教案吧 > 学科教案 > 数学教案 >

数学教案电子版下载免费

时间: 新华 数学教案

教案可以帮助教师从学生实际情况出发,面向大多数学生,调动学生学习的积极性。写好数学教案电子版下载免费有什么技巧?这里给大家整理数学教案电子版下载免费,方便大家学习。

数学教案电子版下载免费

数学教案电子版下载免费篇1

一、教学目标

根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下:

(1)知识与技能目标:

1、了解微积分基本定理的含义;

2、会用牛顿-莱布尼兹公式求简单的定积分.

(2)过程与方法目标:通过直观实例体会用微积分基本定理求定积分的方法.

(3)情感、态度与价值观目标:

1、学会事物间的相互转化、对立统一的辩证关系,提高理性思维能力;

2、了解微积分的科学价值、文化价值.

3、教学重点、难点

重点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分.

难点:了解微积分基本定理的含义.

二、教学设计

复习:1.定积分定义:

其中--积分号,-积分上限,-积分下限,-被积函数,-积分变量,-积分区间

2.定积分的几何意义:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号.

曲边图形面积:;

变速运动路程:;

3.定积分的性质:

性质1

性质2

性质3

性质4

二.引入新课:

计算(1)(2)

上面用定积分定义及几何意义计算定积分,比较复杂不是求定积分的一般方法。我们必须寻求计算定积分的比较一般的方法。

问题:

设一物体沿直线作变速运动,在时刻t时物体所在位置为S(t),速度为v(t)(),则物体在时间间隔[a,b]内经过的路程可用速度函数表示为。

另一方面,这段路程还可以通过位置函数S(t)在[a,b]上的增量S(b)-S(a)来表达,即s===S(b)-S(a)而。

推广:

微积分基本定理:如果函数是上的连续函数的任意一个原函数,则

为了方便起见,还常用表示,即

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

例题1:计算

练习:

例2.计算定积分

练习

回顾:基本初等函数的导数公式

函数f(x)c

Sinxcosx

lnx

导函数f′(x)0n

cosx-sinx

新知:基本初等函数的原函数公式

被积函数f(x)c

sinxcosx

一个原函数F(x)cx

-cosxsinxln

课堂小结:

1.本节课借助于变速运动物体的速度与路程的关系以及图形得出了特殊情况下的牛顿-莱布尼兹公式.成立,进而推广到了一般的函数,得出了微积分基本定理,得到了一种求定积分的简便方法,运用这种方法的关键是找到被积函数的原函数,这就要求大家前面的求导数的知识比较熟练,希望,不明白的同学,回头来多复习!

2.微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理。

数学教案电子版下载免费篇2

指数与指数幂的运算教案

整体设计

教学分析

我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.

教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.

本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.

根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.

三维目标

1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.

2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.

3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.

4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.

重点难点

教学重点

(1)分数指数幂和根式概念的理解.

(2)掌握并运用分数指数幂的运算性质.

(3)运用有理指数幂的性质进行化简、求值.

教学难点

(1)分数指数幂及根式概念的理解.

(2)有理指数幂性质的灵活应用.

课时安排

3课时

教学过程

第1课时

作者:路致芳

导入新课

思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.

思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.

推进新课

新知探究

提出问题

(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?

(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?

(3)根据上面的结论我们能得到一般性的结论吗?

(4)可否用一个式子表达呢?

活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.

讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.

(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.

(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.

(4)用一个式子表达是,若xn=a,则x叫a的n次方根.

教师板书n次方根的意义:

一般地,如果xn=a,那么x叫做a的n次方根(nthroot),其中n>1且n∈正整数集.

可以看出数的平方根、立方根的概念是n次方根的概念的特例.

提出问题

(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).

①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.

(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?

(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?

(4)任何一个数a的偶次方根是否存在呢?

活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.

讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.

(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.

(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.

(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.

类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:

①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

③负数没有偶次方根;0的任何次方根都是零.

上面的文字语言可用下面的式子表示:

a为正数:n为奇数,a的n次方根有一个为na,n为偶数,a的n次方根有两个为±na.

a为负数:n为奇数,a的n次方根只有一个为na,n为偶数,a的n次方根不存在.

零的n次方根为零,记为n0=0.

可以看出数的平方根、立方根的性质是n次方根的性质的特例.

思考

根据n次方根的性质能否举例说明上述几种情况?

活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.

解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等.其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式.

根式的概念:

式子na叫做根式,其中a叫做被开方数,n叫做根指数.

如3-27中,3叫根指数,-27叫被开方数.

思考

nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?

活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.

〔如3(-3)3=3-27=-3,4(-8)4=-8=8〕.

解答:根据n次方根的意义,可得:(na)n=a.

通过探究得到:n为奇数,nan=a.

n为偶数,nan=a=a,-a,a≥0,a<0.

因此我们得到n次方根的运算性质:

①(na)n=a.先开方,再乘方(同次),结果为被开方数.

②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数.

n为偶数,nan=a=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值.

应用示例

思路1

例求下列各式的值:

(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).

活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.

解:(1)3(-8)3=-8;

(2)(-10)2=10;

(3)4(3-π)4=π-3;

(4)(a-b)2=a-b(a>b).

点评:不注意n的奇偶性对式子nan的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.

变式训练

求出下列各式的值:

(1)7(-2)7;

(2)3(3a-3)3(a≤1);

(3)4(3a-3)4.

解:(1)7(-2)7=-2,

(2)3(3a-3)3(a≤1)=3a-3,

(3)4(3a-3)4=

点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解.

思路2

例1下列各式中正确的是()

A.4a4=a

B.6(-2)2=3-2

C.a0=1

D.10(2-1)5=2-1

活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.

解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=a,故A项错.

(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错.

(3)a0=1是有条件的,即a≠0,故C项也错.

(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确.所以答案选D.

答案:D

点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.

例23+22+3-22=__________.

活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.

解析:因为3+22=1+22+(2)2=(1+2)2=2+1,

3-22=(2)2-22+1=(2-1)2=2-1,

所以3+22+3-22=22.

答案:22

点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式.

思考

上面的例2还有别的解法吗?

活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.

另解:利用整体思想,x=3+22+3-22,

两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.

变式训练

若a2-2a+1=a-1,求a的取值范围.

解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=a-1=a-1,

即a-1≥0,

所以a≥1.

点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.

知能训练

(教师用多媒体显示在屏幕上)

1.以下说法正确的是()

A.正数的n次方根是一个正数

B.负数的n次方根是一个负数

C.0的n次方根是零

D.a的n次方根用na表示(以上n>1且n∈正整数集)

答案:C

2.化简下列各式:

(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

答案:(1)2;(2)3;(3)x2;(4)xy;(5)x-y.

3.计算7+40+7-40=__________.

解析:7+40+7-40

=(5)2+25?2+(2)2+(5)2-25?2+(2)2

=(5+2)2+(5-2)2

=5+2+5-2

=25.

答案:25

拓展提升

问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明.

活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义.

通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下.再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论.

解:(1)(na)n=a(n>1,n∈N).

如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立.

例如:(43)4=3,(3-5)3=-5.

(2)nan=a,a,当n为奇数,当n为偶数.

当n为奇数时,a∈R,nan=a恒成立.

例如:525=2,5(-2)5=-2.

