教案的模板初中数学
通过教案,教师可以了解学生的学习情况和需求,从而更好地满足学生的学习需求,提高学生的学习效果和自信心。接下来给大家分享教案的模板初中数学,希望对大家写教案的模板初中数学有所帮助。
教案的模板初中数学篇1
一、说课程标准
了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素。
二、说教材分析
“全等三角形”是人教版义务教育课程标准实验教科书《数学》八年级上册第十一章《全等三角形》第1节的内容。它是学习全等三角形全等条件的理论基础,是对线段、角、三角形的提高,是证明线段相等、角相等的重要依据,为学习四边形、等腰三角形、直角三角形、线段的垂直平分线、角的平分线的有关知识奠定基础。
三、说教学建议
1.注重数学学习的活动性,给学生足够的活动空间。
本节学习全等形与全等三角形的概念和性质,通过一个“观察”和两个“思考”,让学生活动得出结论。
2、注重数学学习的基础性,加强基本技能的教学。
教学活动中,学生形成了数学知识和技能后,进行一定量的练习,使学生的掌握能够达到一定的熟练程度。
3.注重数学的规范性,加强数学语言教学。
用符号表示全等三角形及对应元素,不仅要求学生能够正确熟练使用,还要求学生能够感受到数学符号语言的简约美、严谨美。教学中,教师需要进行必要的示范,培养学生具有良好的表达习惯。
4.注重数学学习的人文性,选择适宜的教学素材。
教学中选取的素材要贴近学生的生活实际,让学生感受到数学就在身边。同时,也让学生逐步学会用数学的眼光观察身边的世界。
四、说教学目标
1.知识和技能:
①理解全等形、全等三角形的概念及全等三角形表示方法;
②能熟练找出全等三角形的对应边、对应角和对应顶点;
③掌握全等三角形形对应边、对应角相等的性质,并能够利用性质进行简单的几何推理。
2.过程和方法:
①经历探究全等图形的形状、大小、位置关系和变换的过程,体验获取数学知识的过程。
②通过学生的实际动手操作,提高学生的概括能力。
③通过学生自主探索,培养学生的识图能力,提高学生的观察能力和分析能力。
3.情感态度与价值观:
①通过平移、翻折、旋转等图形变换,培养学生运动的观点。
②联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣。使学生感受数学中的图形美,培养多角度审视问题的意识。
五、说教学重点、难点
教学重点:
①能准确地在图形中识别出对应边、对应角。
②全等三角形的性质,并利用其基本性质进一些简单的推理和计算。
教学难点:
能在全等变换中准确找到两个全等三角形的对应元素(对应边、对应角)。
六、说主要学习方法及教学策略
①引导学生预习教材内容养成良好的自学习惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。
②采用启发、分析、设疑、讲练结合的方法,通过图片,激发学生的学习兴趣.逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。
七、说教学过程
教学过程设计目的
课前准备辅助图片剪刀彩纸大头针
创设情境导入新课
1、观察下面图形,它们的形状与大小具有什么特征?
片断1:图案
片断2:
片断3:
2、学生讨论:
(1)从上面的片断中你有什么感受?上面这些图形有什么共同的特征?
(2)你能再举出生活的一些类似例子吗?
(3)动手操作:安排学生自己动手随意去做两个形状与大小相同的图形
图片的收集与制作:
收集学生做的较好的图片。讨论(或介绍)用复写纸、手撕、剪纸、扎针眼等制作类似图形的方法。
1、通过问题,引导学生从图形的形状与大小的角度去观察图形。丰富的图形和问题容易引起学生的注意,使他们能很快地投入到学习的情境中。运用贴近学生生活的图案激发学生探究的兴趣。
2、它反映了现实生活中存在的大量的全等图形。通过动手实践,合作交流直观感知形状与大小完全相同的图形。
新知探究
引入新课:全等三角形
1.全等形的概念
(1)给出全等形的定义:能够完全重合的两个图形叫做全等形.
(2)你能再举出一些生活中的全等图形吗?
3.引入新课,引起学生认识需要,为后面讲解全等作铺垫。
(3)观察下面三组图形,它们是不是全等图形?为什么?与同伴进行交流.
明确:如果两个图形全等,它们的形状一定相同,大小一定相等
(4)思考:刚才每组同学剪下的两个三角形是全等形吗?
全等三角形:能够完全重合的两个三角形叫做全等三角形
(5)思考问题:
在图1中把⊿ABC沿直线BC平移,得到⊿DEF..
在图2中把⊿ABC沿直线BC翻折180度,得到⊿DBC.
在图3中把⊿ABC旋转180度,得到⊿AED.
123
思考:观察⊿ABC在平移、翻折、旋转过程中是否发生了改变?各图中的两个三角形全等吗?
①将重合的两个全等三角形中的一个沿一边所在的直线移动
②将重合的两个全等三角形中的一个以某一个顶点为中心旋转180度
③将重合的两个全等三角形中的一个以一边所在的直线为轴,翻折180度
结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.
4.在感性认识的基础上提出全等形的概念。可以排除学生对几何的畏难心理,增强他们的信心
5.通过动手实践,合作交流直观感知全等形和全等三角形的概念。
6.通过构图,为学生理解全等三角形的有关概念奠定基础。
7.通过动态的平移、翻折、旋转观察在这一过程中两个三角形的位置关系,培养学生对图形的识别能力。
2.对应顶点,对应边,对应角的概念:
(1)观察图形思考:如右图,△ABC与△DEF全等,当△ABC与△DEF重合时
①与顶点A重合的点是哪个点?
②与∠A重合的角是哪个角?
③与边AB重合的边是哪条边?
【把两个全等三角形重合到一起时,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边.△ABC与△DEF全等可表示为:△ABC≌△DEF】
(2)根据上图完成下面的填空:
重合部分
名称
是否相等,说明理由
顶点B与顶点顶点C与顶点边AC与边边BC与边∠C与∠∠B与∠
总结:找全等三角形对应角、对应边、对应定点的方法
①全等三角形对应边所对的角是对应角;
②全等三角形对应角所对的边是对应边.
③有公共边的,公共边一定是对应边;
④有对顶角的,对顶角一定是对应角;
⑤有公共角的,公共角一定是对应角;
3.全等三角形的.性质:
如上图,△ABC与△DEF全等,对应边有什么关系?对应角呢?学生探索得出全等三角形的性质:
(1)全等三角形的对应边相等;
(2)全等三角形的对应角相等.8.通过学生观察,教师及时给出对应顶点、对应边、对应角的概念,有利于学生对知识理解。并强调全等符号的书写、意义,对应顶点写在对应位置上的意义
9.通过设计表格填空,让学生及时得到巩固,加深对概念的理解
9.及时地归纳小结,为学生积累经验,使学生认知结构得到发展,提高学生的数学能力
10.自主探究,得出全等三角形的性质,从而提高学生的学习能力
随堂练习
1、全等用符号表示,读作。
2、△ABC全等于三角形△DEF,用式子表示为。
3、△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与是对应角;AB与是对应边,BC与是对应边,AC与是对应边。
4、判断题:
(1)全等三角形的对应边相等,对应角相等。()
(2)全等三角形的周长相等。()
(3)面积相等的三角形是全等三角形。()
(4)全等三角形的面积相等。()
5.如图,已知ΔABC≌ΔFED,请说出它们的对应边和对应角
6.如图,△ABD≌△EBC.
