教案吧 > 学科教案 > 数学教案 >

小学数学教案反思通用

时间: 新华 数学教案

教案的编写应注重简洁明了、重点突出、条理清晰、可操作性强等特点,以便更好地指导教学工作。写好小学数学教案反思通用要注意什么?小编给大家分享小学数学教案反思通用,希望对大家有所帮助。

小学数学教案反思通用篇1

教学目标

1.使学生了解本金、利息、利率、利息税的含义.

2.理解算理,使学生学会计算定期存款的利息.

3.初步掌握去银行存钱的本领.

教学重点

1.储蓄知识相关概念的建立.

2.一年以上定期存款利息的计算.

教学难点

“年利率”概念的理解.

教学过程

一、谈话导入

教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?

教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.

二、新授教学

(一)建立相关储蓄知识概念.

1.建立本金、利息、利率、利息税的概念.

(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.

(2)教师板书:

存入银行的钱叫做本金.

取款时银行多支付的钱叫做利息.

利息与本金的比值叫做利率.

2.出示一年期存单.

(1)仔细观察,从这张存单上你可以知道些什么?

(2)我想知道到期后银行应付我多少利息?应如何计算?

3.出示二年期存单.

(1)这张存单和第一张有什么不同之处?

(2)你有什么疑问?(利率为什么不一样?)

教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.

4.出示国家最新公布的定期存款年利率表.

(1)你发现表头写的是什么?

怎么理解什么是年利率呢?

你能结合表里的数据给同学们解释一下吗?

(2)小组汇报.

(3)那什么是年利率呢?

(二)相关计算

张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?

1.帮助张华填写存单.

2.到期后,取钱时能都拿到吗?为什么?

教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)

3.算一算应缴多少税?

4.实际,到期后可以取回多少钱?

(三)总结

请你说一说如何计算“利息”?

三、课堂练习

1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息

捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?

2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:

(1)800×11.7%

(2)800×11.7%×2

(3)800×(1+11.7%)

(4)800+800×11.7%×2×(1-20%)

3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?

四、巩固提高

(一)填写一张存款单.

1.预测你今年将得到多少压岁钱?你将如何处理?

2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?

(二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的`本息多?为什么?

五、课堂总结

通过今天的学习,你有什么收获?

六、布置作业

1.小华20__年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给“希望工程”多少元钱?

2.六年级一班20__年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?

3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?

七、板书设计

百分数的应用

本金利息利息税利国利民

利率:利息与本金的比值叫利率.

利息=本金×利率×时间

探究活动

购物方案

活动目的

1.使学生理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略.

2.通过小组合作,培养学生的合作意识及运用所学知识解决实际问题的能力.

3.培养学生创新精神,渗透事物是对立统一的辩证唯物主义思想,使学生能够辩证、发展、全面地对待实际生活中的问题.

活动过程

1.教师出示价格表

A套餐原价:16.90元现价:10.00元

B套餐原价:15.40元现价:10.00元

C套餐原价:15.00元现价:10.00元

D套餐原价:15.00元现价:10.00元

E套餐原价:18.00元现价:10.00元

F套餐原价:14.40元现价:10.00元

学生讨论:如果你买,你选哪一套?

2.教师出示价格表

A套餐原价:16.90元现价:12.00元

B套餐原价:15.40元现价:10.78元

C套餐原价:15.00元现价:12.00元

D套餐原价:15.00元现价:12.00元

E套餐原价:18.00元现价:13.50元

F套餐原价:14.40元现价:12.24元

学生讨论:现在买哪一套最合算呢?

3.教师出示价格表

每套18.00元,冰淇淋7.00元.

第一周:每套16.20元;买一个冰淇淋回赠2元券.

第二周:降价20%;买一个冰淇淋回赠2元券.

第三周:买5套以上打七折;买一个冰淇淋回赠2元券.

学生讨论:

(1)你准备在哪一周买

(2)你打算怎么买?

(3)你设计方案的优点是什么?

小学数学教案反思通用篇2

学习内容分析

本节教材主要是在口算整十、整百数乘一位数和估算两、三位数乘一位数的基础上,扩大口算和估算的范围。例1教学整十、整百数乘整十数的口算方法。用解决邮递员10天、30天要送多少份报纸?要送多少封信?等实际问题的活动,让学生运用已有的知识探讨口算方法。接着,通过“做一做”,让学生经历口算整十、整百数乘整十数的过程,掌握口算方法。新教材把口算教学和解决实际问题联系在一起,使学生产生亲切感和学习兴趣,同时有利于加深学生对乘法意义的理解。

