、口算。
4.8+5.2=10
7-5.5=1.5
4.5´4=18
1.8¸0.3=6
7.5¸0.25=30
0.15¸0.5=0.3
1.2´0.4=0.48
6.7-5.6=1.1
9.9+1=10.9
0¸16.2=0
0´1.8=0
36¸0.4=90
问:1.8¸0.3、4.5´4、1.2´0.4各表示什么意义?
2、口算下面各题,并说出各题的运算顺序。
(1)120+80¸4=140
(2)16´2¸16+90¸2=47
(3)1000-800¸2=600
(4)55+45¸5-16¸2=56
二、新授:
1、出示课题:整数、小数四则混合运算。
2、介绍四则运算:我们学过的加、减、乘、除四种运算,统称四则运算。
3、教学例1
出示例1:下面的算式里有哪些运算?运算顺序怎样?
3.7-2.5+4.6 3.6´6¸0.9
问:题中含有几个运算符号?应该先算什么,再算什么?(学生回答后,自己试算)
小结:算式中加法和减法叫做第一级运算。乘法和除法叫做第二级运算。在一个算式中,如果只含有一级运算,要按顺序从左往右依次计算。
4、教学例2:
出示例2:下面的算式里有几级运算?运算顺序怎样?
35.6-5´1.73 6.75+2.52¸1.2
问:这两道算式与例1有什么不同地方。它含有几级运算,应该先算什么,再算什么?
(学生回答后,独立计算)
小结:一个算式中,如果含有两级运算,先做第二级运算,再算第一级运算。
5、指导看书。
学生看书,补充完整课本例题。
6、小结:混合运算步骤比较多,容易发生错误,我们要养良好的习惯,计算时要做到:“一看、二想、三划、四算、五查”。在没有括号算式中,先算乘除,后算加减。
三巩固练习。
1、课本第37页做一做。(要求学生在先算的部分划上横线,把必要的竖式写在递等式的右边。)
2、课本练习十第1题
3、思考题。
下面是有关联的四个算式,请想一想,列出一个综合算式。
(1)1.632¸3.2=0.51 (2)0.25´0.16=0.04
(3)0.51-0.04=0.47 (4)0.47+0.13=0.6
课后小结:
第二课时:有括号的小数四则混合运算
教学内容:课本第38页例3
教学要求:使学生掌握有括号的小数四则混合运算的运算顺序,并能正确地进行有括号的小数四则混合运算,掌握在计算过程中近似计算。
教学过程
一、复习。
1.说一说下面各题的运算顺序,后在本子上练习
10.1+9.9¸9´0.1 9.728¸3.2+15.2´0.2
2.计算下列各题,得数保留两位小数。
(1)7.05´3.85»27.14 (2)0.63´0.57»0.36
(3)4.32¸1.7»2.54 (4)4.67¸0.23»20.30
指出取积、商的近似值的方法及约等号“»”的使用。
二、新授。
1.揭示课题:“有括号的四则混合运算”。
2.出示例3:计算:3.6¸1.2+0.5´5
问:运算顺序是什么?
如果要先算1.2+0.5该怎么办?(添上括号),这时运算顺序怎样?
3.6¸(1.2+0.5)´5
学生尝试练习,指名板演,当学生发现3.6¸1.7除不尽时提出问题老师该怎么办?教师回答在计算过程中除得的商超过两位小数的,一般只保留两位小数,再进行计算。
学生练习完后,教师讲评,重点解决:
=3.6¸1.7´5
»2.12´5 (这里为什么用约等号?)
=10.6 (这里为什么又用等号?)
小结:教师指出黑板上的题,“3.6¸(1.2+0.5)´5我们用了什么符号?”(用了小括号)“在这里小括号有什么作用?”(改变运算顺序)“算的过程中如果遇到除不尽或商的小数位数较多时,我们可以怎样做?”(一般可以只除到第三位小数,然后按“四舍五入法”保留两位小数)。
有时需要改变算式中的运算顺序,就要用到括号,但有时只有小括号还不够用,就要用到中括号‘[ ]’
教师板书:中括号[ ],并说明中括号的写法。例如在例3中要先算(1.2+0.5)´5,就要加中括号。这样就可得到下面的算式:
3.6¸[(1.2+0.5)´5]
计算时,要先算小括号里面的,再算中括号里面的。
讲解: 3.6¸[(1.2+0.5)´5]
=3.6¸(1.7´5)
=3.6¸8.5 (这里为什么用等号?)
»0.42 (这里为什么用约等号?)