当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=a=-a,如(-3)2=32=3,

即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的.

点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解.

课堂小结

学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.

1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集.用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数.

(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

(3)负数没有偶次方根.0的任何次方根都是零.

2.掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=a=a,-a,a≥0,a<0.

作业

课本习题2.1A组1.

补充作业:

1.化简下列各式:

(1)681;(2)15-32;(3)6a2b4.

解:(1)681=634=332=39;

(2)15-32=-1525=-32;

(3)6a2b4=6(a?b2)2=3a?b2.

2.若5<a<8,则式子(a-5)2-(a-8)2的值为__________.<p="">

解析:因为5<a<8,所以(a-5)2-(a-8)2=a-5-8+a=2a-13.<p="">

答案:2a-13

3.5+26+5-26=__________.

解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,

不难看出5+26=(3+2)2=3+2.

同理5-26=(3-2)2=3-2.

所以5+26+5-26=23.

答案:23

设计感想

学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.

第2课时

作者:郝云静

导入新课

思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.

思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂.

推进新课

新知探究

提出问题

(1)整数指数幂的运算性质是什么?

(2)观察以下式子,并总结出规律:a>0,

①;

②a8=(a4)2=a4=,;

③4a12=4(a3)4=a3=;

④2a10=2(a5)2=a5=.

(3)利用(2)的规律,你能表示下列式子吗?

,,,(x>0,m,n∈正整数集,且n>1).

(4)你能用方根的意义来解释(3)的式子吗?

(5)你能推广到一般的情形吗?

活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.

讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;

a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①5a10=,②a8=,③4a12=,④2a10=结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变.

根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).

(3)利用(2)的规律,453=,375=,5a7=,nxm=.

(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是.

结果表明方根的结果和分数指数幂是相通的.

(5)如果a>0,那么am的n次方根可表示为nam=,即=nam(a>0,m,n∈正整数集,n>1).

综上所述,我们得到正数的正分数指数幂的意义,教师板书:

规定:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1).

提出问题

(1)负整数指数幂的意义是怎样规定的?

(2)你能得出负分数指数幂的意义吗?

(3)你认为应怎样规定零的分数指数幂的意义?

(4)综合上述,如何规定分数指数幂的意义?

(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?

(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?

活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价.

讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N+.

(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.

规定:正数的负分数指数幂的意义是==1nam(a>0,m,n∈=N+,n>1).

(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.

(4)教师板书分数指数幂的意义.分数指数幂的意义就是:

正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是==1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.

(5)若没有a>0这个条件会怎样呢?

如=3-1=-1,=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2=,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.

(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.

有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q).

我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题.

应用示例

例1求值:(1);(2);(3)12-5;(4).

活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来.

解:(1)=22=4;

(2)=5-1=15;

(3)12-5=(2-1)-5=2-1×(-5)=32;

(4)=23-3=278.

点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如=382=364=4.

例2用分数指数幂的形式表示下列各式.

a3?a;a2?3a2;a3a(a>0).

活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结.

解:a3?a=a3?=;

a2?3a2=a2?=;

a3a=.

点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.

例3计算下列各式(式中字母都是正数).

(1);

(2).

活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.

解:(1)原式=[2×(-6)÷(-3)]=4ab0=4a;

(2)=m2n-3=m2n3.

点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了.

本例主要是指数幂的运算法则的综合考查和应用.

变式训练

求值:(1)33?33?63;

(2)627m3125n64.

解:(1)33?33?63==32=9;

(2)627m3125n64==9m225n4=925m2n-4.

例4计算下列各式:

(1)(325-125)÷425;

(2)a2a?3a2(a>0).

活动:先由学生观察以上两个式子的特征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答.

解:(1)原式=

==65-5;

(2)a2a?3a2==6a5.

知能训练

课本本节练习1,2,3

【补充练习】

教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.

1.(1)下列运算中,正确的是()

A.a2?a3=a6B.(-a2)3=(-a3)2

C.(a-1)0=0D.(-a2)3=-a6

(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是()

A.①②B.①③C.①②③④D.①③④

(3)(34a6)2?(43a6)2等于()

A.aB.a2C.a3D.a4

(4)把根式-25(a-b)-2改写成分数指数幂的形式为()

A.B.

C.D.

(5)化简的结果是()

A.6aB.-aC.-9aD.9a

2.计算:(1)--17-2+-3-1+(2-1)0=__________.

(2)设5x=4,5y=2,则52x-y=__________.

3.已知x+y=12,xy=9且x<y,求p=""的值.

答案:1.(1)D(2)B(3)B(4)A(5)C2.(1)19(2)8

3.解:.

因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

又因为x<y,所以x-y=-2×33=-63.<p="">

所以原式==12-6-63=-33.

拓展提升

1.化简:.

活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:

x-1=-13=;

x+1=+13=;

.

构建解题思路教师适时启发提示.

解:

=

=

=

=.

点拨:解这类题目,要注意运用以下公式,

=a-b,

=a±+b,

=a±b.

2.已知,探究下列各式的值的求法.

(1)a+a-1;(2)a2+a-2;(3).

解:(1)将,两边平方,得a+a-1+2=9,即a+a-1=7;

(2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+a-2=47;

(3)由于,

所以有=a+a-1+1=8.

点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.

课堂小结

活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:

(1)分数指数幂的意义就是:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是==1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.

(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.

(3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q).

(4)说明两点:

①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.

②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用=am来计算.

作业

课本习题2.1A组2,4.

设计感想

本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务.

第3课时

作者:郑芳鸣

导入新课

思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是无理数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂.

思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题.

推进新课

新知探究

提出问题

(1)我们知道2=1.41421356…,那么1.41,1.414,1.4142,1.41421,…,是2的什么近似值?而1.42,1.415,1.4143,1.41422,…,是2的什么近似值?

(2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?

2的过剩近似值

的近似值

1.511.18033989

1.429.829635328

1.4159.750851808

1.41439.73987262

1.414229.738618643

1.4142149.738524602

1.41421369.738518332

1.414213579.738517862

1.4142135639.738517752

……

的近似值

2的不足近似值

9.5182696941.4

9.6726699731.41

9.7351710391.414

9.7383051741.4142

9.7384619071.41421

9.7385089281.414213

9.7385167651.4142135

9.7385177051.41421356

9.7385177361.414213562

……

(3)你能给上述思想起个名字吗?

(4)一个正数的无理数次幂到底是一个什么性质的数呢?如,根据你学过的知识,能作出判断并合理地解释吗?

(5)借助上面的结论你能说出一般性的结论吗?

活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:

问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.

问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.

问题(3)上述方法实际上是无限接近,最后是逼近.

问题(4)对问题给予大胆猜测,从数轴的观点加以解释.

问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般.

讨论结果:(1)1.41,1.414,1.4142,1.41421,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.4143,1.41422,…,这些数都大于2,称2的过剩近似值.

(2)第一个表:从大于2的方向逼近2时,就从51.5,51.42,51.415,51.4143,51.41422,…,即大于的方向逼近.

第二个表:从小于2的方向逼近2时,就从51.4,51.41,51.414,51.4142,51.41421,…,即小于的方向逼近.