学习者分析

学生在整十、整百数乘整十数的基础上,扩大口算的范围,相信学生能够运用已有的知识和已有的计算方法,探索出新的计算方法

教学目标

1、使学生在理解的基础上,掌握整数乘法的口算方法。

2、培养学生类推迁移的能力和口算的能力,

3、使学生经历整数乘法口算方法的形成过程,体验解决问题策略的多样性。

4、培养学生养成认真计口算的良好学习习惯。

5、使学生感受到数学源于生活,培养学生积极思考的习惯

教学重点及解决措施掌握整数乘法的口算方法

教学难点及解决措施通过学生活动,体验数学学习方法

教学设计思路

口算是不借助任何工具,只凭思维和语言进行计算并得出结果的`一种计算方法,它具有快速、灵活的特点。口算是计算能力的一个重要组成部分。首先,口算是笔算、估算的基础,笔算和估算能力是在准确、熟练的口算能力的基础上发展起来的,没有一定的口算基础,笔算、估算能力的培养就成了无源之水。其次,口算在日常生活中有极其广泛的应用。因此良好的口算能力不仅是学习任何其他数学知识的基础.

我在备课前想过,既要让学生牢牢的掌握这堂课的内容,又要尝试让他们自己去学习。于是我精心设计了一个个井井有条的步骤:注意口算联系经常化,并通过多种形式的训练,逐步提高口算速度,培养口算能力。

依据的理论引导学生自主合作探究,联系生活实际。

小学数学教案反思通用篇3

教学目标:

1、进一步理解进位加法和退位减法的计算方法,并能正确计算。

2、能根据情境图提出数学问题,并培养学生解决问题的能力。

教学重点:

正确计算加减法。

教学难点:

根据情境图提出数学问题。

教学准备:

小黑板、投影。

教学过程:

一、复习

举例子复习进位加法与退位减法的计算方法。(思考过程)

二、基本练习

指导完成第5题。

(1)、独立完成。

(2)、选几题说说思考过程。

三、变式练习

1、指导完成第1题。

(1)、指导看懂题意。

(2)、学生完成后交流结果。

2、指导第2题。

(1)、看图理解题意。

(2)、完成后校对结果。

3、指导第3题。

(1)、读题,明确方法。

(2)、学生独立完成。

4、指导第6题。

(1)、填写第1竖的结果,观察4个算式与上面3个数的关系,得出规律。

(2)、完成后2题。

四、提高练习

1、指导第3题。

(1)、引导学生仔细看图,提出数学问题。

(2)、解决提出的数学问题。

2、指导第7题。

(1)、看懂图画意思,提出数学问题。

(2)、解决问题。

五、开放性练习。(指导第8题)

1、先独立解题。

2、在小组中交流,讨论:怎样才能把算式更好地写出来?

3、交流。

六、总结

小学数学教案反思通用篇4

教学目标:

1.知识目标: 确定空间中物体间左右的位置关系。

2.能力目标: 培养学生初步的空间观念和推理能力。

3.情感目标: 逐步体会数学与日常生活的密切联系,体会生活中处处有数学,对数学产生亲切感,感知数学是有趣和有用的,激发学生对数学的探究欲望。

教学重点:

确定空间中的左右的位置关系。

教学难点:

知道参照物不同,方位不一样,所看到的物体也不同。

教学准备:

多媒体教室。

教学过程:

一、游戏引入,引出课题。

1. 健康操比赛。(出示主画面)

师:今天,我们的好朋友小丁丁、小巧、小亚、小胖来到课堂里,要带领大家一起去逛街。大家高兴吗?在出发之前我们先来做做健康操。(通过游戏,复习左与右)

2. 师举手表扬大家:大家做的真棒!我举的是哪只手?你是怎么想的? 师小结。

二、创设情境,展开探究。

(一)确定参照中心,判断其左右事物。

1.(出示“在街上”主题图) 街上到了!瞧!街上车来人往。司机和行人都很遵守交通规则,你对交通规则有哪些了解?学生自由说。

2. 师:小巧过马路,先看哪一边? 向左看,她看到了什么?向右看,又看到了什么?把你看到的告诉旁边的同学。

3. 师:看,小巧的对面是谁?她也要过马路,如果你是小亚,向左会看到什么,向右会看到什么?

4. 比较,发现不同点。 小结:小巧和小亚站的位置不同,所以两人的左右也不同。

5. 师:小胖和小丁丁也要过马路,请你选择其中的一位小朋友轻轻的说一说,向左看,看到了什么?向右又看到了什么呢?如果有困难,可以出来站一站。

三、联系生活,巩固深化。

1. 摆一摆。(课件摆学习用品)

(1)把学习用品排成一排,师说要求。

(2)学生做小老师,说要求,其余同学摆。

2. 师:看,谁来了?

(课件出示福娃图)

关于福娃,你知道多少?

(介绍福娃的相关知识。)

你能用今天学习的本领说说福娃的左与右分别是谁吗?