①请找出对应边和对应角.
②如果AB=3cm,BC=5cm,求BE、BD的长.
③如果AB=3cm,DE=2cm,求BC的长.11.检查学生对本节课的掌握情况,加深学生对全等三角形性质的理解与掌握
课堂小结
1、回忆这节课:在自己动手实际操作中,得到了全等三角形的哪些知识?
2、找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对应角等,但公共顶点不一定是对应顶点;
3、在运用全等三角形的定义和性质时应注意规范书写格式。
4、通过本节的学习,你们有什么收获和困惑?你愿与大家分享吗?加深学生对知识的理解,促进学生对课堂的反思。对于学生的发言,教师要给予肯定的评价。
作业
必做题:教科书4页习题11.1第1题,第2题,第3题。
选做题:教科书92页习题13.1第4题。
板书设计
11.1全等三角形
1.全等三角形的概念
2.对应顶点.对应边.对应角
3.全等三角形的性质
教案的模板初中数学篇2
因式分解
教材分析
因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。
教学目标
认知目标:(1)理解因式分解的概念和好处
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。
情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
目标制定的思想
1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。
2.课堂教学体现潜力立意。
3.寓德育教育于教学之中。
教学方法
1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。
2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。
3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。
4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。
5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。
教学过程安排
一、提出问题,创设情境
问题:看谁算得快?(计算机出示问题)
(1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
(2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000
(3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、观察分析,探究新知
(1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)
(2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
(3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。
板书课题:§7。1因式分解
1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
三、独立练习,巩固新知
练习
1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)
①(x+2)(x—2)=x2—4
②x2—4=(x+2)(x—2)
③a2—2ab+b2=(a—b)2
④3a(a+2)=3a2+6a
⑤3a2+6a=3a(a+2)
⑥x2—4+3x=(x—2)(x+2)+3x
⑦k2++2=(k+)2
⑧x—2—1=(x—1+1)(x—1—1)
⑨18a3bc=3a2b·6ac
2.因式分解与整式乘法的关系:
因式分解
结合:a2—b2=========(a+b)(a—b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法正好相反。
问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗?
(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例题教学,运用新知:
例:把下列各式分解因式:(计算机演示)
(1)am+bm(2)a2—9(3)a2+2ab+b2
(4)2ab—a2—b2(5)8a3+b6
练习2:填空:(计算机演示)
(1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
(2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
(3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、强化训练,掌握新知:
练习3:把下列各式分解因式:(计算机演示)
(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
(4)x2+—x(5)x2—0。01(6)a3—1
(让学生上来板演)
六、变式训练,扩展新知(计算机演示)
1。若x2+mx—n能分解成(x—2)(x—5),则m=,n=
2.机动题:(填空)x2—8x+m=(x—4),且m=
七、整理知识,构成结构(即课堂小结)
1.因式分解的概念因式分解是整式中的一种恒等变形
2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的&39;两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。
3.利用2中关系,能够从整式乘法探求因式分解的结果。
4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。
八、布置作业
1.作业本(一)中§7。1节
2.选做题:①x2+x—m=(x+3),且m=。
②x2—3x+k=(x—5),且k=。
评价与反馈
1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。
2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。
3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。
4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。
5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。
6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。
教案的模板初中数学篇3
教学目标:
知识与技能:理解倒数的意义,会求有理数的倒数。了解有理数除法的意义,理解有理数除法的法则,会进行有理数的除法运算.
过程与方法:通过有理数除法的法则的导出及运用,学生能体会转化的思想。
感知数学知识具有普遍联系性、相互转化性。
情感与态度:通过有理数乘法运算的推广,体会知识系统的完整性。
体会在解决问题的过程中与他人合作的重要性。通过对解决问题的过程的反思,获得解决问题的经验。
教学重点:有理数的除法法则及其运用
教学难点:(1)商的符号的确定。(2)0不能作除数的理解。
教材分析: 乘法与除法互为逆运算,小学已经学过。通过实例引入,说明它在有理数的范围内也成立。本节内容在学生已有有理数乘法知识的基础上,通过学生经历从具体情景中抽象出法则的&39;过程,使他们发现其中的规律,掌握必要的运算技能,使学生在有理数运算的学习中继续发展数感,在符号法则的学习中增强符号感。
教具: 多媒体课件
教学方法 :引导发现法类比归纳法
课时安排:一课时
创设情境
问题:有四名同学参加数学测验,以90分为标准,超过得分数记为正数,不足的分数记为负数,评分记录如下:+5、-20。-19。-14。求:这四名同学的平均成绩是超过80分或不足80分?学生在教师的激情互动中,思考列式(+5-20-19-14)÷4
化简:(-48)÷4=?(但不知如何计算)
揭示课题
从实际生活引入,体现数学知识源于生活及数学的现实意义。
复习回顾前置补偿
求下列各数的倒数:
(1)-;(2)4;(3)0.2(4)-0.25;(5)-1
学生对老师的提问进行抢答为学习今天的有理数除法先复习小学倒数概念
探究活动一 课件出示练习题
填空:
①8÷(-2)=8×();
②6÷(-3)=6×();
③-6÷()=-6×;
④-6÷()=-6×。
教师强调0没有倒数。学生填空后试着得出互为倒数的概念(乘积是1的两个数互为倒数)
培养学生发现问题总结问题的能力
探究活动二 引例1计算:(-6)÷2
根据除法是乘法的逆运算,引导学生将有理数的除法运算转化为学生已知的乘法运算。