从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面从51.4,51.41,51.414,51.4142,51.41421,…,即小于的方向接近,而另一方面从51.5,51.42,51.415,51.4143,51.41422,…,即大于的方向接近,可以说从两个方向无限地接近,即逼近,所以是一串有理数指数幂51.4,51.41,51.414,51.4142,51.41421,…,和另一串有理数指数幂51.5,51.42,51.415,51.4143,51.41422,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示的点靠近,但这个点一定在数轴上,由此我们可得到的结论是一定是一个实数,即51.4<51.41<51.414<51.4142<51.41421<…<<…<51.41422<51.4143<51.415<51.42<51.5.

充分表明是一个实数.

(3)逼近思想,事实上里面含有极限的思想,这是以后要学的知识.

(4)根据(2)(3)我们可以推断是一个实数,猜测一个正数的无理数次幂是一个实数.

(5)无理数指数幂的意义:

一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.

也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂.

提出问题

(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?

(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢?

(3)你能给出实数指数幂的运算法则吗?

活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳.

对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.

对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通.

对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.

讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱.

(2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则:

①ar?as=ar+s(a>0,r,s都是无理数).

②(ar)s=ars(a>0,r,s都是无理数).

③(a?b)r=arbr(a>0,b>0,r是无理数).

(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂.

实数指数幂的运算性质:

对任意的实数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈R).

②(ar)s=ars(a>0,r,s∈R).

③(a?b)r=arbr(a>0,b>0,r∈R).

应用示例

例1利用函数计算器计算.(精确到0.001)

(1)0.32.1;(2)3.14-3;(3);(4).

活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值;

对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可;

对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可;

对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按键,再按3,最后按=键.有时也可按2ndf或shift键,使用键上面的功能去运算.

学生可以相互交流,挖掘计算器的用途.

解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3)≈2.336;(4)≈6.705.

点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可.

例2求值或化简.

(1)a-4b23ab2(a>0,b>0);

(2)(a>0,b>0);

(3)5-26+7-43-6-42.

活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律.

解:(1)a-4b23ab2==3b46a11.

点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.

(2)

=

=425a0b0=425.

点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.

(3)5-26+7-43-6-42

=(3-2)2+(2-3)2-(2-2)2

=3-2+2-3-2+2=0.

点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.

例3已知,n∈正整数集,求(x+1+x2)n的值.

活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性,与具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.

=.

这时应看到1+x2=,

这样先算出1+x2,再算出1+x2,代入即可.

解:将代入1+x2,得1+x2=,

所以(x+1+x2)n=

=

==5.

点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.

知能训练

课本习题2.1A组3.

利用投影仪投射下列补充练习:

1.化简:的结果是()

A.B.

C.D.

解析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形.

因为,所以原式的分子分母同乘以.

依次类推,所以.

答案:A

2.计算2790.5+0.1-2+-3π0+9-0.5+490.5×2-4.

解:原式=

=53+100+916-3+13+716=100.

3.计算a+2a-1+a-2a-1(a≥1).

解:原式=(a-1+1)2+(a-1-1)2=a-1+1+a-1-1(a≥1).

本题可以继续向下做,去掉绝对值,作为思考留作课下练习.

4.设a>0,,则(x+1+x2)n的值为__________.

解析:1+x2=.

这样先算出1+x2,再算出1+x2,

将代入1+x2,得1+x2=.

所以(x+1+x2)n=

==a.

答案:a

拓展提升

参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂的意义.

活动:教师引导学生回顾无理数指数幂的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算的过剩近似值和不足近似值,利用逼近思想,“逼出”的意义,学生合作交流,在投影仪上展示自己的探究结果.

解:3=1.73205080…,取它的过剩近似值和不足近似值如下表.

3的过剩近似值

的过剩近似值

3的不足近似值

的不足近似值

1.83.4822022531.73.249009585

1.743.3403516781.733.317278183

1.7333.3241834461.7313.319578342

1.73213.322110361.73193.321649849

1.732063.3220182521.732043.3219722

1.7320513.3219975291.7320493.321992923

1.73205093.3219972981.73205073.321996838

1.732050813.3219970911.732050793.321997045

…………

我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数

21.7,21.72,21.731,21.7319,…,

同样把用2作底数,3的过剩近似值作指数的各个幂排成从大到小的一列数:

21.8,21.74,21.733,21.7321,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为,

即21.7<21.73<21.731<21.7319<…<<…<21.7321<21.733<21.74<21.8.

也就是说是一个实数,=3.321997…也可以这样解释:

当3的过剩近似值从大于3的方向逼近3时,23的近似值从大于的方向逼近;

当3的不足近似值从小于3的方向逼近3时,23的近似值从小于的方向逼近.

所以就是一串有理指数幂21.7,21.73,21.731,21.7319,…,和另一串有理指数幂21.8,21.74,21.733,21.7321,…,按上述规律变化的结果,即≈3.321997.

课堂小结

(1)无理指数幂的意义.

一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.

(2)实数指数幂的运算性质:

对任意的实数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈R).

②(ar)s=ars(a>0,r,s∈R).

③(a?b)r=arbr(a>0,b>0,r∈R).

(3)逼近的思想,体会无限接近的含义.

作业

课本习题2.1B组2.

设计感想

无理数指数是指数概念的又一次扩充,教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力.

备课资料

【备用习题】

1.以下各式中成立且结果为最简根式的是()

A.a?5a3a?10a7=10a4

B.3xy2(xy)2=y?3x2

C.a2bb3aab3=8a7b15

D.(35-125)3=5+125125-235?125

答案:B

2.对于a>0,r,s∈Q,以下运算中正确的是()

A.ar?as=arsB.(ar)s=ars

C.abr=ar?bsD.arbs=(ab)r+s

答案:B

3.式子x-2x-1=x-2x-1成立当且仅当()

A.x-2x-1≥0B.x≠1C.x<1D.x≥2

解析:方法一:

要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.

若x≥2,则式子x-2x-1=x-2x-1成立.

故选D.

方法二:

对A,式子x-2x-1≥0连式子成立也保证不了,尤其x-2≤0,x-1<0时式子不成立.

对B,x-1<0时式子不成立.

对C,x<1时x-1无意义.

对D正确.

答案:D

4.化简b-(2b-1)(1<b<2).<p="">

解:b-(2b-1)=(b-1)2=b-1(1<b<2).<p="">

5.计算32+5+32-5.

解:令x=32+5+32-5,

两边立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.

∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.

∴32+5+32-5=1.

数学教案电子版下载免费篇3

教材分析:

本课的内容是第十一册第三单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

2、采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

3、提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:

知道倒数的意义和会求一个数的倒数

教学难点:

1、0的倒数的求法。

教具准备:

课件

教学过程:

一、导入

师:上课前啊,老师发现许多同学是结伴来到多媒体教室的,比如说~你们俩是不是好朋友啊?(请点到名字的两名学生分别表述一下两人之间的关系)

师:好朋友是双向的,可以说成“____为好朋友(也可以说____好朋友)

教师找一对儿同桌,让他们也说说相互间的关系。(____为同桌,一起来上数学课)

二、揭示倒数的意义

师:那今天咱们来学点儿什么呢?

1、(课件出示例7)

请学生动手找找哪两个数的乘积是1?