3. 看一看(课件出示)

师:看,谁来了? 出示小丸子和侦探柯南:“在马路上有一元钱,小丸子说在他右边,可柯南却说在他的左边,这是为什么?”

4. 师:“超级变、变、变”,超女周笔畅来到我们课堂上,要和大家一起学本领。用1、2、3三个数字可以组成哪些不同的三位数?想一想,怎样才能做到不重复、不遗漏?

师:小朋友经过小组讨论、动手摆摆数卡,得出了123、132、213、231、312、321六个三位数。

四、共同总结,拓展延伸。

1. 今天你有什么收获?

2. 师:根据今天所学的本领,回家和爸爸妈妈一起看看自己家的小区图,说说自己的家的位置;再看看中国地图册,找一找地图上我们的家——上海的位置,上海的左、右分别是哪个城市?我们的首都——北京在哪里?北京的左、右各有哪些城市?

小学数学教案反思通用篇5

【教学内容】

北师大版小学数学六年级(上册)第四单元第51~53页化简比 。

【教学目标】

1) 在实际情境中,体会化简比的必要性,进一步体会比的意义。

2) 会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

【教学重点】

会运用商不变的性质或分数的基本性质化简比。

【教学难点】

能解决一些简单的实际问题。

【教具准备】

蜂蜜、水、量筒、水杯和自制课件

【教学设计】

教 学 过 程 教 学 过 程 说 明

一。 制蜂蜜水的活动:哪一杯更甜?

同学们分成小组进行实验活动:各小组拿出课前准备好的.蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水。

各小组选出代表在全班进行汇报、交流。议一议哪个小组调制蜂蜜水更甜。

[课件出示]课本P51图片,同时配上画外音:

一个男同学说:我调制的一杯蜂蜜水用了40毫升蜂蜜、360毫升水。

一个女同学说:我调制的一杯蜂蜜水用了10毫升蜂蜜、90毫升水。

师:他们俩调制的蜂蜜水哪一杯更甜?请估一估,再试一试。

我们先分别写出它们的比。

40:360

10:90

就这样直接比较他们俩谁调制的蜂蜜水更甜还是有困难,用什么办法来解决呢?请分组讨论一下。

40:360= = =1:9

10:90= = =1:9

得出结论:两杯水一样甜。

二。化简比。

分数可以约分,比也可以化简。

0.7:0.8 :

师:刚才我们根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。现在请同学们先自己尝试一下化简小数与小数的比和分数与分数的比,然后请同学说一说是根据什么来化简的。

0.7:0.8 :

=0.70.8 =

=78 = 4

=7:8 =

=8:5

完成书上试一试化简下面各比。

15:21 0.12:0.4 : 1:

请学生独立完成后,说说化简比的方法,全班集体订正。

三。课堂练习。

[课件出示]课本P52 第1题:连一连

在学生中开展比赛,鼓励学生独立完成。

[课件出示]课本P52 第2题:写出各杯子中糖与水的质量比。

1)写出四个杯子中糖和水的质量比。

2)这几杯糖水有一样甜的吗?

3)还能写出糖与糖水的质量比吗?

[课件出示]课本P52 第3题:

(1)(2)题自己独立完成;

(3)题投球命中率同学讨论完成。

四、总结

师:同学们一起来总结本节课学习的内容:

阅读数学课本P51比的化简。

我们是根据什么来化简比的呢?

是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简的。

我们在实际生活中什么时候需要化简比?或者说我们用化简比可以解决实际生活中的哪些问题

五、独立完成课本P53 第4题和第5题。

让学生进行实际操作,动手调制蜂蜜水。通过调制蜂蜜水的活动,让学生在解决哪一杯更甜这个问题的过程中,加深对比的意义的理解,进一步感受比、除法、分数之间的关系。

体会化简比的必要性,学会化简比的方法。根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。

这是小数与小数的比和分数与分数的比,还是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简,目的是让学生在不同题目中巩固化简比的方法。

进一步巩固化简比的方法。

巩固化简比。

这几杯糖水有一样甜的吗?这个问题需要化简比或求出比值后才能确定投球命中率的高低,其实就是比值大小的比较。因此,教师可以引导学生在完成(1),(2)两题的基础上,在小组内讨论完成(3)题,然后在班级交流每组的情况,从而让学生明白判断投球命中率的高低要看比值的大小。

小学数学教案反思通用篇6

一、复习:

昨天的课上我们学习了解决问题的策略,谁来说说解决问题具体的策略有哪几种?

(列表,画箭头,画线段图等)

用这些方法,都可以使信息看得更清楚就更方便我们的解答了。

其实,昨天解决的问题主要分两类:归一和归总

老师补充练习(略)解释归一和归总的意思和解决方法

二、学习例题:

1、出示例题:读题后,让学生说说题里提到了几种树?