强调0不能作除数。(举例强化已导出的法则)学生自主探究有理数的除法运算转化为学生一致的乘法运算
学生归纳导出法则(一):除以一个数等于乘以这个数的倒数
小组合作交流探究发现结果
探究活动三
(举例强化已导出的法则)
例1计算(1)(-105)÷7[
(2)6÷(-0.25)
(3)(-0.09)÷(-0.3)
教师强调(1)除法法则与乘法法则相近,只是“乘”“除”二字不同,很容易记。.(2)此法则是有理数的除法运算的又一种方法。
学生自己观察回忆,进行自主学习和合作交流,得出有理数的除法法则(两数相除,同号得正,异号得负,并把绝对值相乘。0除以任何不等于0的数都得0)
激发学生学习的积极性和主动性满足学生的表现欲和探究欲)
强化练习课本例2计算:
(1)(-)÷(-6)÷(-)
(2)(-)÷(-)
学生试着独立完成有理数的除法法则的灵活应用,并渗透了除法、分数、比可互相转化。
反馈矫正
课本69—70页第1、2、3题学生独立完成并小组互评巩固法则,调动学生积极性
归纳小节1、学习内容:倒数的概念及求法;有理数的除法
2、通过本节的学习,你有哪些体会?请与同学交流。
同学之间进行交流,小结本节内容培养了学生总结问题的能力
作业布置必做题:课本70页第1,3,4题
选做题:若ab≠0,则可能的取值是_______.综合考查,学以致用。不同的学生得到不同的发展
附:板书设计
2.9有理数的除法
例1计算:练习处:
例2计算:
教学反思:
《有理数的除法》一课是传统内容,在设计理念上,我努力体现“以学生为主”的思想,从学生已有的知识经验出发,展开教学,使学生自然进入状态,一切都很顺畅,达到了课前设计的构想。在教学中,突出了学生在教学学习过程的主体地位,突出了探索式学习方式,让学生经历了观察、实践、猜测、推理、交流、反思等活力,既应用了基本概念、基础知识又锻炼了学生能力。
在这节课中,本人认为也有不足之处,由于学生的层次各异,在总结问题时,中等以下和学习有困难的学生明显信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题。
教案的模板初中数学篇4
教学目标:
知识与技能:会用计算器进行数的加、减、乘、除、乘方运算。
过程与方法:了解计算器的性能,并会操作和使用,能运用计算器进行较为复杂的运算。
情感态度与价值观:使学生能运用计算器探索一些有趣的数学规律。
教学重点:用计算器进行数的加、减、乘、除、乘方的运算。
教学难点:能用计算器进行数的乘方的运算。
教材分析:在日常生活中,经常会出现一些较为复杂的混合运算,这就要求使用科学计算器。因此,使学生会用计算器进行数加、减、乘、除、乘方的运算就成为本节的重点和难点。
教学方法:师生互动法。
课时安排:1课时。
教具:Powerpoint幻灯片、科学计算器。
环节教师活动学生活动设计意图
创设情境一、从问题情境入手,揭示课题。
(出示幻灯一)
在棋盘上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25粒……一直到64格,你能计算第64格应放多少粒米?有简单的计算方法吗
教师对学生的回答给予点评,并带着问题引入本节课题:
板书:3.4用计算器进行数的计算在教师的引导下,学生仔细观察、思考,积极回答。通过师生的相互探讨,使学生认识到学会使用计算器的必要性,并激发学生的求知欲。
探究活动一一、介绍计算器的使用方法。
(出示幻灯二)
B型计算器的面板示意图如下:
教师结合示意图介绍按键的使用方法。
学生根据教师的介绍,使用计算器进行实际操作。通过训练,使学生掌握计算器的按键操作,熟悉计算器的程序设计模式。
探究活动二二、用计算器进行加、减、乘、除、乘方运算
(出示幻灯三)
例1用计算器求下列各式的值
(1)(-3.75)+(-22.5)
(2)51.7(-7.2)
解:(1)
(-3.75)+(-22.5)=-26.25
学生相互交流,并用计算器进行实际操作。通过计算,使学生熟悉计算器的用法。
探究活动二(2)
51.7(-7.2)=-372.24
学生相互交流,并用计算器进行实际操作。
通过计算,使学生会用计算器进行有理数的加、减、乘、除运算。
探究活动二例2用计算器计算(精确到0.001)
(-0.45)5
(-0.45)5-0.018
相互讨论,并进行实际操作。通过计算,使学生会用计算器进行有理数的乘方运算。
探究活动二
例3用计算器求值
(1)(-6)2(2)-62
解:
思考:
注意观察它们的按键顺序有什么不同?
学生认真观察、讨论,得出结论。
通过对比,使学生能区分两种按键的不同,灵活运用计算器进行计算。
探究活动三三、随堂练习
(出示幻灯四)
用计算器求值
1.9.23+10.2
2.(-2.35)(-0.46)
3.(-3.45)3
4.-2.082
学生独立操作完成。通过训练,使学生能熟练地用计算器进行数的运算。
探究活动四四、实际应用,能力提高。
1.用计算器解决“创设情境”中提出的问题。
(出示幻灯五)
2.张老师在银行贷月息为0.456%的住房贷款50000元,满5年时共需付款50000(1+600.456%)元,其中包括贷款本金和贷款利息。张老师共需付利息多少元?在教师的引导下,分组讨论,互相交流,回答有关的信息,学生互评。通过实际应用,进一步提高学生运用计算器解决实际问题的能力。
学习总结五、学习总结
这节课你有哪些收获?有什么体会?
教师简要点评:
(1)由于受计算器显示数位的限制,计算结果是一个近似数。
(2)当计算结果很大时,计算器能将计算结果自动转化为科学记数法的.形式来显示。
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性的评价。学生自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
课堂反馈
1.用计算器进行计算(略)
2.(1)用计算器计算下列各式:
1111,111111,11111111,1111111111。
(2)根据(1)的计算结果,你发现了什么规律?
(3)如果不用计算器,你能直接写出11111111111111的结果吗?让学生熟练运用计算器进行操作,学以致用。及时反馈,并使学生能运用计算器探究一些有趣的数学规律。
附:板书设计:
3.4用计算器进行数的计算
1.介绍计算器的使用方法;
2.运用计算器进行数的运算;
3.运用计算器探究数学规律。
教学反思:
1.只停留在powerpoint的使用上,有一定的局限性,如能演示使用计算器的方法,效果会更好。
2.更新教学观念,最好以学生自学使用计算器的方法为主,使学生主动参与探索,培养学生的创新精神。
3.教师主导课堂,忽视学生的学习主体作用,不利于创新思维及个性化发展。而通过网络或多媒体的教学过程中,往往易忽视教师的作用,过分的依赖于学习者的主观能动性,教学成本也大幅度提高。
教案的模板初中数学篇5
一、说教材
(五)教材的地位和作用
《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标
根据对教材内容的分析,以及在新课改理念的指导下,制定了如下三维目标:
(一)知识与技能
理解、掌握绝对值的含义,并且会比较有理数之间的大小。
(二)过程与方法
运用数轴来推理数的绝对值,并在推理的过程中清晰的阐述自己的观点,从而逐步发展发生的抽象思维。
(三)情感态度与价值观
体验数学活动的探索性和创造性,感受数学的严谨性以及数学结论的确定性。
教学重难点
通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点如下:
重点:绝对值的理解以及有理数的比较
难点:负数的绝对值的理解及比较
二、说学情
以上就是我对教材的分析,由于教学目标及重难点的确定也是在学生情况的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支撑,同时思维比较活跃和积极,所以教学过程中会注重直观材料的运用,然后引导学生自主思考并理解知识,以激发学生的学习兴趣,调动学生的积极性和主动性。
三、说教材
基于以上对教材、学情的分析,以及新课改的要求,我在本课中采用的教法有:讲授法、演示法和引导归纳法。演示法中需要的教具有多媒体和温度计。
四、说教法
新课改理念告诉我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为终身学习奠定扎实的基础。所以本课中我将引导学生通过自主探究、合作交流的学法来更好的掌握本节课的内容。
五、说教学程序
为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:
(一)情境导入
出示温度计,"北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度",学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
数轴的两个数值是相反数,是上节课的内容,0到-15°和0到15°的变化温度分别是15°,那么两个相同的变化温度,怎么用数学符号表示出来呢?