学生回答教师演示。

2、师:你知道吗?像这样的乘积是1的两个数,我们把它称之为互为倒数。(课件展示:乘积是1的两个数互为倒数。)板书课题:倒数的认识。

教师请学生提炼一下,然后板书:乘积是1、两个数、互为倒数

3、举例子说清两数之间的关系。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)

师:还可以怎么说呢?像刚才我们表述朋友、同桌关系一样。

引导学生说:3/8的倒数是8/3;8/3的倒数是3/8。

师:我们能不能说3/8是倒数?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

比如5/4和4/5的积是1,我们就说……7/10和10/7的乘积是1,我们就说……(生齐说)

4、请你再举个例子和你的同桌说一说。

(学生活动)

5、师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。根据对倒数意义的理解你们能不能找出3/5和2/3的倒数呢?

(学生写并汇报师板书。)

三、探索求一个倒数的方法

1、师:我们来进行一个小小的比赛。请你写出更多的乘积是1的任意两个数,看谁写得多。四人一小组,怎么分工呢?(请学生说建议)准备好了吗?一分钟倒计时开始!

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。)

师:这么短的时间内就能写出这么多乘积是1的两个数,真不错。如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个。

2、师:其实我知道大家在刚才的比赛过程中啊,一定有窍门,所以才会写得那么快,那么多,是什么窍门?谁来说说看?

(学生畅所欲言,但是一定不规范。)

教师引导学生观察每组互为倒数的两个数分子和分母的位置发生了什么变化?规范说法。

3、师:正因为分子和分母调换了位置,(师指黑板)相乘时分子分母就可以完全约分,得到乘积是1。所以很快就可以找出一个数的倒数来,对不对?

4、师生一起小结:也就是说求一个数的倒数,只要把分子分母调换位置。(板书)

5、学生自主探索5和1的倒数。

学生先独立思考,在小组交流。

师根据学生的回答及时板书。

6、0的倒数呢?

启发思考,允许讨论。

因为0和任何数相乘都得0,不可能得1。

四、归纳小结

师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个分数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。)

五、巩固练习

1、完成练习十一第一题。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(7/12=12/7)

师:为什么?规范书写,要写清谁是谁的倒数,或谁的倒数是谁。

3、完成练习十一第二题。

4、完成练习十一第三题。

5、完成练习十一第四题。

师:请你仔细观察每组数,你发现了什么?

同桌可以先互相说一说。

应该有的汇报是:

生1:我从第一组中发现真分数的倒数都是假分数(大于1)。

生2:大于1的假分数的倒数都是真分数(小于1)。

生3:几分之一的倒数都是整数。

生4:非0整数的倒数都是几分之一……

五、全课总结

今天我们学习了什么?你有什么收获?

认识倒数这一小节,就像是一篇文章里的过渡段一样,既承上又启下,是学习下一章分数除法的必要基础,请同学们课后认真练习,掌握倒数的意义和求一个数的倒数的基本方法,为下一章的学习做好准备。

数学教案电子版下载免费篇4

小学数学六年级上册《圆的面积》教学设计

一、教材分析:

1、首先提出圆的面积计算和其他已经学过的图形的面积计算有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

在学习本课之前应具备的基本知识和技能:

二、内容分析:

1、在学习本课之前应具备的基本知识和技能:

掌握平面图形的计算方法

2、学习本课的入手点及目的:

在学习圆的面积之前,学生已经掌握其他平面图形的计算方法。这节课的目的就是让学生从平行四边形、长方形的面积计算方法和圆的面积的关系,总结出圆面积计算方法。

三、教学目标及其对应的课程标准:

(一)教学目标:

1、经历探索圆面积计算方法的过程,进一步发展推力能力。

2、能运用圆面积公式进行简单的计算。

(二)知识与技能:通过动手实践推导出圆面积计算公式;探索圆面积计算方法和长方形面积计算方法飞关系,并能正确运用公式进行计算。

(三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。

3、教学评价方式:

(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

五、教学媒体:多媒体

六、教学和活动过程:

教学过程设计如下:

〈一〉、复习旧知,导入新课

1.问:已知圆的直径或半径怎样求圆的周长?(c=2πr或c=πd)

2.课件:出示一块圆形的苗圃。如果要给这块苗圃围栅栏,是求什么?(圆形苗圃的周长)

3.我们以前学过正方形、长方形等平面图形的面积,谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

3.提问:如果圆的半径是2分米,你能猜猜这个圆的面积有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

〈二〉、动手实践

[引入]同学们,前面我们学习了正方形、长方形等平面图形的面积是计算方法,通过动手将圆拼成我们学过的平行四边形或长方形,你能总结出圆的面积和长方形面积计算方法之间的关系吗?

1、[学生回答]分组交流、讨论拿出已准备好的学具,说说你把圆剪拼成了什么图形?你发现了什么?

课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

2、[学生回答]总结圆面积计算公式的语言描述:

长方形的长相当于圆周长的一半,长方形的宽相当于圆的半径

3、[学生回答]圆面积计算公式:

s=πr²

〈三〉、运用公式,解决问题

1、口答,根据半径计算出圆的面积:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

r=1r=2r=3

2、练一练

r=9,s=______________;c=12.56,s=_______________;

r=5,s=_____________;d=8,s=_______________;

〈四〉、[学生小结]

你认为圆面积计算公式在应用过程中,需要注意那些问题?

(1)r²=r×r

(2)π取3.14。

〈五〉、知识应用

用一根长3米的绳子,把一只羊拴在树杆上,羊的活动范围是多少?

〈六〉、学生自我评价

[小结]通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了圆面积计算公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业]随堂练习课本

数学教案电子版下载免费篇5

【教材分析】

本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。

【学生分析】

学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。

【教学目标】

1、掌握圆柱侧面积和表面积的概念。

2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。

3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。

4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。

【教学重点】掌握圆柱的侧面积和表面积的计算方法。

【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。

【教具准备】圆柱体纸盒、多媒体课件。

【学具准备】圆柱形纸盒。

【教学过程】

一、引入新课

1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?

2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)

3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

4、这节课我们就一起来研究“圆柱的表面积”这个问题。

二、探究新知

1、初步感知

(1)请同学们观察圆柱,想一想什么是圆柱的表面积。

总结:圆柱所有面面积的总和就是圆柱的表面积。

(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)

(3)圆柱的表面积怎么求?(两个底面积+侧面积)

(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。

2、侧面积

(1)小组合作:

请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

(2)学生汇报

(3)教师总结演示。

(4)推导圆柱侧面积公式

圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh

3、表面积

(1)总结表面积公式

怎么求圆柱的表面积?

圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?

侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2)

三、巩固练习

1、现在我们自己尝试来算一算这两个圆柱的表面积。

过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?

4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?

5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

四、总结收获

同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?

请记住同学们善意的提醒,这节课就上到这!

五、板书设计

圆柱的表面积

侧面积=底面周长×高

圆柱表面积=S侧=C×h=2πrhS表=2πrh+2πr2

底面积×2=2πr2

数学教案电子版下载免费篇6

教学内容:

成正比例的量

教学目标:

1、使学生理解正比例的意义,会正确判断成正比例的量。

2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

教学重点:

正比例的意义。

教学难点:

正确判断两个量是否成正比例的关系。

教具准备:

媒体课件

教学过程:

一、揭示课题

1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你能举出一些这样的例子吗?