根据问题依次把信息填入表格。

问:根据第一行的信息可以求什么?怎么求?这个算式写在哪里更合适?

(因为是求桃树的棵数,所以该算式就写在第一行边上更为清楚。)

同样的,根据第2行的信息可以求什么?算式写在哪里更合适?

指名读问题,说说怎么求该问题?

有没有别的解答方法?(可能会有学生提出用综合算式的方法。)

指名说说这题的解题步骤。

2、和刚才一样,自己尝试着解决“试一试”

全班交流。

三、巩固练习:

1、读题后要求学生自己画出表格来整理,再解答

教师巡视,做一些具体的指导

再全班交流表格的设计和解答的方法

2、读题后问:这份表格需要设计几行?

根据每一行的信息,分别能求出什么问题?写在相应的行。

再回答书上的问题。

你还能提出什么问题?选几个学生的问题让大家解答。

3、边读题边整理表格,整理完之后再解答交流。

四、全课总结

这节课我们还是用列表的方法整理信息,解决实际问题。

小学数学教案反思通用篇7

教学内容:

体积单位间的进率

教学目标:

1、使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000。

2、在探索体积单位进率的过程中,获得积极的学习的体验,增强学好数学的信心。教学

教学重点:

体积单位之间的进率推导过程。

教学难点:

归纳相邻体积单位间换算的方法。

课前准备:

正方体教法学法实践法、讨论法

教学过程:

一、激趣导入

1、谈话:同学们,今天我们要学习体积单位间的进率。

2、引导学生回忆我们以前学过哪些单位间的进率。

3、提问:(1)常用的长度单位有米、分米、厘米,相邻的两个面积单位间的进率是多少?

(2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?

(3)常用的体积单位有哪些?猜想今天我们学习的相邻体积单位间的进率可能是多少?

二、引入新课

到底你们的猜想对不对呢?让我们一起验证一下。

猜想

1、认识体积单位间的进率。

(1)出示棱长1分米的正方体,提问:体积是多少?

给一条棱涂色,提问:棱长多少厘米?(10厘米。)

提问:体积是多少?

(101010=1000(立方厘米)。)

教师:由此可知1立方分米等于多少立方厘米?学生口答后老师板书:1立方分米=1000立方厘米

(2)教师:如果把刚才的图理解为棱长1米,即体积为1立方米,它的体积是多少立方分米?

学生口答老师板书:1立方米=1000立方分米。

请生说一说推导过程。

教师:能说一说相邻的两个体积单位间的进率是多少吗?(1000。)

(3)完成课本34页表格,进一步区分长度、面积、体积单位及进率。

2、体积单位的互化。

(1)教师:在日常生活、工作和学习中,经常需要把体积单位进行转化,现在来学习这个问题。

出示例3:3.8立方米是多少立方分米?

教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?如何计算?并说出这样计算的理由。

学生边讨论边试算。然后归纳,老师:大化小,乘进率。

3.81000=3800立方分米

(2)2400立方厘米是多少立方分米?

生独自完成,集体订正,说明计算过程。

(3)说一说这两道题有什么不同?学生讨论后归纳,老师小结。

高级单位低级单位,用进率高级单位的数。

低级单位高级单位,用低级单位的数进率。

三、巩固提高

1、试解下面几题

①2米380立方分米=()立方米;

教师可作提示:哪部分需要转化?没转化的部分如何办?

②5.34立方分米=()立方分米()立方厘米。

2、课本做一做

四、总结

今天你有哪些收获?还有什么疑问?

作业布置课本P36练习八:1。(写出转化过程)

板书设计

体积单位间的进率

1立方分米=1000立方厘米

1立方米=1000立方分米

高级单位低级单位,用进率高级单位的数。

低级单位高级单位,用低级单位的数进率。

小学数学教案反思通用篇8

一、教学目标:

1、掌握口算除数是整数的小数除法。

2、掌握笔算除数是整数的小数除法的方法。

3、运用乘除法关系,求除法算式中的未知数。

二、教学重点:

掌握笔算除数是整数的小数除法的方法。

难点:提高计算正确率。

三、教学准备:卡片和多媒体

四、教学过程:

A、口算训练:P-30第一题。

要求学生掌握口算技能,提高口算能力。

B、计算训练:

1、P-46第二题。

a、要求学生独立完成,掌握方法。

b、说一说你为什么算得怎么快?

c、学生报得数,进行校对。说一说你错误的原因。

2、计算并用乘法验算。P-46第三题的第一排。

a、抽三名学生板演,校对。

b、说一说除数是整数的小数除法的计算方法。

3、求未知数P-45第四题。

a、抽四名学生板演,教师巡视,帮助学困生。

b、说一说每题计算的依据是什么?