(二)新授
1、从上面的问题中,我引出今天的"绝对值"概念,然后和学生一起从数轴上推导出绝对值。
2、使用多媒体呈现一组数字,包括几个正数,几个负数。让大家在数轴上画出,并写出每个数字的绝对值。然后学生来依次说出每个绝对值,以巩固概念的掌握。
3、和大家一起写出这些绝对值,把负数、正数、0的绝对值分别写在三个地方,引导学生观察这些绝对值,并思考其中的规律,然后和学生一起得出结论,即正数的绝对值是本身,负数的绝对值是它的相反数,0的绝对值的0、得出这个结论后顺势提问:数a的绝对值是多少?进行分组讨论,在讨论一段时间后提醒学生刚刚的结论。
4、在每组的回答后,和学生一起总结出数a的绝对值,分三种情况,当a大于0,绝对值为a;等于0时,为0;小于0时,为-a、这三种情况的分析后,学生就充分理解了绝对值的含义。
5、回到大家画的数轴,大家很容易比较出原点0右边的正数的大小,那么左边的.负数的大小怎么比较呢?提出这个问题后不急于让学生回答,而是把学生引入一个情境,即把数轴上的数都看成是温度,比较温度的大小就比较容易,然后回到数的比较。在这个引导后,得出的结论是:离0越远的数,越小;也可以说绝对值越大的负数越小。
(三)巩固练习
在PPT上呈现一些数的绝对值,以及一些负数、正数、绝对值之间的比较的题。
(四)小结
引导学生总结出今天的学习内容,培养学生的归纳以及逻辑思维能力。
(五)布置作业
布置作业不是目的,目的是学生能够更好的掌握并运用本节课的内容。所以我会布置这样一个作业:请学生回家可以在父母的帮助下,找出南方和北方分别三个城市的温度,比较这些温度的大小,并写出每个温度的绝对值并进行比较。
(六)说板书设计
为了学生能够更清晰的掌握内容,我用写关键词的方式来有逻辑性的呈现我的板书。
以上就是我说课的全部内容,谢谢!
教案的模板初中数学篇6
一、教材分析:
1、教材所处的地位:
二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及一次函数的内容,对于函数已经有了初步的认识。从一次函数的学习来看,学习一种函数大致包括以下内容:通过具体实例认识这种函数;探索这种函数的图象和性质,利用这种函数解决实际问题;探索这种函数与相应方程不等式的关系。本章“二次函数”的学习也是从以上几个方面展开的。本节课的主要内容在于使学生认识并了解两个变量之间的二次函数的关系,为二次函数的后续学习奠定基础
2、教学目的要求:
(1)学生经历从实际问题中抽象出两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;
(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;
(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。
(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。
3、教学重点和难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:
重点:
(1)二次函数的概念
(2)能够表示简单变量之间的二次函数关系.
难点:
具体的分析、确定实际问题中函数关系式
二.教法、学法分析:
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
1、教法研究
教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、学法研究
初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。
3、教学方式
(1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。
(2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。
(3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。
三.教学流程分析:
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
1、温故知新—揭示课题
由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。
2、自我尝试、合作探究—探求新知
通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。
3、小试身手—循序渐进
本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。
4、课堂回眸—归纳提高
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
5、课堂检测—测评反馈
共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。
6、作业布置
作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。
四、对本节课的一点看法
通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。
教案的模板初中数学篇7
各位专家领导:
你们好!
今天我说课的内容是人教版七年级上册1、2、4绝对值内容。
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
(一)、教材所处的地位与作用:
本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。
(二)、教育教学目标:
根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:
1、知识目标:
1)使学生了解绝对值的表示法,会计算有理数的绝对值。
2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。
3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。
2、能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
3、思想目标:
通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。
(三):重点,难点以及确定的依据:
本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法与学法上谈谈:
二、教学策略(说教法)
(一)、教学手段:
由于七年级学生的理解能力与思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法与师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。
教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验与发展,从而培养学生的数形结合的思想。
为充分发挥学生的主体性与教师的主导辅助作用,教学过程中我设计了七个教学环节:
1、温故知新,激发情趣
2、得出定义,揭示内涵
3、手脑并用,深入理解
4、启发诱导,初步运用
5、反馈矫正,注重参与
6、归纳小结,强化思想
7、布置作业,引导预习
(二)、教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。
在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
三:学情分析:(说学法)
1、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。
2、学生学习本节课的知识障碍。学生对绝对值两种概念,不易理解,容易出错,所以教学中教师应予以简单明白、深入浅出的分析。
3、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
4、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
最后我来具体谈一谈这一堂课的教学过程:
四、教学程序设计
(一)、温故知新,激发情趣:
首先打出第一张幻灯片复习提问:什么叫做相反数?学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗?学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。从而引出课题:绝对值。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。
(二)、得出定义,揭示内涵:
由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,(absolutevalue)这个定义学生接受起来比较容易。
给出定义后引导学生讨论:“定义里的数a可以表示什么样的数?
(通过教师亲切的语言启发学生,以培养师生间的默契)通过讨论由师生共同得到绝对值定义里的数a可以是正数,负数和0。
然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?
(三)、手脑并用,深入理解:
1、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。
2、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。我就学生的回答情况给出评价,如“非常好”“非常规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。
3、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议一个数的绝对值与这个数有什么关系?启发学生举一些实际的例子来发现规律,并总结规律。从而引出绝对值的第二个定义。
(四)、启发诱导,初步运用:
有了绝对值的两个定义后,我安排了10道不同层次的判断题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。
(五)、反馈矫正,注重参与:
为巩固本节的教学重点我再次给出三道问题:
1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?
2)绝对值是0的数有几个?各是什么?
3)绝对值小于3的整数一共有多少个?