在教师的指导下,学生会举出一些简单的例子,如

(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

2、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

二、探索新知

1、教学例1

(1)出示例题情境图。

问:你看到了什么?生

杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

(2)出示表格。

高度/㎝24681012

体积/㎝350100150200250300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25㎝2。

板书

教师:体积与高度的比值一定。

(2)说明正比例的意义。

①在这一基础上,教师明确说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

②学生读一读,说一说你是怎么理解正比例关系的。

要求学生把握三个要素

第一,两种相关联的量;

第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三,两个量的比值一定。

(三要素可再省略:1.相关联;2.同时变化;3.比值一定)

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:Y/X=K(一定)

(4)想一想

师:生活中还有哪些成正比例的量?

学生举例说明。如

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

2、教学例2。

(1)出示表格(见书)

(2)依据下表中的数据描点。(见书)

(3)从图中你发现了什么?

这些点都在同一条直线上。

(4)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

生:175㎝3。

②体积是225㎝3的水,杯里水面高度是多少?

生:9㎝。

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

生:水的体积是350㎝3,相对应的点一定在这条直线上。

(5)你还能提出什么问题?有什么体会?

通过交流使学生了解成正比例量的图像特征。

3、做一做。

过程要求

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

比值表示每小时行驶多少千米。(速度)

(2)表中的路程和时间成正比例吗?为什么?

成正比例。理由

①路程随着时间的变化而变化;

②时间增加,路程也增加,时间减少,路程也随着减少;

③种程和时间的比值(速度)一定。

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?指导学生估算的方法

(5)你还能提出什么问题?

4、课堂小结

说一说成正比例关系的量的变化特征。

学生回答成正比例的理由时,语言表述不清楚,要注意引导学生按照正比例中的三要素来回答

三、巩固练习

完成课文练习七第1~5题。

练习补充,可以从中挑选有关正比例的练习,其它可等学习反比例后再做。

板书设计:

成正比例的量

相关联;同时变化;比值一定

x×y=k(定值)

教学反思:

反思的第(1)个问题是:什么样的两种量叫做相关联的量,资料上解释:一种量变化,另一种量也随着变化,那么一个人的身高和体重算不算两种相关联的量?第(2)个问题是:类型过于多,到底怎么帮助学生整理方法。一节课的学习孩子们基本上理解了正比例的意义,但是对于判断两个量是否成正比例孩子们还是感到困难,在这个环节的教学上我处理的不够好。我要再去请教其他老师,吃透这个知识。帮助孩子们更好的理解。

数学教案电子版下载免费篇7

《等式与方程》教案

教学目标

1、学生掌握方程的定义以及等式与方程的区别;

2、使学生掌握方程的解的定义,并且能某个值是否为指定方程的解。

教学重点

检验方程的解的方法

教学难点

区分等式与方程;等式与恒等式;恒等式与方程。

版面设计

方程与方程的解

一、等式与恒等式:

二、方程与整式方程:

三、方程的解与方程的根:

教学设计

一、复习引入:

⑴猜年龄:

将你的年龄乘以2再减去5,你的得数是多少?如果是21,我就能猜出你的年龄是13。

⑵找规律:

如果设小明的年龄为x岁,那么乘以2再减去5就是2x-5,所以得到方程(equation):2x-5=21

二、新课传授:

1.等式与恒等式:

①等式:

像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,x+3=5等这样用等号=来表示相等关系的式子,叫做等式。

等式左边的式子叫做等式的左边;

等式右边的式子叫做等式的右边;

等式的一般形式是:A=B

②恒等式:

像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,a+b=b+a等这样等号两边的值永远相等的式子叫做恒等式。

2.方程与整式方程:

①方程:

这种含有未知数的等式叫做方程。

②整式方程:

方程的两边都是整式时,称为整式方程。

【练习】:课后1、2两题(指定学生口答)

1.方程的解与方程的根:

①方程的解:

能使方程左、右两边的值相等的未知数的值叫做方程的解;

②一元方程:

只含有一个未知数的方程称为一元方程;

一元方程的解也叫做方程的根。

2.一元一次方程:

只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程。

例检验下列各数是不是方程7x+1=10-2x的解:

⑴x=1;⑵x=-2。

解:⑴将x=1分别代入方程的左、右两边,得

左边=71+1=8,

右边=10-21=8,

∵左边=右边,

x=1是方程7x+1=10-2x的解。

⑵将x=-2分别代入方程的左、右两边,得

左边=7(-2)+1=-13,

右边=10-2(-2)=14,

∵左边右边,

x=-2不是方程7x+1=10-2x的解。

三、作业:

课后习题

同步练习

数学教案电子版下载免费篇8

活动目标:

1、能按8以内的.数字匹配相应数量的物体,巩固对8的实际意义的理解。

2、运用目测接数的方法感知、判断8以内的数量。

3、能较仔细地进行操作,注意保持幼儿用书画面的整洁。

4、知道按事物不同的特征进行排序会有不同的结果,初步了解排序的可逆性。

5、培养幼儿的尝试精神,发展幼儿思维的敏捷性、逻辑性。

活动准备:

1、经验准备:幼儿认识了数字8,有目测接数的经验。

2、物质准备:教具和学具。

活动过程:

一、音乐活动《小蝌蚪》。

教师带领幼儿随着音乐扮演小蝌蚪游进教室,并根据歌词内容表演。

二、看数字找蝌蚪。

1、教师:青蛙妈妈遇到了一件伤心的事情,它找不到自己的宝宝了,你们愿意帮助它们吗?

2、教师:你知道每只青蛙妈妈生了几个宝宝吗?你是从哪儿看出来的?引导幼儿从青蛙身上的数字说出它生了几个宝宝。

3、教师:河里游来了一群一群的蝌蚪宝宝,这群蝌蚪宝宝要怎样数才能又快又对呢?先看哪边?有几个?再接着数……

4、教师:这些蝌蚪宝宝分别是哪位青蛙妈妈的孩子呢?你是怎么知道的?鼓励幼儿用目测接数的方法说出每群蝌蚪的数量,然后再将蝌蚪的数量和青蛙身上的数字进行匹配,帮助青蛙找到蝌蚪宝宝。

三、操作活动。

数一数、连一连。观察画面青蛙身上的数字,认一认是数字几,再用目册接数的方法判断画面上有几个小蝌蚪,最后用连线的方法帮蝌蚪找妈妈。

四、评价活动。

请个别幼儿讲述自己的操作活动,教师展示个别幼儿的操作情况,对画面整洁的幼儿给予表扬和鼓励。

活动反思:

农村的孩子对青蛙和蝌蚪非常熟悉,能很流利的说出蝌蚪和青蛙的外形、生活习性。通过活动在解了青蛙的出生和生长过程中,培养了幼儿的观察力及语言表达能力;因为幼儿特别喜欢动手操作,我把快乐诗画与本节活动相结合,更符合幼儿特点,使幼儿在快乐中学习,同时也提高了幼儿绘画的技能。

数学教案电子版下载免费篇9

数学教案-《组合图形的面积计算》教学设计(精选2篇)

-《组合图形的面积计算》篇1

《组合图形的面积计算》教学设计

<313005>

一:教学目标 

1、掌握组合图形面积计算的方法,并能正确进行计算。

2、培养学生识图的能力和综合运用有关知识的能力。

二:教学难点 

能正确将一个组合图形进行分解,让学生学会这类题目的思考方法。

三:教学准备

组合图形纸片、剪刀、胶带

四:教学设想

以“妙”调趣,导入  新课。让学生以原有的知识为基础,通过学生亲手的“拼”、“剪”将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。

五:教学过程 

教师活动

学生活动

设计意图

(课前)将一些组合图形的纸片发给学生

1、出示:

草地上来了一群羊(打一水果名称)

2、出示第二个谜语:

又来了一群狼

(打一水果名称)

思考:

谜语的谜底是什么?