指导学生看书。
三、巩固练习。
1、判断下面各题是否正确,若有错改正过来。
4.06¸(13.54+14.46)-0.14 (15.38-1.74)¸3¸7
=4.06¸28-0.41 =13.46¸3¸7
»0.145-0.41 »4.55¸7
=0.005 »0.65
2、课本第38页做一做。(先划出运算顺序,后计算)
3、堂上练习。
练习十第2题前两题
练习十第3、4题。
数学教案反思简短怎么写篇5
下面是关于《数学广角》范文,欢迎参考!
一、教材分析:
我说课的内容是:小学数学义务教育课程标准实验教材(人教版)第六册、第九单元、数学广角中的第一课时。《数学广角》是我们新教材中新增设的一个内容,它主要是介绍和渗透一些数学思想方法,涉及的重叠问题是日常生活中应用比较广泛的数学知识。在本节课前,学生虽然已经学习过分类的思想方法,但集合这部分内容比较抽象,针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了,综上分析,本课的教学目标定位为:
二、教学目标:
知识目标:引导学生从生活经验中感受到交集的含义。能借助直观图,体验利用韦恩图解决简单的实际问题。
能力目标:通过小组整理图表的活动,启发学生对交集部分的理解,培养学生操作能力、思考能力、创新能力、评价说理能力。
情感目标:通过生活情景的课堂再现,让学生在探究、应用知识中体验数学的价值。
三、教学重、难点:
教学重点:初步学会利用交集的含义解决简单的实际问题。
教学难点:用图示的方式感受到交集部分。
为了有效的达到教学目标我在教学中,设计了以下教学策略
四、教学策略:
1.关注数学知识产生和发展的过程
对于三年级学生来说,集合问题具有高度的抽象性,因此必须通过学生的生活世界.让抽象的问题生活化,教学中通过摆、画、移动、整理等过程得出韦恩图,发现图形表示的优越性,又让学生经历现场的调查并以图形表示出来,最后运用语言、图表来表现,是对集合知识高度理解与综合应用的体现。整个认知过程是问题不断解决,认识不断清晰,知识不断建构的过程。
2、突出数学学习方式的综合运用
五、教学过程:
1、创设情境、调查感知。
在课前通过合理有效的谈话,调动学生的积极性,为教学营造了轻松和谐的氛围。首先调查学生喜欢游泳和足球两项运动的情况,又引导学生用“喜欢”、“只喜欢”和“既喜欢……又喜欢”来介绍自己,提醒学生用准确的语言来表达,为本课的难点突破埋下伏笔.使学生初步感受重复,因为语言是思维的外壳。当学生的兴趣被调动之后,水到渠成的引出课题。
2、设问质疑。引发冲突
一切学习源于对知识的渴求,只有激发学生的探索欲望,才能达到教育的最理想效果。上课伊始出现森林运动会小动物参加篮球赛、足球赛的情况表,通过引导学生观察,设问质疑,让学生发现表格之混乱,使学生的思维世界中出现碰撞,便产生了求知的火花,从而主动探索解决问题的办法,领悟问题存在的根源——重复。
3、小组合作,整理表格
当学生产生认知冲突后,及时的提出修改表格的三点要求:怎样排才能一眼看出有几种动物?让学生分组合作进行整理,在合作的过程中相机进行指导。当学生整理出简洁明了的表格后,再巧妙地引出韦恩图,接着利用课件演示每一部分的意义,让学生用语言表述图意使本节课的难点悄然解决。
接着根据学生观察韦恩图得出的信息,引导学生从图的形式转化成算式的形式,从而解决了“初步学会利用交集的含义解决简单的实际问题。”这一重点。
然后组织学生一步步创造出韦恩图即集合图,再比较图与表,突出韦恩图的价值,从而肯定学生的科学创造过程。整个环节完全是让学生经历自己创造韦恩图的过程,学生在快乐的合作探究中体验到了成功的喜悦。因此学生主动地打开了数学王国的大门。同时,通过一道追加习题,强化新知。进一步感受交集的含义。
4、实践运用,发展新知
让不同的学生学习不同的数学,让不同的学生有不同的发展,这是新课改下很流行的话语。作为一节新授课的尾声部分——实践运用,应该促进学生发展,因此,在练习中我设计了这样几个环节:1、读图训练,强化新知。2、完成教材中设计的习题,加深对集合的认识和计算方法的掌握。3、给学生一个开放的空间,当场调查爸爸吸烟喝酒的情况,让学生自主探索自己设计出集合图,在内化提升的过程中进行健康教育。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用
习题的设计在有层次、有梯度、有价值的前提下,既,培养学生操作能力、思考能力、创新能力、评价说理能力。又让学生在探究、应用知识中体验了数学的价值。
数学课不仅是让学生学数学,更重要的是让学生欣赏数学、体验数学的神奇价值,从欣赏和体验中去感悟数学道理、培养数学素养。本节课学生在四个活动的参与中,真正的作到了自主探索、不断创造,体验到了数学学习的快乐与成功。
数学教案反思简短怎么写篇6
教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.