先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。
视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。
(六)、归纳小结,强化思想:
(七)、布置作业,引导预习:
1、全体学生必做课本习题1、23,4,5,10。
2、选作两道思考题:
(1)求绝对值不大于2的整数;(2)已知x是整数,且2、5<x<7,求x、
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。
以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!
教案的模板初中数学篇8
一、课题引入
为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.
对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.
二、课题研究
在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.
为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.
我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.
在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.
于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.
利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.
借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.
三、巩固练习
例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?
思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.
特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.
再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.
例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元
日期周二周三周四周五
开盘+0.16+0.25+0.78+2.12
收盘-0.23-1.32-0.67-0.65
当日收盘价
试在表中填写周二到周五该股票的收盘价.
思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.
因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:
周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.
教案的模板初中数学篇9
课题:数轴
编写:审阅:
班级学号姓名使用日期_________
【学习目标】
1.利用数轴比较两个数的大小;用数轴帮助深化对数的认识;
2.探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想;
3.感受点在数轴上左右运动时,所表示数的大小变化.
【导学提纲】
1.观察数轴,比较右边的点表示的数与左边的点表示的数的大小关系;
并比较-3与-1,与1的大小关系.
2.观察数轴,比较正数、负数、0的大小关系.
【展示交流】
活动一:
1.在数轴上画出表示-5,3,-1,0,4的点.你能将这些数从大到小排列吗?说说你这样排列的理由.
2.2°C与-2°C哪个温度高?-1°C与0°C哪个温度高?-3°C与-4°C哪个温度高?在数轴上画出表示数2、-2;-1、0和-3,-4的点,它们的位置关系如何?
3.把-3°C、-2°C、0°C、5°C按温度从低到高的顺序排列;在数轴上画出表示-3、-2、0、5的点,你能比较这几个数的大小吗?
活动二:
1.比较下列各组数的大小
(1)5和0(2)-0.5和0(3)-3、0、1.5(4)-3.5和-0.5
2.在数轴上画出下列各数的点,并用“<”将它们连接起来.
4,-2.5,0,-4.5,
【盘点收获】
【课堂反馈】
1.课本P18-19练一练1、2、3
2.在数轴上,到原点距离不大于2的所有整数是;
3.如图,在数轴上有三个点A、B、C,请回答:
(1)将点B向左移动3个单位后,三个点所表示的数谁最小?
(2)将点A向右移动4个单位后的数是多少?这时三个点所表示的数谁最小?
(3)将C点向左移动6个单位后,这时点B所表示的数比点C表示的数大多少?
(4)移动A、B、C中的两个点,使三个点表示的数相同,有几种移法?
【迁移创新】
利用数轴回答:
(1)写出所有不大于4且大于-3的整数:;
(2)不小于-4的非正整数是;
(3)比-2大的数是;-3比-6大.
【课堂作业】
课本P19习题3、4
教案的模板初中数学篇10
我说课的题目是冀教版小学数学教材四年级下册第六单元时《垂线》。下面我从四个方面进行说课:
一、教学设计:
主要包括三个方面
1、教材分析:
垂线在生产、生活中有着广泛的应用,垂线的概念、性质是学生今后进一步学习数学的基础,在教材上起着承上启下的作用。
大多数学生感到数学枯燥,学习兴趣不高。我所教的班一直采用小组合作学习,学生基本养成了良好的预习习惯。这节课利用普通的多媒体教室,灵活运用现代教育技术,通过实例的展示及动画演示,让学生充分感知图形中蕴含的垂线特征,使知识的生成过程更直观更形象。对学生的认知、理解以及教学重难点突破起到了关键作用。
2、根据以上分析,我确定本节课的教学目标是:
知识与技能包括垂直的定义垂线的画法与性质。
数学思考包括
探索垂线的性质,发展学生的几何直觉,培养学生的猜想能力。并通过“做数学”,让学生对猜想进行检验,作出正确判断。
解决问题包括
培养学生数学语言表达能力,培养学生解决问题时的合作意识和习惯。
情感与态度包括
让学生体验数学充满着探索和创造,感受数学趣味,获得发现的喜悦。
鼓励学生感想敢说,让学生体验成功的快乐,树立学好数学的信心。
3、教学重难点:
教学重点:
垂直概念的建立、垂线的画法与性质。
教学难点:
用数学语言描述垂直的定义以及学生猜想能力的培养。
二、教学过程设计:
根据这节课的特点,我把整堂课分为课题导入、合作探究、课堂小结、拓展创新四个环节,灵活运用现代教育技术,突出重点,化解难点。为培养学生课前预习的习惯,设立了预习导航,准备了大量有关本节课的学习资料,并鼓励学生自己到网上查阅资料,提高学生的信息素养。
1、课题导入
课题导入运用多媒体展示学生熟悉的马路、篱笆、小棒等实物形象,并提出问题:仔细观察各组图形中两条直线的位置关系有什么共同点?让学生感到数学贴近生活,激发学生的表达欲望。
2、合作探究凸现学生的主体地位,让学生在学习中学会质疑、学会发现。合作探究分为垂直的定义、课堂练习、试试身手、垂线性质、你来当老师、走进生活五个小版块。其中,垂线的定义鼓励学生自己概括,并积极与大家交流。课堂练习梯度明显,答案灵活,尽量让每一个学生都有收获。“试试身手”让学生走上讲台,展示自己的发现,学生在轻松愉悦中很容易发现垂线的性质。“你来当老师”、“各抒己见”鼓励学生积极主动的发表自己的见解,营造平等、民主的学习氛围。激发学生探求的欲望,给学生一份自信,让学生在学习中学会质疑、学会发现。“走进生活”借助多媒体把学生的生活体验真实的再现给学生,让学生体验学有用的数学,增强学生学习数学的兴趣。
3、“课堂小结”让学生自己总结,谈本节课的收获、体会、本节课还有什么问题、新发现。鼓励学生大胆发言、锻炼学生的数学表达能力、语言概括能力。
4、探究创新:“创新园”让学生利用本节课所学知识,课后去思考、去动手制作、去创新发现。既能激发学生课后去学习、去探索的欲望,又能让学生感悟数学来源于生活,并反作用于生活的道理。培养学生学数学、用数学的创新意识,我想,只要我们教师用心,精心培育,创新园一定能育出创新果。
教案的模板初中数学篇11
教学设计示例一——公式
教学目标
1、了解公式的意义,使学生能用公式解决简单的实际问题;
2、初步培养学生观察、分析及概括的能力;
3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式、
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例二——公式
一、教学目标
(一)知识教学点
1、使学生能利用公式解决简单的实际问题、
2、使学生理解公式与代数式的关系、
(二)能力训练点
1、利用数学公式解决实际问题的能力、
2、利用已知的公式推导新公式的能力、
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践、
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美、
二、学法引导
1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点
2、学生学法:观察分析推导计算
三、重点、难点、疑点及解决办法
1、重点:利用旧公式推导出新的图形的计算公式、
2、难点:同重点、
3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差、
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式、
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏、在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题、
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课
师:下面利用面积公式进行有关计算
(出示投影2)
例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析:
1、根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?