①草莓(没)

②杨(羊)梅(没)

抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。

设问:

你们觉得哪个谜语好猜?为什么?

畅所欲言:

第二个谜语好猜。

因为第二个问题有了第一个问题作基础,所以就容易些。

用猜谜语的形式让学生来明事理,从而导出新课。

教师活动

学生活动

设计意图

1、 出示课题:

(组合图形的面积计算)【板书】

今天我们要学习组合图形的面积计算,你们觉得以什么为基础好?

2、复习:

长方形、正方形、平行四边形、三角形、梯形的面积计算公式。

1、思考、回答:

长方形、正方形、平行四边形、三角形、梯形

2、巩固:

巩固以前所学几种平面图形的面积计算方法。

1、引出新课

2、巩固长方形、正方形、平行四边形、三角形、梯形面积的计算方法。

出示例:

计算下面图形的面积(单位:米)

8

4

10

14

你们有什么好办法来求出这个组合图形的面积?

思考、讨论:

分小组思考讨论,这个图形的面积应该怎样计算?

以学生为主体,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。

巡视:

作简单的提示和指导。

小组交流、讨论

通过剪一剪、拼一拼来计算图形的面积:

1、让学生亲手参与学习,让学生明白能将组合图形进行分解。

2、初步培养学生的识图能力。

教师活动

学生活动

设计意图

采纳学生的解法进行分析与讲解:

8

4  

10

(10-4)

14

(14-8)

反馈、交流:

小组推荐一位学生为代表将本小组的方法介绍给全班。

⑴、沿虚线剪下,将组合图形分割成一个三角形和一个长方形。

⑵、分别算出两个图面积。

⑶、将两个图形的面积相加,就是组合图形的面积。

即:S三角形+S长方形

=S组合图形

⒈让学生通过拼剪与讨论,将组合图形进行分解。

⒉让学生学会倾听同伴的意见,并能结合自己的想法进行评价。

出示计算过程:【板书】

10×8=80(㎡)

(14-4)×(10-4)÷2

=6×6÷2

=36÷2

=18(㎡)

80+18=98(㎡)

观察、思考:

⑴、选择正确的

“底”、“高”和“长”、

“宽”进行计算。

⑵、观察计算组合图形面积的一般步骤。

⑶、明确80(㎡)、18(㎡)分别指什么?

让学能根据图形关系,推算出图中的隐蔽条件。

让学生明确计算组合图形面积时的一般步骤和格式。

教师活动

学生活动

设计意图

提问:

有没有其他的解法?

小结:

这两种解法的差异

小组发表自己的解题方法。

巩固、明确:

通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。

让学生明确,解组合图形的面积,方法不是唯一的。

掌握组合图形面积的计算方法。

布置巩固练习:

选一种你最喜欢的方法进行计算,并将题目的解题过程写下来。

巩固、练习:

(学生独立完成)

进一步巩固组合图形面积的计算方法以及书写时的注意点。

通过学生的独立练习,让学生明确在书写时的注意点以及熟悉解题的步骤。

教师活动

学生活动

设计意图

1、出示课堂练习:

求下面涂色部分的面积(单位:厘米)

10

10  

5

20

2、个别指导

课堂练习

培养学生综合运用有关知识的能力。

结束语:

通过这节课对组合图形面积的学习,今后在解这样的题目时,你有什么心得或对其他同学有什么建议?

即发挥了学生的主动性,又将本堂课的内容进行了总结。

1、布置课堂作业 

2、个别指导

课堂练习

巩固本节课所学的内容。

数学教案-《组合图形的面积计算》教学设计篇2

实验学校执教教师课程内容组合图形的面积计算课程学时1所属学科数学教学对象五年级一、教学目标知识与技能1.使学生理解组合图形的含义,初步掌握用分解法和割补法计算组合图形的面积;2.通过学习,能正确的计算由两个基本图形组合而成的图形的面积,培养学生的分析、综合能力,发展学生的空间观念;3.通过网络资源获取信息,培养了学生收集、处理和运用信息的能力,在专题网站自主协作完成任务;4.通过小组交流、组际交流,培养学生自主探索和协作学习的精神。过程与方法1.在网络创设的虚拟情景下,通过小组合作学习,在对小组成员和进行自我评价的过程中,掌握评价他人的方法;2.通过观察、操作等活动,使学生经历自主探索的学习过程,在协作、交流中获得成功的体验,能借助信息工具平台,尝试创造性实践活动。情感态度与价值观1.培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣;2.进一步渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神;3.在利用网络资源进行自学的过程中培养团结互助的精神,培养学生通过网络交流获取信息的本领。二、学习内容《组合图形的面积计算》是义务教育课程标准实验教科书第九册第五单元的内容,组合图形的面积是指由几个基本图形组合成的图形的面积,在生活中有着广泛的应用。在学生已经初步掌握几个基本图形面积计算公式的基础上,本节课进一步学习多边形的面积,理解计算组合图形面积的多种方法,能根据各种组合图形的条件,有效地选择简单有效的计算方法并进行正确的解答。三、学习者特征分析及分组情况1、学习者特征分析本班学生是网络环境下基础教育跨越式发展创新实验班的学生,他们具有一定的信息素养,思维活跃,学习热情高,合作精神好。2、学习者分组情况按照学生座位情况每三人为一组四、学习环境的设计1、问题及问题情境的设计问题描述问题情境简述呈现方式问题1:在七巧板中利用两个基本图形拼出新图形利用多媒体,在七巧板中利用两个基本图形拼出新图形,并思考拼出的图形是由什么基本图形组成的动手做一做分享心得问题2:以少先队的队旗为例,怎样求组合图形的面积呢?根据分割法,将少先队的队旗分成不同形状,找出多种计算少先队的队旗面积的方法,并比较各种方法的优劣动手做一做问题3:展示组合图形,选择最简便的方法计算图形面积。利用多媒体课件展示组合图形,小组讨论选择最简便的方法计算图形面积,并写出面积计算关系式。动手做一做讨论协商2、学习资源的设计资源类型资源内容简要描述资源来源网络课件七巧板拼图,组合图形分割法,组合图形添补法自行制作3、学习工具作品创作工具绘图工具协作交流工具东城小学论坛4、教学策略支架策略、反思策略5、教学环境网络教室五、基于问题解决的协作知识建构活动流程设计活动1:创设情境、激发兴趣ckb教师活动学生活动资源/工具活动成果共享布置任务:利用七巧板拼出新图形,并将结果投影展示独立拼摆组合图形,共同欣赏结果七巧板拼图激发学习兴趣活动2:设疑求解、探究新知ckb教师活动学生活动资源/工具活动成果共享论证(1)展示少先队队旗课件(2)引导学生分割法把组合图形转化成基本的平面图形借助网络资源学习分割组合图形,用分割法把组合图形转化成基本的平面图形,小组讨论交流、汇报方法组合图形分割法四种分割示例组合图形的方法论证提问:没有数据能求出图形的面积吗?集体回答计算图形面积必须知道图形各边的数据论证协商(1)给出组合图形的具体数据,(2)要求学生选择一种方法计算组合图形的面积,并说出选择此种计算方法的理由。(1)选择一种计算方法算出组合图形的面积(2)小组讨论各种组合图形分割法的优劣分割组合图形要考虑方便计算其面积活动3:总结方法、拓展提高ckb教师活动学生活动资源/工具活动成果协商共享(1)展示一组组合图形(2)引导学生用分割法和添补法计算组合图形面积(1)根据教师指导分别用分割法和添补法计算组合图形面积(2)小组交流讨论分割法和添补法适用范围和优劣组合图形添补法掌握添补法活动4:应用新知、解决问题ckb教师活动学生活动资源/工具活动成果协商创作应用新知,解决实际问题利用分割法和添补法解决实际问题网络课件、纸、笔问题解决方案活动5:共享心得、总结反思ckb教师活动学生活动资源/工具活动成果评价要求学生挑选优秀作品学生走动观察屏幕并讨论选出最优秀的作品反思布置作业并引导学生谈收获在全班分享学习收获,课后上传反思到论坛东城论坛数学六、教学结构流程的设计七、学习评价设计1、测验形式:课堂提问、书面练习、自主网上测试、自主完成作品2、测试内容:组合图形分割训练、组合图形添补训练