情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.
三、教学过程设计1.创设情境,提出问题2.实验操作,模型构建3.回归生活,应用新知
4.知识拓展,巩固深化5.感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树2002年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.
二、实验操作模型构建
1.等腰直角三角形(数格子)
2.一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.
通过以上实验归纳总结勾股定理.
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律.
三.回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.
四、知识拓展巩固深化
基础题,情境题,探索题.
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.
基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.
情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.
五、感悟收获布置作业:这节课你的收获是什么?
作业:1、课本习题2.12、搜集有关勾股定理证明的资料.
板书设计探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明::1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.
2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.
数学教案反思简短怎么写篇7
《小树有多少棵》这节课是北师大版小学数学三年级上的第一单元第一课时的内容,这节课的教学重点是让学生探索并掌握整十、整百、整千数乘一位数的口算方法。对于三年级学生而言,在二年级已经学过表内乘法,这节内容并不难理解。
在教授时,我首先复习了几道表内乘法题,然后复习了数的组成,为学生理解整十、整百、整千数乘一位数的算理进行了铺垫,我觉得花这几分钟的时间是值得的,学生在新授时,很快就能抓住“20就是2个十,20×3表示2个十乘3,也就是6个十,是60”这一算理。
因为学生的积极反应,导致我忽略了一个很重要的问题:当学生列出算式“20×3”与“20+20+20”时,我没有把握住这一时机,相机引导学生比较加法与乘法的关系,体会乘法的简便性,从而概括出乘法的意义,即“求几个相同加数的和的简便运算”。因此,在练习反馈这一环节中,我就吃了苦头。个别学生由于没有彻底理解乘法意义,出现了“30×4=70”这种错误,并且,在70×5=++++这个问题上,学生显得很盲目。对于这个问题,只能在练习课上进行补充了,真是“一失足成千古恨。”
在教研时,莉群老师有一个很及时有效地方法,在解决三捆小树一共有多少棵时,趁机引导学生“如果有8捆小树呢?”让学生体会到乘法的简便,从而有了深入研究的兴趣。
值得高兴的是,课堂上学生的反应很积极,概括口算的方法也十分多样,且简洁易记。遮“0”补“0”的方法,计算起来,又对又快。整节课,教学目标有达到,算是欣慰。
数学教案反思简短怎么写篇8
课题古典概型课型高一新授课教学目标理解古典概型及其概率计算公式,并能计算有关随机事件的概率教学重点理解古典概型的概念及利用古典概型求解随机事件的概率。教学难点如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。教学方法导学式、启发式教学教具多媒体辅助教学过程教学内容与教师活动学生活动设计意图
创设情境引出课题
问题1:考察两个试验:
(1)抛掷一枚质地均匀的硬币的试验;
(2)掷一颗质地均匀的骰子的试验。
问:在这两个试验中,可能的结果分别有哪些?
教师引导学生思考问题1:学生思考结果且给出基本事件的特点1
问题1设计意图:通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。
问题2:在掷骰子试验中,随机试验“出现偶数点”可以由哪些事件组成?教师引导学生思考问题2:学生归纳与总结,问题2设计意图:通过举例,引出基本事件的特点2。问题3:基本事件有什么特点?
教师加以引导与启发,利用基本事件的关系发现基本事件的特点问题3:学生口答问题3设计意图:提高学生概括总结能力问题4:例1、从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?教师引导学生列举时做到不重复、不遗漏,教师指出画树状图是列举法的基本方法。
问题4:学生列举出基本事件。问题4引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到研究对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点
通过设疑引出概念
问题1:(1)请问掷一枚均匀硬币出现正面朝上的概率是多少?