2、题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)
学生口述解题过程,教师予以指正并指出,强调解题的规范性。
【教法说明】
1、通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量。
2、用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。
(出示投影3)
例2如图是一个环形,外圆半径,内圆半径求这个环形的面积
学生讨论:
1、环形是怎样形成的、
2、如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。
评讲时注意:
1、如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算。
2、本题实际上是由圆的面积公式推导出环形面积公式。
3、进一步强调解题的规范性
教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径。
测试反馈,巩固练习
(出示投影4)
1、计算底,高的三角形面积
2、已知长方形的长是宽的1。6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t
3、已知圆的半径,,求圆的周长C和面积S
4、从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
(1)求A地到B地所用的时间公式。
(2)若千米/时,千米/时,求从A地到B地所用的时间。
学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演、
【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展、
师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式、
八、随堂练习
(一)填空
1、圆的半径为R,它的面积________,周长_____________
2、平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________
3、圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________
(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,V是多少?
九、布置作业
(一)必做题课本第__页x、x、x第__页x组x
(二)选做题课本第__页__组x
教案的模板初中数学篇12
关键词:有效教学;案例;一次函数;口诀记忆法
在全面贯彻落实“减负提质”教育政策的背景下,实施有效课堂教学就显得非常重要。要想开展有效数学课堂教学,教师必须想方设法使自己的教学能够最大限度地吸引学生,其中的关键点就是教师要对所授数学知识加以整合以提高课堂效率。在知识整合过程中起重要作用的是对所学知识结构的概括。只有经过概括的知识结构,才能准确地辨别出新旧知识间本质上的差异或相似程度。也只有经过概括的知识结构,才具有稳定的、清晰的概念。在初中数学中有很多的知识点都是在原有知识点上构建的,那就需要教师充分地把握教材,对相关数学知识加以概括总结。下面我就对一次函数性质的教学做法进行总结以供大家参考。
一次函数是初中数学的重要内容,在多年的教学当中我发现学生在理解和运用这个知识点时经常混淆,甚至有的同学觉得无从下手。纵观近几年中考试题可知,考察一次函数的题目形式多种多样,有选择、有填空,有的渗透在解答题中,有的出现在压轴题中。为了让同学们不再对一次函数性质觉得迷茫,我对一次函数的性质进行归纳,编成口诀,便于理解记忆。
一次函数的一般式y=kx+b(k≠0),它的图像所经过的象限由系数k和b的符号决定,而它的增减性也由k的符号决定,所以不用取点画图,直接根据k和b的符号就可以知道它的所有性质。
在表达式y=kx+b(k≠0)中,k在前,b在后,故分类是先将k分类,分k>0和k<0两类,在这两类条件下再将b分类,有b>0、b=0和b<0三类,而当b=0时,一次函数成了特殊的正比例函数,另当别论,所以共有以下四类。如下表:
在记忆时,只需记口诀“k为正时渐变大,k为负时渐变小。同正不经四象限,同负不经一象限;先正后负不经二,先负后正不经三”即可。
例1:函数y=7x-4经过的象限是。
分析:不需要取点画图,根据它的k=7>0为正,b=-4<0为负,“有先正后负不经二”,即该函数不经过第二象限,所以它只经过第一、三、四象限。
例2:有这样一道开放性题目:写出一个经过二、三、四象限的一次函数。
分析:只经过二、三、四象限的,就不经过第一象限,有口诀“同负不经一象限”,只要k和b都取负数即可,答案不唯一。
例3:已知一次函数y=kx-k,若y随x的增大而减小,则该函数经过象限。
分析:根据口诀“k为负时渐变小”,得知k为负,则-k为正。有“先负后正不经三”,即该函数不经过第三象限,所以它只经过第一、二、四象限。
例4:已知直线y=(1-2m)x+(4m-1),分别根据下列条件求m的值或m的取值范围:(1)这条直线经过原点;(2)这条直线经过第一、二、三象限。
分析:(1)直线经过原点的,b是0,即4m-1=0,解得m=0.25;(2)直线经过一、二、三象限的,就不经过四象限,有“同正不经四”,得1-2m>0和4m-1>0。解得m<0.5和m>0.25。
教案的模板初中数学篇13
教学目标:
(一)知识与技能
理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。
(二)过程与方法
1.在经历用字母表示数量关系的过程中,发展符号感;
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力
(三)情感态度价值观
1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心.
2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。
教学重、难点:
重点:单项式及单项式系数、次数的概念。
难点:单项式次数的概念;单项式的书写格式及注意点。
教学方法:
引导——探究式
在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念.
教具准备:
多媒体课件、小黑板.
教学过程:
一、创设情境,引入新课
出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。
情境问题:
青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发
爱国主义情感,得到一次情感教育。
解:根据路程、速度、时间之间的关系:路程=速度×时间
2小时行驶的路程是:100×2=200(千米)
3小时行驶的路程是:100×3=300(千米)
t小时行驶的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出现乘号,通常将乘号写作“·”或省略不写。
如:100×a可以写成100a或100a。
代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。
代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。
设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系
让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。
1、边长为a的正方体的表面积是__,体积是__.
2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。
3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。
4、数n的相反数是__。
解:(1)6a2、a3(2)2.5x(3)vt(4)-n
思考:它们有什么共同的特点?
6a2=6·a·aa3=a·a·a2.5x=2.5·xvt=v·t-n=-1·n
单项式:数与字母、字母与字母的乘积。
注意:单独的一个数或字母也是单项式。
设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
火眼金睛
下列各代数式中哪些是单项式哪些不是?
(1)a(2)0(3)a2
(4)6a(5)
(6)
(7)3a+2b(8)xy2
设计意图:加强学生对不同形式的单项式的直观认识。
解剖单项式
系数:单项式中的数字因数。
如:-3x的系数是,-ab的系数是,的系数是。
次数:一个单项式中的所有字母的指数的和。
如:-3x的次数是,ab的次数是。
小试身手
单项式2a2-1.2hxy2-t2-32x2y
系数
次数
设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。
单项式的注意点:
(1)数与字母相乘时,数应写在字母的___,且乘号可_________;
(2)带分数作为系数时,应改写成_______的形式;
(3)式子中若出现相除时,应把除号写成____的形式;
(4)把“1”或“-1”作为项的系数时,“1”可以__不写。
行家看门道
①1x②-1x
③a×3④a÷2
⑤⑥m的系数为1,次数为0
⑦的系数为2,次数为2
设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。
三、例题讲解,巩固新知
例1:用单项式填空,并指出它们的系数和次数:
(1)每包书有12册,n包书有册;
(2)底边长为a,高为h的三角形的面积;
(3)一个长方体的长和宽都是a,高是h,它的体积是;
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价
为元;
(5)一个长方形的长0.9,宽是a,这个长方形的面积是.