数学教案电子版下载免费篇10

活动目的:

1、通过游戏的方式,幼儿认识圆形(圆面和圆圈)

2、发展幼儿动手操作的能力活动准备:圆镜,圆盘子,脸盆;圆形纸片若干,大、中、小圆圈各1只,幼儿每人一套大、中、小圆

活动过程:

一、实物演示

1、(出示圆镜)这是什么?这面镜子是什么形状的?

2、(出示圆盘)这是什么?这只盘子是什么形状的?盘子的口实什么形状的?

出示脸盆(提问同上)

3、教师:小朋友,我们周围有许多东西是圆形的,你们动脑筋想一想,平时看到过哪些东西是圆形的?(幼儿自由发言)教师小结:圆形的东西很多,在家里,在马路上,在幼儿园里,在许多地方我们都能看到。

二、图片演示

1、出示图片:黑地板上贴有各种大小不同的彩色的圆形纸片。

教师:这里有许多漂亮的纸片,又红的,蓝的,绿的,黄的,小朋友看看他们都是什么形状的?这些圆形有大的,有小的,还有最小的呢。(教师用手逐一指出)你们看看这些圆形像什么?

2、出示图片:黑地板上贴有两个圆圈,红的大,黄的小。问:这里有几个圆?那个大?那个小?(再出示最小的1个绿色的圆)现在这里有几个圆/?哪一个是最小的圆?(和幼儿一起说出大圆,小圆,最小的圆。)教师:小朋友说得真好,这是大圆,我们就叫她大圆妈妈。这是小圆,我们叫她小圆宝宝。最小的圆呢,我们就叫她最小的圆宝宝。(幼儿复述一遍)教师:大圆妈妈说话了,她说:"小圆小圆,我的好宝宝,我们来做游戏好吗?请到我的身边来,并排站好。"小圆就滚呀滚,滚到大圆身边和大院并排站好。

圆妈妈又说:最小的圆宝宝快来呀,请你也打我的身边来,并排站好。请一个小朋友帮小圆宝宝滚到妈妈身边去。现在,3个院都靠在一起了。

教师:圆妈妈又说话了:小圆宝宝,你再过来一点,让我们手拉手,一起跳舞吧!最小的圆宝宝你也来与妈妈拉着手一起跳舞吧!请一位幼儿帮忙。现在三个圆圈手拉手跳舞了。

教师:大圆妈妈非常喜欢圆宝宝,她又说:小圆宝宝你们全部进来,坐到妈妈身上来。小圆宝宝滚呀滚,全部滚到大圆里。圆妈妈又说,最小的圆宝宝你也全部进来吧!最小的圆宝宝也滚呀滚,全部滚进大圆里了。

教师:圆妈妈心里真高兴,她说:小圆宝宝请你到妈妈怀中来吧,妈妈抱你睡觉。小圆宝宝就滚到了妈妈身体的当中去了。小圆宝宝说话了:最小的圆弟弟,请你到我怀中来,让我来抱你睡觉。那个小朋友会帮小圆宝宝的忙。好,现在大圆抱着小圆,小圆抱着最小的圆,3个圆真高兴。

三、幼儿操作练习。

幼儿每人一套学具,4只大小不同的彩色圆圈教师:小朋友,你们没人有几个圆?请你和他们一起做游戏好吗?(幼儿自己拼放、游戏)。

数学教案电子版下载免费篇11

教学内容:

教材第23~24页的例题和“想想做做”第1~6题。

教学目标:

1.经历探索乘数末尾有0的三位数乘一位数计算方法的过程,掌握其竖式的简便写法,能正确地计算这类算题。

2.在研究算法和解决实际问题的过程中,培养合情推理能力和数学应用意识。

教学重点:

掌握乘数末尾有0的乘法的计算方法。

教学难点:

乘数末尾有0的乘法算式的简算。

教学准备:

多媒体课件。

教学过程:

一、复习铺垫

出示:3×2=7×2=13×2=3×20=7×200=21×4=

口算后讨论:你是怎样口算的?

二、教学新课

1.学习例题

⑴出示例题插图问:你从题中了解到哪些信息?你能提出什么数学问题?你能列出算式吗?

⑵指名说出口算方法和结果。问:你是怎样由4×12=48想到4×120=480的?

⑶小结。

2.教学“试一试”

⑴让学生在书上计算,指名板演。

⑵指名板演学生说说计算过程。

⑶问:第一题中乘数250末尾有一个0,积1500的末尾为什么有两个0?第二题算过7×9得63后,为什么积的末尾要添写2个0?

三、巩固练习

1.完成“想想做做”第1题。独立完成在书上,并进行评讲。

2.完成“想想做做”第3题。独立完成。组织讨论:每组上下两题有什么联系?计算方法有什么区别?

3.完成“想想做做’第4题。组织学生口算,体会他们之间的内在联系,掌握几百几十和几相乘的口算方法。

4.完成“想想做做”第5题。引导学生读题。问:你能看懂表的内容吗?让我们计算什么?学生填表。问:观察这张表,你有什么发现?

四、总结评价,点拨学法

这节课我们学习了什么新知识?你是怎样掌握的,先互相说一说,再告诉大家。

五、作业:完成“想想做做”第2.5.6题。

教学反思:

(略)

数学教案电子版下载免费篇12

教学目标:

1、了解相遇问题的特点,并学会解答求路程的相遇问题。

2、通过操作、观察、比较、分析,提高学生灵活解答的能力。

3、培养学生学习数学的兴及趣创新意识。

教学重点:

掌握求路程的相遇问题的解题方法。

教学难点:

理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。

教学时间:一课时    

教具准备:实物投影仪、多媒体cai、小黑板      

教学过程:

一、复习

1、列式计算   

(1)李诚从家到学校,每分钟走70米,4分钟抵达,他家离学校有多远? 