(2)掷一枚均匀的骰子各种点数向上的概率是多少?其中出现偶数点向上的概率是多少?让学生带着好奇心去观察数学模型,老师启发引导学生推导公式。
问题1学生得到答案且深层次的考虑问题
问题1设计意图:学生根据已有的知识,已经可以独立得出概率,通过教师的步步追问,引导学生深层次的考虑问题,看到问题的本质,得出概率公式。让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。
问题2:上述概率公式的推导过程中基本事件有什么特点?教师引导学生找出共性。具有下列两个特点的概率模型才能运用上述公式,我们称为古典概率模型,简称古典概型。
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)问题2学生观察和初步概括归纳古典概率模型及特征
问题2设计意图培养运用从特殊到一般,从具体到抽象数学思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过问题的解决引出古典概型的概念。
问题3:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么?问题3学生互相交流,回答补充得到的答案问题3设计意图:两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。
例题分析加深理例题分析加深理
例2、在数学考试中单选题是常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
教师引导学生思考是否满足古典概型的特征?教师对学生的回答进行归纳与总结
例2学生思考、讨论、交流,说出看法
例2设计意图:通过例题的学习让学生学会对古典概型的判断,就是看是否满足古典概型的两个基本特征:有限性与等可能性,由此掌握求此类题目的方法,让学生进一步理解古典概型的概率计算公式。
变式:假设我们现在将单选题改为不定项选择题,不定项选择题从A、B、C、D四个选项中选出所有正确答案,假设还是这名考生,他随机的选择一个答案,他猜对的概率是多少
教师引导学生列举15种可能出现的答案,判断是否满足古典概型的特征,利用概率公式求值。变式:学生在老师的引导下列举15种可能出现的答案,并且判断是否满足古典概型的特征,利用概率公式求值。变式设计意图:让学生感受到数学模型的生活化,能用所学知识解决新问题是数学学习的主旨。当学生用自己的知识解决问题后,会有极大的成就感,提高了学习兴趣。
例3、同时掷两个骰子,计算:(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
教师将学生的结果汇总展示,学生给出的答案可能会有多种,然后引导学生分析原因,寻找解答中存在的问题。其中这两种答案分别对应了解题中的两种处理方法:把骰子标号进行解题和不标号进行解题,可以提示学生先把这两种方法下的基本事件全部列出来,然后验证是否为古典概型。
教师分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式。
例3学生思考、讨论,列出两种方法下的基本事件,发现基本事件的总数不相等,学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式
例3设计意图:引导学生根据古典概型的特征,用列举法解决概率问题。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
数学教案反思简短怎么写篇9
教学内容:
苏教版义务教育教科书《数学》六年级上册75页例1、练一练,第76页练习十二第1~5题。
教学目标:
1.使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。
2.使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。
3.使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。
教学重点:
分数四则混合运算的运算顺序。
教学难点:
运用运算律和运算性质进行简便计算。
教学准备:
多媒体课件。
教学过程:
一、复习引入
做练习十二第1题,直接写出得数。
集体交流,选择几题让学生说说算法。
二、创设情境,探究新知。
1.出示教科书第75页的例题图。提问:要求“两种中国结各做18个,一共用彩绳多少米?”这个问题,可以怎样列式?
要求学生自主列出综合算式,并尽可能列出不同的综合算式。
2.集体交流。教师根据学生的回答板书算式。
2/5×18+3/5×18(2/5+3/5)×18
追问:列式时你是怎么想的?
3.指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)
三、教学分数四则混合运算的运算顺序。
1.谈话:根据以上计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?
你会计算上面这两道式题吗?
学生分别计算,并指名板演。
2.提问:这两道式题的计算结果相等吗?运算顺序呢?第一道算式先算什么?第二道算式呢?
3.小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。
4.做“练一练”第1题。
提问:这两题的运算顺序是怎样的?同桌相互说一说。
学生独立计算,指名板演。
集体校对,共同评议。
提问:在进行分数四则混合运算时,你认为要注决些什么?
指出:计算分数四则混合运算,要先弄清楚先算什么,再算什么;例如第一小题,分数乘除法连在一起,可以把除法转化为乘法,一次约分,同时计算;再如第二小题,分数连加时可以同时通分。
四、教学把整数的运算律推广到分数。
1.引导:我们再来仔细观察例1的两种解法。比较一下,这两种解法之间有什么联系?哪一种方法比较简便?你有什么想法?
通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
2.做“练一练”第2题。
先让学生独立计算,指名板演。
集体交流,说说哪里用了简便算法,分别是怎样想的。
小结:简便运算主要应观察算式的特点,看能不能运用运算律运算性质使计算简便,有些题目不能直接进行简便计算,要先算一步或几步才能应用运算律或运算性质简便计算,因此在计算过程中要随时注意观察算式的特点,思考能不能用简便计算。
五、巩固练习。
做练习十二第3题。
让学生独立练习,指名四人板演。
交流:每道题是哪里用了简便计算,依据是什么?