解:(1)12n,它的系数是12,次数是1
(2),它的系数是,次数是2;
(3)a2h,它的系数是1,次数是3;
(4)0.9a,它的系数是0.9,次数是1;
(5)0.9a,它的系数是0.9,次数是1。
设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。
试一试
你还能赋予0.9a一个含义吗?
设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。
大胆尝试
写出一个单项式,使它的系数是2,次数是3.
设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。
四、拓展提高
尝试应用
用单项式填空,并指出它们的系数和次数:
(1)全校学生总数是x,其中女生占总数48%,则女生人数是,男生人数是;
(2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是;
(3)产量由m千克增长10%,就达到千克;
设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。
能力提升
1、已知-xay是关于x、y的三次单项式,那么a=,b=.
2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a=,b=.
设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。
五、小结:
本节课你感受到了吗?
生活中处处有数学
本节课我们学了什么?你能说说你的收获吗?
1、单项式的概念:数与字母、字母与字母的乘积。
2、单项式的系数、次数的概念。
系数:单项中的数字因数;
次数:单项中所有字母的指数和。
3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。
设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。
结束寄语
悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!
设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。
六、板书设计
2.1整式
单项式概念探究例1多
单项式的系数概念观察交流尝试应用媒
单项式的次数概念能力提升体
七、作业:
1.作业本(必做)。
2.请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。
设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。
八、设计理念:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。
教案的模板初中数学篇14
教学目标
(1)认知目标
理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
(2)技能目标
经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
(3)情感态度与价值观
教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。
教学重难点
重点:运用分式的乘除法法则进行运算。
难点:分子、分母为多项式的分式乘除运算。
教学过程
(一)提出问题,引入课题
俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:
问题1:求容积的高是,(引出分式乘法的学习需要)。
问题2:求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。
从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。
(二)类比联想,探究新知
从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。
解后总结概括:
(1)式是什么运算?依据是什么?
(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。
(分式的乘除法法则)
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(三)例题分析,应用新知
师生活动:教师参与并指导,学生独立思考,并尝试完成例题。
P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。
(四)练习巩固,培养能力
P13练习第2题的(1)、(3)、(4)与第3题的(2)。
师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。
通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。
(五)课堂小结,回扣目标
引导学生自主进行课堂小结:
1、本节课我们学习了哪些知识?
2、在知识应用过程中需要注意什么?
3、你有什么收获呢?
师生活动:学生反思,提出疑问,集体交流。
(六)布置作业
教科书习题6.2第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。
板书设计
在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。
教案的模板初中数学篇15
教学目标
1、使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2、了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3、通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4、通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1、知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2、教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性。
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式。如:2,m都是代数式。等都不是代数式。
3、教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a—3)的意义。
分析7(a—3)读成7乘a减3,这样就产生歧义,究竟是7a—3呢?还是7(a—3)呢?有模棱两可之感。代数式7(a—3)的最后运算是积,应把a—3作为一个整体。所以,7(a—3)的意义是7与(a—3)的积。
4、书写代数式的注意事项:
(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面。如3×a,应写作3、a或写作3a,a×b应写作3、a或写作ab。带分数与字母相乘,应把带分数化成假分数,数字与数字相乘一般仍用“×”号。
(2)代数式中有除法运算时,一般按照分数的写法来写。
(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来。
5、对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系,这些小学都学过。比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍。
例2是说出一些比较简单的代数式的意义。因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已。
6、教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7、教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计示例
课堂教学过程设计
一、从学生原有的认知结构提出问题
1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律a+b=b+a;
(2)乘法交换律a·b=b·a;
(3)加法结合律(a+b)+c=a+(b+c);
(4)乘法结合律(ab)c=a(bc);
(5)乘法分配律a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0。25小时,试问步行、骑车、乘汽车的速度分别是多少?
3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:
(1)用字母表示数可以把数或数的关系,简明的表示出来;
(2)在公式与中,用字母表示数也会给运算带来方便;
(3)像上面出现的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代数式。那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容。
三、讲授新课
1、代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式。学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2、举例说明
例1填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:
(1)12n;
(2)(t—2);
(3)a3;(4)(1+10%)m
例2说出下列代数式的意义:
解:
(1)2a+3的意义是2a与3的和;
(2)2(a+3)的意义是2与(a+3)的积;
(3)a2+b2的意义是a,b的平方的和;
(4)(a+b)2的意义是a与b的和的平方
说明:
(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
四、课堂练习
1填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____
2说出下列代数式的意义:(投影)
3用代数式表示:(投影)
(1)x与y的和;
(2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和;
(4)a除以2的商与b除3的商的和
五、师生共同小结
首先,提出如下问题:
1本节课学习了哪些内容?2用字母表示数的意义是什么?
3什么叫代数式?
教师在学生回答上述问题的基础上,指出:
①代数式实际上就是算式,字母像数字一样也可以进行运算;
②在代数式和运算结果中,如有单位时,要正确地使用括号
六、作业
1、一个三角形的三条边的长分别的a,b,c,求这个三角形的周长
2、张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3、飞机的速度是汽车的40倍,自行车的速度是汽车的1/3,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4、a千克大米的售价是6元,1千克大米售多少元?
5、圆的半径是R厘米,它的面积是多少?
6、用代数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的1/3的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长
教案的模板初中数学篇16
(一)本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
(二)教学目标
在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:
(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的精神。
(三)教材重难点
由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。
二、教法选择与学法指导
本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
三、教学流程
(一)创设情景,激发求知欲望
首先,我出示一个实际问题:
问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……
然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?
这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
(二)引导活动,揭示知识产生过程
数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。
活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。
活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。
活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。如:
边
1
2
3
角
3
2
1
教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。
活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺和剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。
活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。
活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。
最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。
若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗?
活动七:在给出的画有的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。
教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。
(三)例题教学,发挥示范功能
例题教学是课堂教学的一个重要环节,因此,如何充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。
首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。
问题1:请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。
问题2:你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗?
问题3:ADC可以看成是由ABC经过怎样的图形变换得到的?
在探索完上述3个问题的基础上,对例题作如下的变式与引伸:
ABC与ADC全等了,你又能得到哪些结论?连接BD交AC于O,你能说明BOC与DOC全等吗?若全等,你又能得到哪些结论?