C、讲解应用题:P-46第五题和第六题。

1、学生用分析法或综合法分析解题思路。

2、说一说时间、速度和路程的三者之间的关系。

3、学生独立完成。校对。

D、发展题:

1、引导学生进行分析和推理。

△÷△=□□是几?

△-△=☆☆是几?

△+△=○○=11.4-1=10.4

□+○+☆=11.4

△=()△=5.2

E、布置作业:P-46第三题。

课后小结:本节课的最后,我安排了一道发散题,重在发现学生的思维,以及综合运用小数乘除加减法的能力,在这一题的练习中,我先通过让学生小组讨论,然后小组派代表交流。最后选择其中一题讲解思路。效果不错。

小学数学教案反思通用篇9

活动目标:

1.学习将物品按用途分类。

2.根据物品的共同特征设计标记。

3.在活动中学习,能够有条理的对物品进行收拾和整理。

4.培养幼儿的观察力、判断力及动手操作能力。

5.让幼儿懂得简单的数学道理。

活动准备:

PPT图片、幼儿之前要有按标记分类的知识积累、黑色水笔、白纸。

活动过程:

1.首先以圣诞节到了,帮助托板的小朋友整理收到的礼物为情景展开活动,出示图片,让幼儿知有 哪些礼物。

2.首先让幼儿自主分类(有的按形状、有的按颜色、有的'按质量的软硬等等),并让幼儿说出为什么这样分。

3.以托班只有三个箱子为由,引导幼儿按物品的用途分三类,把那个问他们为什么这样分?(引导幼儿说出吃的、用的、玩的)

4.分好后,为了让托班的小朋友更容易的辨认箱子里的东西是什么,引导幼儿说出做标记,并在纸上画出来。

活动结束。

活动反思:

在这个活动中,我并没有用实物而是用的图片,因为出示得实物都是幼儿非常感兴趣的东西,会分散幼儿的注意力,课程就不容易继续下去了。采用图片的形式既能提起幼儿的兴趣,又不会分散幼儿的注意力。一节课的活动下来,总体上的还是不错的。老师的建议是:应该多加一些家具类的或者幼儿部常见的物品进行分类,这样加大了难度,拓展了幼儿的认知面,如果仅限于幼儿常见的物品的话,拓展的部分就无法显现。

小百科:分类,是指按照种类、等级或性质分别归类。

小学数学教案反思通用篇10

一、重视审题能力的培养和良好审题习惯的养成

审题能力是综合获取信息、处理信息的一种能力,它需要以一定的知识储备、认知水平为依托,更需要有良好的读题习惯、有效的思考方法为保证。应用题的审题过程就是要审清题目的情节内容和数量关系,使题目的条件、问题及其关系在学生头脑中建立起完整的印象,为正确分析数量关系和解答应用题创造良好的前提条件。

培养小学生养成认真审题的好习惯,并形成较高的审题能力这并不是一朝一夕就能完成的,必须要有相当长的时间来强化训练,几乎贯穿我们数学教学的始终。在开始的训练阶段,教师必须对学生提出明确的要求。教师可以要求学生一读题目,建立表象;二读题目,明确问题;三读题目,找出关键,并作记号。其难度主要体现在“在关键字词句下划上重点标记”这一要求。教师还可以利用时常出些“陷阱题”“刺激”学生,让学生从思想上认识到审好题目的重要性,这一点还是比较容易做到。

二、帮助学生建立数学模型并提高学生的模式识别能力

数学是充满模式的。现代认知学习理论的研究成果清楚地表明:专家之所以能很快地通过知觉找出在某一情境下解决问题的策略,是因为他具备迅速地把记忆中原有的知识?经验检索出来的能力。在数学问题的解决过程中,学生如能正确地识别问题的模式,就能很快地收敛思考问题的范围,为正确选择问题解决思路就迈出了关键的一步。

目前小学生解决实际题的能力还是相当薄弱的,主要表现为对问题的情境语言缺乏常识性的了解,不善于利用等量关系去解决问题,即找不准问题中各数量间的关系,这方面就属于模式识别研究范围内的问题。变式训练是一良策,学生可以从题目的变更中了解与应用问题密切相关的术语,而且通过背景的变换,达到强化模式的目的。在采用变式训练的教学的过程中,教师应抓住引导学生实现模式识别关键性的一个环节——其中具有代表性的问题进行详尽的剖析,决不能就题论题,要教方法?教思想,从而达到以不变应万变的目的。

三、引导学生概括、领悟常见的数学思想

小学高年级的学生抽象逻辑思维得到了一定的发展,他们有一定归类和上升为数学思想的能力。

数学思想较之数学基础知识,有更高的&39;层次和地位.它蕴涵在数学知识发生、发展和应用的过程中,它是一种数学意识,属于思维的范畴,用以对数学问题的认识、处理和解决.数学方法是数学思想的具体体现,具有模式化与可操作性的特征,可以作为解题的具体手段.只有对数学思想与方法概括了,才能在分析和解决问题时得心应手;只有领悟了数学思想与方法,书本的、别人的知识技巧才会变成自己的能力。像小学数学经常会出现的行程问题,学生如果掌握了数形结合的思想方法,解决的时候就会得心应手。