六、全课小结。
这节课你学会了什么?你有什么收获和体会?进行分数四则混合运算时应该注意什么?
七、作业布置
补充习题相对应页。
数学教案反思简短怎么写篇10
教学内容:
北师大版六年级数学上册第55页、第56页。
教学目标:
1、能运用比的意-决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,提高解决问题的能力。
3、培养学数学的兴趣,养成良好的思维品质。
教学重点:
理解和掌握按一定的比进行分配的意义,并进行实际应用。
教学难点:
把比熟练地转化成分数,将分数知识横向迁移。
教学准备:
多媒体课件。
教学过程:
一、复习牵引(课件出示)
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某班男生和女生的人数比是5:4”,从这组比中,你能推断出什么信息呢?(课件出示题目)
学生自由发言,预设推断如下
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的(),女生是全班的()。
3、以男生为单位“1”,女生是男生的(),全班是男生的()。
4、以女生为单位“1”,男生是女生的(),全班是女生的()。
5、女生比男生少(或20%)。
6、男生比女生多(或25%)。
追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)
二、情境导入,引出课题(课件出示)
昨天我和王老师合伙买福利彩票,我出了30元,王老师出了50元,结果我们中了一个二等奖,奖金8000元。我想对半分,各分4000元,王老师说这不公平,你们认为呢?怎么分奖金才合理呢?
三、合作探索,解决矛盾
1、你能帮老师解决这个问题吗?请试试看,可以小组内交换意见、讨论想法。
2、说以说你的想法。组织反馈,逐一展示学生解题思路。
3、我们分到的奖金是否合理,该怎样检验?(两个数量和要等于8000,出资的比是3:5或5:3)
4、小结:像这样把8000元彩票奖金按照出资多少来进行分配的情况叫做按比例分配。(板书:按比例分配)
(出示课题:比的应用)
四、自主探索
1、课件出示教材(1),把一筐橘子分给大班和小班,大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?
学生商量分法,得出:按大班和小班的人数来分比较合理。
2、大班人数和小班人数的比是3:2学生分好后,交流分法,填表完成。
3、如果有140个橘子,按3:2分,可以怎样分?你会分吗?试着分一分。
学生试做。
4、与同学交流分的方法。分组讨论疑点,并试着在组内解决。
四、交流方法,老师精讲
1、班内交流,老师答疑
三种方法
(1)、方法一:借助表格分。
(2)、方法二:画图
发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。
140个
140÷(3+2)=28大班:28×3=84(个)
小班:28×2=56(个)
追问:为什么要“140÷(3+2)”?
(3)、方法三:根据分数的意-题。先求出一共分成几份,再求出大班和小班分的个数分别占橘子总数的几分之几,最后根据分数的意-题。
3+2=5140×=84(个)
140×=56(个)
答:大班分84个,小班分56个,比较合理。
2、以上几种方法你最喜欢哪种?说明理由。引导学生小结方法⑶的思路。
⑴计算分配的总份数。
⑵计算各部分占总量的几分之几。
⑶根据分数乘法的意-题。
五、巩固练习,深化认识
1、小清要调制2200克巧克力奶,巧克力和奶的质量比是2:9。需要巧克力和奶各多少克?
2、3月12日是植树节,学校把种植60棵小树苗的任务分配给602班和603班,两班都是43人。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?
3、完成教材第56页练一练第3题合理搭配早餐。
六、总结评价
1、回顾这节课所学的知识,谈谈收获。
2、布置作业。
板书设计:
比的应用
3+2=5140×=84(个)
140×=56(个)
答:大班分84个,小班分56个。
数学教案反思简短怎么写篇11
学生独立分析数量关系,并列式计算,并独立尝试画线段图。
指名板演后说一说为什么用减法计算。
总结:要求格尔木到拉萨的铁路长多少千米,就要从西宁到拉萨的铁路全长中去掉西宁到格尔木的铁路长;而要求西宁到格尔木的铁路长多少千米,就要从西宁到拉萨的铁路全长去掉格尔木到拉萨的铁路长。
请观察以上两道问题与之前第(1)题有什么联系?
总结:第(1)题实际是已知两个数,求它们的和是多少,做加法;而(2)(3)题是已知两个数的和与其中的.一个加数,求另一个加数,做减法。
想一想:减法是一种怎样的运算。
总结:已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法中已知的和叫做被减数,其中的一个加数叫做减数,所求的另一个加数叫做差。
2、探究加、减法各部分间的关系
你能说一说加法和减法各部分之间的关系吗?