这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。
在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下两个练习:
(1)基础知识应用。完成教材P139练一练2。
(2)已知如图:,请你添加一些适当的条件,再根据SAS的识别方法说明两个三角形全等。对学生进行逆向思维训练,同时让学生发现对顶角这一隐含条件。
(四)课堂小结,建立知识体系。
(1)本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。
(2)你还有哪些疑问?
附板书设计:
三角
探索三角形全等的条件
两角一边
探究活动一:两个三角形全等至少要几个条件
一角两边
一个条件行不通两个条件行不通三个条件
三边
探究活动二:全等三角形的识别方法:
特殊------一般
教案的模板初中数学篇17
教学目标
知识与能力:
1.理解一元二次方程根的判别式。
2.掌握一元二次方程的根与系数的关系
3.同学们掌握一元二次方程的实际应用.了解一元二次方程的分式方程。
过程与方法:
培养学生的逻辑思维能力以及推理论证能力。
情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。
重、难点
重点:根的判别式和根与系数的关系及一元二次方程的应用。
难点:一元二次方程的实际应用。
一、导入新课、揭示目标
1.理解一元二次方程根的判别式。
2.掌握一元二次方程的根与系数的关系
3.掌握一元二次方程的实际应用.
二、自学提纲:
一.主要让学生能理解一元二次方程根的判别式:
1.判别式在什么情况下有两个不同的实数根?
2.判别式在什么情况下有两个相同的实数根?
3.判别式在什么情况下无实数根?
二.ax2+bx+c=o(a≠0)的两个根为x1.x2那么
X1+x2=-x1x2=
三.一元二次方程的实际应用。根据不同的类型的问题.列出不同类型的方程.
三.合作探究.解决疑难
例1已知关于x的方程x2+2x=k-1没有实数根.试判别关于x的方程x2+kx=1-k的根的情况。
巩固提高:
已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根.求的周长
例题2:
.已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根.且(x1+2)(x2+2)=11.求a的值。
.巩固提高:
已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.
(1)求证:不论m为任何实数.方程总有两个不相等的实数根;
(2)若方程两根为x1.x2.且满足
求m的值。
例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台.现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台,
(1)求1月份到3月份销售额的平均增长率:
(2)求3月份时该电脑的销售价格.
练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?
2)则降价多少元?
四、小结
这节课同学有什么收获?同学互相交流?
五、布置作业:
课前课后P10-12
教案的模板初中数学篇18
教学目标
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维。
3、情感、态度与价值观
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。
重、难点与关键
1、重点:一次函数的应用。
2、难点:一次函数的应用。
3、关键:从数形结合分析思路入手,提升应用思维。
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的.应用。
教学过程
一、范例点击,应用所学
【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。
y=
【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习。
三、课堂总结,发展潜能
由学生自我评价本节课的表现。
四、布置作业,专题突破
课本P120习题14.2第9,10,11题。
板书设计
1、一次函数的应用例:
教案的模板初中数学篇19
学习目标
1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
3、能分析出一个简单分式有、无意义的条件。
4、会根据已知条件求分式的值。
学习重点
分式的概念,掌握分式有意义的条件
学习难点
分式有、无意义的条件
教学流程
预习导航
一、创设情境:
京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:
(1)货运列车从北京到上海需要多长时间?
(2)快速列车从北京到上海需要多长时间?
(3)已知从北京到上海快速列车比货运列车少用多少时间?
观察刚才你们所列的式子,它们有什么特点?
这些式子与分数有什么相同和不同之处?
合作探究
一、概念探究:
1、列出下列式子:
(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是
(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是元。
(3)正n边形的每个内角为度。
(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。这两块棉田平均每公顷产棉花______㎏。
2、两个数相除可以把它们的商表示成分数的形式。如果用字母分别表示分数的分子和分母,那么可以表示成什么形式呢?
3、思考:
上面所列各式有什么共同特点?
(通过对以上几个实际问题的研讨,学会用的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)
分式的概念:
4、小结分式的概念中应注意的问题.
①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;
②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;
③如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。分式分母不为零是隐含在此分式中而无须注明的条件。
二、例题分析:
例1:试解释分式所表示的实际意义
例2:求分式的值①a=3②a=—
例3:当取什么值时,分式(1)没有意义?(2)有意义?(3)值为零。
三、展示交流:
1、在____________中,是整式的有_____________________,是分式的有________________;
2、写成分式为____________,且当m≠_____时分式有意义;
3、当x_______时,分式无意义,当x______时,分式的值为1。
4、若分式的值为正数,则x的取值应是()
A.,B.C.D.为任意实数
四、提炼总结:
1、什么叫分式?
2、分式什么时候有意义?怎样求分式的值
教案的模板初中数学篇20
绝对值
一、教学目标 :
1.知识目标:
①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:
①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:
①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点 :绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法
启发引导式、讨论式和谈话法
四、教学过程
(一)复习提问
问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?
(二)新授
1.引入
结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义
①几何意义
一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作a。
举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)
强调:表示0的点与原点的距离是0,所以0=0。
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义
把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
用字母a表示数,则绝对值的代数意义可以表示为:
指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3.例题精讲
例1.求8,-8,,-的绝对值。
按教材方法讲解。
例2.计算:2.5+-3--3。
解:2.5+-3--3=2.5+3-3=6-3=3
例3.已知一个数的绝对值等于2,求这个数。
解:∵2=2,-2=2
∴这个数是2或-2。
五、巩固练习
练习一:教材P64 1、2,P66习题2.4 A组 1、2。
练习二:
1.绝对值小于4的整数是____。
2.绝对值最小的数是____。
3.已知2x-1+y-2=0,求代数式3x2y的值。
六、归纳小结
本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。
七、布置作业
教材P66 习题2.4 A组 3、4、5。
绝对值
一、教学目标 :
1.知识目标:
①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:
①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:
①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点 :绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法
启发引导式、讨论式和谈话法
四、教学过程
(一)复习提问
问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?
(二)新授
1.引入
结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义
①几何意义
一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作a。
举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)
强调:表示0的点与原点的距离是0,所以0=0。
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义
把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
用字母a表示数,则绝对值的代数意义可以表示为:
指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3.例题精讲
例1.求8,-8,,-的绝对值。
按教材方法讲解。
例2.计算:2.5+-3--3。
解:2.5+-3--3=2.5+3-3=6-3=3
例3.已知一个数的绝对值等于2,求这个数。
解:∵2=2,-2=2
∴这个数是2或-2。
五、巩固练习
练习一:教材P64 1、2,P66习题2.4 A组 1、2。
练习二:
1.绝对值小于4的整数是____。
2.绝对值最小的数是____。
3.已知2x-1+y-2=0,求代数式3x2y的值。
六、归纳小结
本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。
七、布置作业
教材P66 习题2.4 A组 3、4、5。