四、重视解题策略的回顾和反思

小学高年级的学生有一定的归纳、概括、和策略反思的能力。

在数学解题过程中,解决问题以后,再回过头来对自己的解题活动加以回顾与探讨、分析与研究,是非常必要的一个重要环节(“解后不思等于不收”,“反思是收获的黄金季节”)。这是数学解决问题过程的最后阶段,也是对提高学生分析和解决问题能力最有意义的阶段。

解决实际问题的教学目的并不单纯为了求得问题的结果,真正的目的是为了提高学生分析和解决问题的能力(经验只有通过概括才能上层次,概括的层次越高,迁移的半径就越大),培养学生的创造精神,而这一教学目的恰恰主要通过回顾解决问题的教学来实现.所以,在数学教学中要十分重视解题的回顾,与学生一起对解题的结果和解法进行细致的分析,对解题的主要思想、关键因素和同一类型问题的解法进行概括,可以帮助学生从解题中总结出数学的基本思想和方法加以掌握,并将它们用到新的问题中去,成为以后分析和解决问题的有力武器。

五、适当进行开放题和新型题的训练,拓宽学生的知识面

数学教学中适当地对学生进行开放题和新型题的训练,是提高学生分析和解决实际问题能力的必要补充。可利用学校的图书馆、教室等学生非常熟悉的地方,创设出一个个丰富的现实的问题情境,学生依据这些材料解决问题,求知欲强,并体会到成功的快乐。还可以培养学生应用数学的意识,能知道现实生活中蕴涵着大量的数学信息,能感受到现实世界中有广泛的应用。也可以通过改变条件或问题,把一道题改编成几道不同类型的问题,让学生弄清算理,加以辨析,从而形成知识链,提高举一反三、触类旁通的能力,使学生的思维得到进一步的发展。

小学数学教案反思通用篇11

教学目标:

1、知识与技能:结合本班同学的生日在什么季节进行统计,激发学生参与统计活动的愿望,培养他们的统计意识。

2、过程与方法:进一步体验数据的调查、收集、整理的过程,能根据统计图,分析数据,回答一些简单的问题。

3、情感态度价值观:感受统计与生活的密切联系,并能与同伴交流自己的想法。

教学重点:

对数据的调查、收集、整理和分析有所体验。

教学难点:

能根据图表中的数据回答一些简单的问题。

教具准备:

多媒体课件,统计格子纸片。

教学过程:

一、激发情感,引入新课

师:大家看,小男孩在做什么?(过生日)

1、请同学们说一说自己的生日是几月几日,学生回答,教师板书

3,4,5,

6,7,8,

9,10,11,

12,1,2,

2、猜:老师为什么这样写呢?(生猜测)

教师贴春,夏,秋,冬

3、学生欣赏四季景-片。

老师准备了绿,红,黄,白四种颜色的纸卡来分别代表这四个季节。绿色代表什么?红色呢?-?白色?

同桌记一记四季是如何划分的?

4、每位同学选代表自己生日的纸卡。小组内相互检查每人是否拿对了。

5、老师想知道哪个季节过生日的同学最多,该怎么办?

二、亲自调查,收集数据

1、调查准备

师:你们想用什么方法调查呢?(生汇报)

师:接下来我们就用站排的方法来统计。调查时要注意哪些问题呢?(生答)

2、合作调查。

3、汇报交流

三、分析统计结果,解决问题

打开书90页。涂一涂。注意每个小格代表一人。

师:仔细观察图,看看你能发现什么?还能提出哪些数学问题?

生自由说

四、可能性教学渗透

师:老师听说我们班要转来一名新同学,你们猜猜他最有可能在哪个季节过生日呢?说出自己的理由。

五、拓展应用

小明看到同学们都表现这么棒,想邀请大家一起参加今天晚上的生日聚会,可不知该买什么口味的蛋糕。各组用喜欢的方法调查,分组统计,完成统计图。

六、游戏

同学们经常玩剪刀石头布,今天我们每人玩10次,看自己赢了几次,输了几次,平局几次,用自己的方法来统计。(学生每人1张白纸,用来记录)

七、拓展延伸,全课小结

师:这节课你有什么收获?(生自由说)

师:请大家想一想,在我们的生活当中,还有哪些问题需要统计呢?(自由说)

板书设计:

生日

3,4,5,春

6,7,8,夏

9,10,11,秋

12,1,2,冬

小学数学教案反思通用篇12

教学目标:

1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

3、会用乘法分配律进行一些简便计算

重点难点:

1、指导探索乘法分配律。

2、发现并归纳乘法分配律。

方法指导:

通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。

教学过程:

具体内容

一、激趣导入

(约3分钟)

创设情境,提出问题

1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?