小组讨论后汇报交流,教师并板书。
你觉得加法和减法之间有什么关系?用一句话来概括。
教师总结:减法是加法的逆运算。
三、巩固发散
1、根据加、减法之间的关系,写出下面算式对应的两道减法算式。
125+346=471
34+595=629
654+528=1182
2、独立完成P3做一做,说一说你是怎么想的。
四、评价反馈
说一说你有什么收获。
板书设计:
加、减法的意义和各部分间的关系
814+1142=1956(千米)1956—1142=814(千米)
1956—814=1142(千米)
加法:把两个数合并成一个数的运算减法:已知两个数的和与其中的一个加数,求另一个加数的运算
和=加数+加数差=被减数—减数
加数=和—另一个加数减数=被减数—差
被减数=减数+差
沪教版四年级下册《四则运算》数学教案
沪教版四年级下册《四则运算》数学教案
教学目标:
知识与能力:
复习四则运算。
过程与方法:
通过复习四则运算,进一步提高学生的计算能力。
情感态度价值观:
培养学生认真、仔细的做题习惯和检查习惯。
教学重点:
通过复习四则运算,进一步提高学生的计算能力。
教学难点:
通过复习四则运算,进一步提高学生的计算能力。
教学准备:
学生练习本。
教学过程:
一、口算练习
巡视学生练习情况,集体校对。
做口算练习第一页上的1。
二、情境引入
学习有关奥运的知识。
(出示贺年卡)谈话:这是老师在假期收到的贺年卡,你认识它吗?(福娃)
说说有关“福娃”的知识
三、四则运算练习
1、提问:
你想了解更多奥运知识吗?
正确计算结果就有答案了!
学生同桌说说运算顺序,再独立计算。
1。没有括号的计算题。
出示:
2630—867+133
581—31×18
做完自觉复习
2。有括号的计算题。
(158+125)×2
196÷(712—698)
456÷19×83
交流自己检查的方法。
3。小结计算顺序并练习。
组织学生集体校对答案。
齐读奥运知识
2、将答案填入书本第一页,全班一起朗读有关奥运知识。
3、你们还想了解吗?
33×(225÷15)
944÷(105—89)
1210÷(89+21)
2112÷(16×3)
134×16÷67
1300×(700÷10)
组织学生集体校对答案。
学生同桌说说运算顺序,再独立计算。
做完自觉复习
交流自己检查的方法。
齐读奥运知识
将答案填入书本第一页,全班一起朗读有关奥运知识。
四、课堂总结
归纳:四则运算的顺序是怎样的?我们要注意什么?
指名回答问题
板书设计
数学教案反思简短怎么写篇12
一、认识顺时针或逆时针旋转90度
1、创设情境,提出问题。
谈话:同学们,沪宁高速公路经过整修已经全线通车了,我们跟着小记者起去看看。
播放课件:聚集某一高速公路收费站,播放各种车辆来来往往进出场面的录像。
引出问题:为了维持秩序,收费站口设置了转杆。看,转轩打开,旋转了多少度?转杆关闭呢?
2、模拟操作,认识含义。(请学生在白板上示范转杆的打开和关闭)
(1)同桌合作,作出活动角模拟转杆的打开和关闭,讨论转杆打开和关闭时向什么方向旋转了多少度。
(2)结合白板演示交流,明确转杆打开和关闭都旋转了90度。
(3)深入探讨:转杆打开和旋转的方向相同?
学生观察交流。
(4)小结:与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转。转杆打开是逆时针旋转90度,转杆关闭是顺时针旋转90度。
3、全体活动,深化理解。
听口令做动作。
让学生先平伸右臂,用动作表示顺时针旋转和逆时针旋转,再平伸左臂做一次,亲身体验顺时针、逆时针方向的旋转。
二、将图形旋转90度
谈话:生活中旋转的现象可多了解,今天我们就来把下面一些图形旋转90度。出示例题。
1、理解题意。
提问:绕A点旋转是什么意思?