(2)张华从家到学校,每分钟走60米,4分钟抵达,他家离学校有多远?

2、板出联系式:速度×时间=路程

二、引入

过去,我们研究的是一个物体运动时速度、时间与路程之间的联系,今天我们就来研究两个物体运动时速度、时间与路程之间的联系。

三、新授

1、教学准备题

(1)点击课件中准备题出示题目

(2)学生理解题意。

(3)找出出发时间、地点、运动方向。

相向而行

时 间间 

(4)点击热键        和          强调出发时间和运动方向。 

(5)用课件演示两人同时从两地向对方走去,引导学生思考会出什

么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。

(6)利用课件出示准备题的表格,指导学生填表格的一、二行并课

件演示填空内容。

(7)请一学生上来利用交流性课间完成表格第三行的填写。

(8)引导学生讨论:出发三分钟后,两人之间的距离变成了多少?这时,张华走了几分钟?李诚呢?他们俩人共走了几分钟?两人所走路程的和与两家有什么联系?

(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)

2、教学例5。

(1)点击新课出示例5。

(2)理解题意。

(3)四人小组讨论:

a、        两人是怎样走向学校的?

b、        4分钟后两人怎样? 

c、        两人所行的路程与全路程有什么联系?

(4)学生试做。

(5)用电脑课件演示解题思路并讲评。

(6)学生看书、质疑。

(7)小结:我们解例5时用了哪两种方法?

三、巩固练习

1、学生做课本第59页的第1题和第2题。

2、利用课件出示选择题:

两人同时从两地走来,甲每分走52米,乙每分走48米,走了10分钟,两地相距多少米?

(1)米 (2)1000米  (3)无法确定。

四、全课总结

1、今天学了什么内容?

2、解决这样的问题,我们用了哪几种方法?

3、质疑。

五、聪明题。

小华和小明相向而行,小华以每分钟20米的速度走了3分钟后,小明才开始出发,他每分钟走25米,5分钟后两人相遇,两地相距多少米?

数学教案电子版下载免费篇13

一、教学目标 

1.使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式.

2.使学生掌握化简一个二次根式成最简二次根式的方法.

3.使学生了解把二次根式化简成最简二次根式在实际问题中的应用.

二、教学重点和难点

1.重点:能够把所给的二次根式,化成最简二次根式.

2.难点:正确运用化一个二次根式成为最简二次根式的方法.

三、教学方法

通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法.

四、教学手段

利用投影仪.

五、教学过程 

(一)引入新课

提出问题:如果一个正方形的面积是0.5m2,那么它的边长是多少?能不能求出它的近似值?

了.这样会给解决实际问题带来方便.

(二)新课

由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数.

总结满足什么样的条件是最简二次根式.即:满足下列两个条件的二次根式,叫做最简二次根式:

1.被开方数的因数是整数,因式是整式.

2.被开方数中不含能开得尽方的因数或因式.

例1 指出下列根式中的最简二次根式,并说明为什么.

分析:

说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式.前面二次根式的运算结果也都是最简二次根式.

例2 把下列各式化成最简二次根式:

说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简.

例3 把下列各式化简成最简二次根式:

说明:

1.引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简.

2.要提问学生

问题,通过这个小题使学生明确如何使用化简中的条件.

通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题.

注意:

①化简时,一般需要把被开方数分解因数或分解因式.

②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化.

(三)小结

1.满足什么条件的根式是最简二次根式.

2.把一个二次根式化成最简二次根式的主要方法.

(四)练习

1.指出下列各式中的最简二次根式:

2.把下列各式化成最简二次根式:

六、作业 

教材P.187习题11.4;A组1;B组1.

七、板书设计 

数学教案电子版下载免费篇14

教学目标:

1、整理和练习图形和变换,巩固平移和旋转的表象

2、培养学生动手实践的能力。

3、培养学生合作交流互相帮助的合作意识。

教学重难点:画平移的后的图形

教学过程

一、数平移距离

1、观察43页第一题,让学生说一说怎么样数平移的距离。

2、动手涂颜色。

3、让学生说说是怎么样找到那条船的。

二、画平移后的图形。

1、先让学生给43页第二题的四个点标上记号。

2、问学生,图形移动3格上边的点移动几格?图形的&39;大小还是保持原来的样子吗?

3、学生讨论,该怎么样画平移后的图形。

4、学生汇报方法。

5、老师总结:先找好四个点移动后的位置,再把四个点连起来就可以得到一个平移后的图形。

6、学生自己动手完成第2题的两个要求。

7、独立完成44页第5题。

三、判断练习

1、判断哪些物体的运动是平移和旋转。

2、判断哪些角是直角,锐角和钝角。

四、动手操作

自己动手或小组合作完成45页的做一做。

五、动手完成剪一剪。自学剪一剪,在全班展示作品。

教学反思:结合动手操作,才能让学生更好的理解平移现象。强调无论怎么平移,方向是不变的这个道理。

数学教案电子版下载免费篇15

课题:锐角和钝角的初步认识

教学目标(知识与技能、过程与方法、情感态度与价值观)

1、学会辨认锐角和钝角。

2、能用自己的语言描述锐角和钝角的特征。

3、学生在建立锐角和钝角的表象同时培养学生空间想象能力。

教学重点:学会辨认锐角和钝角,知道锐角和钝角的特征。

教学难点:直角、锐角和钝角三者的区别和联系。

教学准备:课件、三角尺等。

教学过程:

预设教师活动预设学生活动活动效果

一、情境导入,复习铺垫

复习:上节课我们认识了直角,生活中很多物体的角都是直角,你是怎样判断的?

可是生活中并不是所有的角都是直角,(课件出示锐角和钝角)你瞧!这两个角是直角吗?也直角有什么不同?

设疑:这些角,有的比直角大,有的比直角小,它们是什么角呢?

这节课我们继续研究角。(板书课题)

二、互动新授

1、认识锐角和钝角

(1)比一比

课件出示例5中的队旗和红领巾图。

问:同学们这是少年先锋队队旗和红领巾,上面有这样两个角,老师用三角尺上的直角和它们比一比,看看有什么发现?

教师根据学生得出的结论,介绍并板书:

比直角小的角是锐角;比直角大的角是钝角。

(2)动手做角

强调学生做角时:一只手动,另一只手不动。

①拿出活动角,做一个锐角

同桌互相比一比,锐角的大小一样吗?(锐角的大小不一样,但都比直角小)

②拿出活动角,做一个直角

同桌互相比一比,直角的大小一样吗?(一样)

③拿出活动角,做一个钝角

同桌互相比一比,钝角的大小一样吗?(钝角的大小不一样,但都比直角大)

(3)连一连(教材41页做一做第2题)

课件出示,说说是什么角,再连一连。

提出问题:怎样验证?

引出学生思考,得出:用三角尺的直角来验证。

组织学生进行验证,如发现错误给予纠正。

教师小结:根据角的大小可以把角分为三类:以直角为标准,比直角小的角叫做锐角;比直角大的角叫做钝角。(补充课题)

三、深入感知

1、认一认

(1)认真观察你手中的三角尺,刚才我们知道了三角尺上有一个角是直角,那剩下的两个角是什么角呢?

小结:每一个三角尺上都有两个锐角。

2、练习八第9、10、11题

四、课堂小结

这节课你有学到了哪些知识?

40109