2、学生思考:(1)有几种搭配方案

(2)选择你喜欢的一种方案,并算出总价。

(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)

二、自主学习

(约7分钟)

(一)组内研讨,确定方案

1、组内研讨

(1)一共有几种搭配方案?

(2)介绍自己的方案,并说一说,你推荐的理由。

(3)说说你推荐的方案,需要花多少钱?你是怎么算的?

合作交流

(约10分钟)

2、汇报交流

师:哪一个同学想先来给老师推荐他的方案?

师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?

分别列式解答

师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)

师:这个等式怎么读呢?

生尝试读等式。

(预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4

B.225加上75的和乘4等于225和75分别与4相乘的积再相加。)

3、研究其它方案

由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。

教师板书

一套×4=4件上衣+4条裤子

(225+75)×4=225×4+75×4

(225+125)×4=225×4+125×4

(175+75)×4=175×4+75×4

(175+125)×4=175×4+125×4

精讲点拨

(约8分钟)

(二)观察比较、猜测验证

1、观察比较

2、提出猜想。

师:观察上面的等式,左右两边的算式什么变了什么没变?

你们有什么发现?

3、举例验证。

让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?

学生汇报,教师根据汇报板书。

(三)总结规律,概括模型

1、总结规律

师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)

师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?

2、用字母表示

师:用字母如何表示乘法分配律?

三、测评总结(约12分钟)

巩固应用,训练提升

1、请你根据乘法分配律填空

(12+40)×3=()×3+()×3

15×(40+8)=15×()+15×()

78×20+22×20=(+)×20

66×28+66×32+66×40=(++)×40

教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。

2、火眼金睛辨对错

56×(19+28)=56×19+56×28

(18+15)×26=18×15+26×15

(11×25)×4=11×4+25×4

(45-5)×14=45×14-5×14

强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。

3、用乘法分配律计算下面各题。

(40+4)×25、39×8+39×6-4×39

4、拓展提高

你能用乘法分配律解决这道题吗?

86×101

四、课堂小结

说一说,今天我们研究了什么?你有什么收获

板书设计:

乘法分配律

一套×4=4件上衣+4条裤子

(225+75)×4=225×4+75×4

(225+125)×4=225×4+125×4

(175+75)×4=175×4+75×4

(175+125)×4=175×4+125×4

乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。

小学数学教案反思通用篇13

教学内容:

教科书数学六年级上册P112-115。

教学目标:

1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。

2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。

3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:

让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

教学难点:

理解假设法中各步的算理

教具准备:

多媒体课件

教学过程:

一、解读原题,直奔主题。

1、谈话,激情导入

师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。

(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

(2)揭示课题

(3)原题解读

师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?

课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?

[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。]

二、合作探究,寻找策略。

1、改变原题

师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。

(1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

(2)理解题意:从题中你获得哪些信息?

让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。

探索策略

2、列表尝试法

①猜一猜:笼子里可能有几只鸡?几只兔?

②说一说:他猜的对吗?要怎么知道他猜的对不对?

③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。

④展示答题卡:我试了()次得出答案。鸡有()只,兔有()只。

⑤反馈交流

A、按顺序尝试,数一数试了几次?从表中你发现了什么规律?

B、取中或跳跃尝试,数一数试了几次?有什么秘诀?

⑥小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。

[设计意图:列表尝试法虽然繁琐,但它是解决问题一种重要的策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]

3、假设法

①、学生独立尝试列式解答

②、小组讨论,说一说用假设法解答的算理

③、汇报反馈

④、课件动态展示假设法的两种思路,老师边演示边提问题让学生回答。

A、假设笼子里都是鸡,一共有几只脚?

条件告诉我们几只脚,这样就少了几只脚呢?

为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?

那么几只兔看成鸡一共少了10只脚呢?

B、假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?

为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?

那么几只鸡看成兔一共多了6只脚呢?

⑤、让学生对照课件说一说算式表示的意义

⑥、思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?

[设计意图:让学生认识、理解、运用假设法是本课的重点,也是教学的难点。老师以列表尝试法为基础,放手让学生在独立尝试的基础上合作探究,学生从自主尝试到讨论汇报、互动,结合课件的动态演示,巧妙地将学生个人或集体的认知经验、思维过程转化为数学语言,从而形成了解决问题的新策略,发展了学生的`思维水平,获得了新的数学思想方法。]

4、方程解

解:设兔有只,则鸡有只。

也可以设:鸡为只,则兔有只。(略)

师:在列方程解答时碰到什么困难?该如何解决?