指A点固定不动。
2、转一转。请几位学生在白板上亲自旋转,由于几个同学旋转的方向可能
不同,这里可以用到相机,把每位同学旋转的图形拍下来,然后开始对比,并交流方法。
学生可能出现:顺时针旋转90度、逆时针旋转90度。
3、全班交流方法。
三、拓展延伸
1、先让学生独立完成,再集体交流,重点说说每幅图中的指针分别向什么方向旋转了多少度。(在讲解的过程中可以借助白板,让学生直接在白板上演示整个旋转过程,)
2、先让学生独立完成,再集体交流,之后由学生亲自在白板上演示整个旋转过程。
3、先观察每组图形的特点,再想象使每组图形变成长方形的旋转方法,最后通过多白板演示,让学生在课本上画出旋转后的图形。
4、比眼力。
比较一下这些图形按要求旋转之后会成为哪一个图形。
四、全课总结
提问:这节课你学到了了什么本领?有什么收获?还有不明白的问题吗?
数学教案反思简短怎么写篇13
第一课时
教学内容:教科书第1-3页。
教学目标:
1.能辨认上、下、前、后这些方位,并用这些方位来描述物体的相对位置。
2.能将自己所学知识运用于生活实际,初步能在同一场所辨认自己或他人所在的位置和方向。
3.积极主动地参与位置与方向的认知过程,体会位置和方向在生活中的价值,发展学生积极学习情感体验。
教学重点、难点:正确辨别上、下、前、后的位置关系,体验其相对性。
4.锻炼学生的口头表达能力。
教学过程:
一、联系生活,揭示课题
师:谁能告诉大家,在你的课桌上面放的是什么,桌子下面又有什么?
学生自由说。
师:谁能帮老师数一数,你前面有几位小朋友,后面呢?
学生汇报。
板书课题:上下、前后。
二、新课
1.上、下
出示主题图,师:这是某个城市的跨江大桥,你们看,多宏伟啊,谁能把自己从图上看到的情景说一说?
让学生用自己的话对主题图进行描述,并侧重引导学生用“上”、“下”对物体的位置关系进行准确的描述。
学生独立完成课本的填空。
联系生活实际,学生用“上”、“下”描述身边事物的位置关系。
2.前、后
让一组学生排成一纵队,指名描述小伙伴的位置,学会用“前”、“后”来准确描述。
数学教案反思简短怎么写篇14
教学目的:
1.通过学习,帮助学生理解"相遇问题"的意义及特点,培养学生初步的空间观念。
2.学会分析"相遇问题"的数量关系,掌握其两种解答方法。
教学重点:掌握相遇问题的结构特点及两种解答方法
教学难点:理解相遇问题的解题思路。
教学准备:
1.计算机辅助教学软件一套。
2.每个学生两个剪贴人。
教学过程:
一、复习
口答:张华从家向学校走去,每分60米,3分走多少米?
学生列式解答。说出数量关系。
二、新课教学
1.导入新课。
(1)通过电脑演示了解两个物体的运动方向。
多媒体演示三种运动方向,学生依次答问。
说明:面对面的走就是相向而行,或者称相对而行;背对背的走就是背向;一起向同一个方向走就是同向。(屏幕显示"相向背向同向")
(2)通过电脑演示探究两个物体在相向运动中出发的地点、时间和运动结果。
出发的地点:两地
出发时间:同时或不同时
运动结果:相遇、相距或相遇后相距
(3)揭示课题:两个物体在运动的过程中会出现一些情况,其中也包括相遇的情况。下面,我们就来研究相遇问题(板书:相遇问题)
2.学习准备题。
(1)出示准备题。
(2)学生填表,全班检查。
(3)全班讨论:
①出发3分后,两人之间的距离变成了多少?
②相遇时,两人所走路程的和与两家距离有什么关系?
③1分两人所走路程的和130米是怎样来的?我们可以用哪些方法求出2分两人所走路的和260米呢?390米呢?
师:通过讨论,我们知道了用不同的方法可以求出260米和390米,还知道了两个物体从两地同时出发,相向而行,相遇时,两人所走路程的和等于两地之间的距离。
3.教学例5。
(1)出示例5:
小强和小丽同时从自己家里走向学校(如下图)。小强每分走65米,小丽每分走70米。经过4分,两人在校门口相遇。他们两家相距多少米?
提问:这题的已知条件和问题是什么?
这道应用题讲了两个物体的运动,当两个物体运动时,我们还要注意哪些问题?
(2)启发学生利用已学知识尝试解答例5。
(3)指名回答,教师板书在黑板上。
65×4+70×4还有不同的解法吗?(65+70)×4
=260+280=135×4
=540(米)=540(米)
(4)分析解题思路。
①通过线段图来分析"解法一"的解题思路。
提问:65×4表示什么?70×4呢?把两人各自走的路程加起来,又是什么?
谁能说说这种解法的思路?
②通过多媒体演示分析"解法二"的解题思路。
提问:65+70求什么?为什么要这样列式?能说说你的想法吗?
学生讲想法,教师以电脑演示引导学生观察,使学生认识"每分两人所走路程的和"。然后提出:4个每分两人所走路程的和与两家的距离有什么关系?(电脑演示)
(5)检验作答。
(6)比较两种解法。
(7)小结:今天这节课,我们学习了什么内容?(相遇问题)在解答这种应用题时,首先,我们耍弄清两个物体运动的哪些问题(方向、地点、时间、结果),再灵活运用我们刚才学的这两种方法解答。
三、巩固练习
1.基本练习。
①用两种方法列式解答。
小东和小英同时从自己家里出发,相向而行,到"迎澳门回?"展览馆去参观,小东每分走50米,小英每分走40米,经过3分两人在展览馆相遇,他们两家的距离是多少米?
②用第二种解法只列式,不计算。
两列火车从两个车站同时相向开出,甲车每小时行80千米,乙车每小时行70千米,经过5小时两车相遇,两个车站之间的铁路长多少千米?
2.综合练习。(抢答)
①甲乙两人同时从两地相向而行,甲骑摩托车每小时行36千米,乙骑自行车每小时行12千米,求两人每小时行的路程和?
②根据算式补充条件。
一列货车和一列客车同时从两站相对开出,货车每小时行48千米,客车每小时行52千米,___两车相遇,两地相距多少千米?
(48+52)×3
③根据算式补充问题。
甲乙两人从两地同时相对走来,甲每分走45米,乙每分走54米,经6分后两人相遇,?
(45+54)×6
④只列式不计算。
两辆汽车同时从一个地方向相反的方向开出。甲车平均每小时行42千米,乙车平均每小时行38千米,经过3小时,两车相距多少千米?
3.思考题:甲乙两人同时从两地相对出发,甲每分行50米,乙每分行40米,行了5分两地相距多少米?
下面哪个答案正确?
1.50+40×52.(50+40)×53.无法解答
四、课堂总结。
数学教案反思简短怎么写篇15
教学目标:
1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高与用数学解决实际问题的能力。
3、在解决问题的过程中体会百分数与现实生活的密切联系。
教学重点:
在具体的情境中理解“增加百分之几”或“减少百分之几”意义。
教学难点:
能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力。
教学关键:
充分利用学生已有的知识基础,集合具体的实例让学生理解“增加百分之几”或“减少百分之几”的意义。
教学过程:
一、复习引入
1、复习
师:关于百分数,你们已经学过那些知识?
指名回答,引导学生回忆已学的有关百分数的知识。根据学生的回答,教师板书
百分数的意义
小数、百分数、分数之间的互化
百分数的应用
利用方程解决简单的百分数问题
2、引入
师:从这节课开始,我们继续学习有关百分数的知识。
二、探索新知
1、创设情景,提出问题
盒中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?
根据这一情景,你能获得哪些信息?
指名回答,引导学生认识“水结成冰,体积会增加”这种物理现象。
师:你认为“增加百分之几”是什么意思?
指名回答,如果学生感到困难,教师可以通过画以下线段图帮助学生理解“增加百分之几”的意思是“冰的体积比原来水的体积多的部分是水体积的百分之几”
师:你能独立解决这一问题么?那就请你试一试。
2、自主探索解决问题
(1)自主探索。
让学生独立思考,解决情景图中提出的问题。教师巡视,及时了解学生中典型的算法。
(2)合作交流。
指名板演,学生可能会提供以下两种算法
方法1:(50-45)÷45
=5÷45
≈11%
方法2:50÷45=111%
111%-100%=11%
全班交流时,教师要让学生说一说具体的想法。通过交流,引导学生认识
方法1:先算增加了多少立方厘米,再算增加了百分之几。
方法2:先算冰的体积是原来水的体积的百分之几;再算增加百分之几。
3、即时练习。
先让学生独立解决问题,再组织全班学生交流。全班交流时,教师重点引导学生理解“降低百分之几”的意义。在本题中,“降低百分之几”的意思是降低的钱数占原来的百分之几。
三、巩固练习
指导学生完成课本练一练中的第1题至第5题。
免责声明:除正式文件通知外,好研网所有文章及所有评论只代表作者个人观点,不代表好研网及海南省教育研究培训院任何观点,所有文章文责自负,若有任何非法及不当信息,请与我们联系,我们会在第一时间作出相应的处理。