[设计意图:方程解是学生在五年级已经学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]

5、梳理小结,比较优化。

三、推广应用,建立模型。

1、选择自己喜欢的方法解决《孙子算经》中的原题。

2、解决生活中的“鸡兔同笼”的问题。

(1)动物园中的问题。

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2)游乐园中的问题。

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?

3、对比联系,建立模型。

4、小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。

5、让学生举出生活中类似的“鸡兔同笼”问题。

[设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]

四、引导阅读,课外延伸。

1、阅读并思考课本114页的“阅读材料”。

2、完成练习二十六的1—3题。

[设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]

小学数学教案反思通用篇14

教学目标:

1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。

2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。

3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。

教学重点:

能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。

教学难点:

能用不同的策略解决相关的实际问题。

教学关键:

引导学生学会用假设、举例、列表、作图等方法解决问题。

教具:

多媒体课件

教学过程:

一、联系现实,激趣导入

1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。

生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;

师:接下来的歌谣不完整,谁能把它填完整呢?

两只鸡个头,条腿,两只兔子,个头,条腿,三只鸡三只兔子一共__个头,__条腿

师:你是怎么知道的?

生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。

[设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]

2、这节课,我们就一起来研究有关“鸡兔同笼”的问题。

二、自主探索,尝试解决

1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?

(1)、指名读题

(2)、理解题意:

师:20个头表示什么?

生:20个头表示鸡与兔的总头数。

师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。

(3)、同桌说一说:

(4)、学生汇报,教师填表

生1:我猜鸡有3只,兔子有17只。

生2:我猜鸡有5只,兔子有15只。

生3:我猜鸡有16只,兔子有4只。

……

师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?

生:鸡兔的总只数没有变。

强调鸡兔的总只数不变

[设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]

2、自主探究

出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?

(1)、指名读题

(2)、引导观察:

师:这两道题有什么不同呢?

生:第2个问题多了一个条件“54条腿”

(3)、理解题意:

师:20个头,54条腿是什么意思呢?

生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。

师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:

①、每个小组老师都有一份材料

②、小组长组织小组成员讨论,小组长并做好记录

3、反馈交流,教师适当引导

(1)、逐一列表法:

生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。

师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?

(2)、跳跃列表法

生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。

师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?

(3)、折中列表法

生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。

师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)

像同学们刚才的这几种解法,我们把它称为列表法。

[设计意图:让学生小组讨论,尝试列表解决问题,调动每个学生的学习积极性,同时对列表的方法不做统一规定,让学生自由发挥,培养了学生的发散思维]

4、画图法(板书:画图法)

师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。

5、归纳算法

解决“鸡兔同笼”有多种方法,你喜欢哪种方法?

三、巩固练习

生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?

(1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?

(2)、学生独立解决,全班交流。

[设计意图:通过学生的独立解决,旨在加深学生对鸡兔同笼问题的的理解。此外,不同层次的问题体现了不同学生的发展。也让学生体会到数学就在我们身边。]

四、全课

通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)

五、拓展延伸

书P81“你知道吗?”

师:我国古代数学名著《孙子算经》中就记载了“鸡兔同笼”的有关问题,可见古代劳动人民的智慧,我们为之感到骄傲和自豪。

[设计意图:在教学时,对学生渗透爱国主义教育,激发学生努力学习数学热情,使他们感到学数学不是枯燥乏味的,而是风趣幽默的一门学科。]

教学反思:

反思本次教学活动,我发现了成功与遗憾共存。

成功之处在于:

1、在导入新课时我采用创设情境的方式导入,学生的积极性一下子就被调动起来了。让学生读歌谣、把歌谣补充完整,学生不仅觉得有趣,同时也复习了计算腿数的方法。

2、新授时我让学生自主探索、尝试解决鸡兔同笼的问题,然后引导学生认识三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。由于学生的认知水平不同,我没有统一要求,允许不同的学生有不同的解题方法。而且在这个环节中,我给予学生思考的时间也比较充分,因此部分学生对列表法掌握得还蛮可以的。在教学列表法后,我又引导学生用画图的方式去试着解这种类型的问题。

3、练习时,选择与学生生活密切联系的例子,如:停车场上停着自行车和三轮车,让学生自主解决,不仅体会到数学与日常生活的联系,而且获得成功的体验,增强学习数学的兴趣和自信心。

遗憾之处在于:

1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。

2、练习时,如能引导学生巧妙综合运用三种列表法,把课上得更精彩、生动一点就更好了。

小学数学教案反思通用篇15

一、目的要求

使学生会用移项解方程,一元一次方程利用等式的性质解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程7x-2=6x-4

时,用移项可直接得到7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x;

(2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程x-7=5

的两边都加上7,就可以得到x=5+7,

x=12。

又如方程7x=6x-4

的两边都减去6x,就可以得到7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。

40538