高中数学ppt教案大全
教案可以帮助教师提高教学质量,以便更好地提升学生的学习成绩。高中数学ppt教案大全怎么才能写好?这里分享一些高中数学ppt教案大全,方便大家学习。
高中数学ppt教案大全篇1
1.1.1任意角
教学目标
(一)知识与技能目标
理解任意角的概念(包括正角、负角、零角)与区间角的概念.
(二)过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
(三)情感与态度目标
1.提高学生的推理能力;
2.培养学生应用意识.教学重点
任意角概念的理解;区间角的集合的书写.教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
③角的分类:A
正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意:
⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;
⑵零角的终边与始边重合,如果α是零角α=0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
⑤练习:请说出角α、β、γ各是多少度?
2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;
答:分别为1、2、3、4、1、2象限角.
3.探究:教材P3面
终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S={ββ=α+
k·360°,
k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:⑴k∈Z
⑵α是任一角;
⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差
360°的整数倍;
⑷角α+k·720°与角α终边相同,但不能表示与角α终边相同的所有角.
例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;
⑵640°;
⑶-950°12’.
答:⑴240°,第三象限角;
⑵280°,第四象限角;
⑶129°48’,第二象限角;
例4.写出终边在y轴上的角的集合(用0°到360°的角表示).解:{αα=90°+n·180°,n∈Z}.
例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
4.课堂小结
①角的定义;
②角的分类:
正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
③象限角;
④终边相同的角的表示法.
5.课后作业:
①阅读教材P2-P5;
②教材P5练习第1-5题;
③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,
解:??角属于第三象限,
?k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)
故2α是第一、二象限或终边在y轴的非负半轴上的角.又k·180°+90°<
各是第几象限角?
<k·180°+135°(k∈Z).
<n·360°+135°(n∈Z),
当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,
属于第二象限角
<n·360°+315°(n∈Z),
当k为奇数时,令k=2n+1(n∈Z),则n·360°+270°<此时,
属于第四象限角
因此
属于第二或第四象限角.
1.1.2弧度制
(一)
教学目标
(二)知识与技能目标
理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.
(三)过程与能力目标
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题
(四)情感与态度目标
通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点
弧度的概念.弧长公式及扇形的面积公式的推导与证明.教学难点
“角度制”与“弧度制”的区别与联系.
教学过程
一、复习角度制:
初中所学的角度制是怎样规定角的度量的?规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.
二、新课:
1.引入:
由角度制的定义我们知道,角度是用来度量角的`,角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?
2.定义
我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下,1弧度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?
(2)引导学生完成P6的探究并归纳:弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝对值α=.
4.角度与弧度之间的转换:
①将角度化为弧度:
②将弧度化为角度:
5.常规写法:
①用弧度数表示角时,常常把弧度数写成多少π的形式,不必写成小数.
②弧度与角度不能混用.
弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.
例1.把67°30’化成弧度.
例2.把?rad化成度.
例3.计算:
(1)sin4
(2)tan1.5.
8.课后作业:
①阅读教材P6–P8;
②教材P9练习第1、2、3、6题;
③教材P10面7、8题及B2、3题.
高中数学ppt教案大全篇2
一、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据教学大纲的要求我确定本节课的教学重点为:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
二、教法分析
针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:
1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N﹡;解析式)
通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。
2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①
3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②
通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二) 新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一个数列公差<0, 第二个数列公差>0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
高中数学ppt教案大全篇3
一、设计思想
本节课是数列的起始课,着重研究数列的概念,明确数列与函数的关系,用函数的思想看待数列。通过引导学生通过对实例的分析体会数列的有关概念,并与集合类比,通过类比,学生能认识到数列的明确性、有序性和可重复性的特点。在体会数列与集合的区别中,学生意识到数列中的每一项与所在位置有关,并通研究数列的表示法,学生意识到数列中还有潜在的自变量——序号,从而发现数列也是一种特殊的函数,能用函数的观点重新看待数列。
二、教学目标
1.通过自然界和生活中实例,学生意识到有序的数是存在的,能概况出数列的概念,并能辨析出数列和集合的区别;
2.通过思考数列的表示,学生意识到可以用表达式简洁的表达数列,能分析出数列的项是与序号相关,需要借助于序号来表示数列的项;
3.在用表达式表示数列的过程中,学生发现项与序号的对应关系,认识到数列是一种特殊的函数,能用函数的观点重新研究数列;
4.通过对一列数的观察,能用联系的观点看待数列,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
5.从现实出发,学生能抽象出现实生活中的数列
重点:理解数列的概念,认识数列是反映自然规律的基本数学模型难点:认识数列是一种特殊的函数,发现数列与函数之间的关系
三、教学过程
活动一:生活中实例,概括出数列的概念
1.背景引入:
观察以下情境:
情境1:各年树木的枝干数:1,1,2,3,5,8,...情境2:某彗星出现的年份:1740,1823,1906,1989,2072,...
情境3:细胞分裂的个数:1,2,4,8,16,...情境4:A同学最近6次考试的名次17,18,5,8,10,8
情境5:奇虎360最近一个周每日的收盘价:
问题1:以上各情境中都有一系列的数,你看了这些数,有什么感受?
或者有什么共同特征?
共同特点:
(1)排成一列,可以表达信息
(2)顺序不能交换,否则意义不一样.
设计思想:通过例子,学生感受到数列在现实生活中是大量存在的,一列数的顺序是蕴含信息的,从而感受到数列的有序性。
2.数列的概念
(1)数列、项的定义:
通过上述的例子,让学生思考以上一列数据共同的特征,从而归纳出数列的定义:
按照一定次序排列的一列数称为数列,数列中的每一个数叫做这个数列的项。问题2:能否用准确的语言给我描述一下情境4中的数列?
设计思想:通过让学生描述,学生再次体会数列中除了数之外,还蕴含着重要的信息:序号。
问题3:这两个数都是8,表示的含义是否一样?
不一样,第四项,第六项,即每一项结合序号才有意义,所以,描述数列的项时必须包含位置信息,即序号。
排在第一位的叫首项,排在第二位的叫第二项……排在第n位的数
问题4:根据对数列的理解,你能否举出数列的例子?
答:我校高一年级各班的人数。
问题5:能否抽象出数列的一般形式?
a1,a2,a3,...,an,...,记为?an?
(2)数列与集合的区别
问题6:数列是集合吗?
通过与集合的特点进行对比,更清楚的数列的特点。
让学生与前一章学习的集合做比较,可以更清楚的了解到数列的本质性的定义。也符合建构主义的旧知基础上形成新知的有效学习。
(3)数列的分类?能不能不讲?
活动二:思考数列的表示——通项公式
3.通项公式的概念
问题7:对于上述情境中的数列,有没有更简洁的表示方式?
学生活动:学生可能会用序号n来表示,问学生为什么用n来表示,引出通项公式的概念
一般地,如果数列?an?的第n项与序号n之间的关系可以用一个公式来表示.那么这个公式叫做这个数列的通项公式.
4.通项公式的存在性
问题8:是否任意一个数列都能写出通项公式?
写出通项公式
活动三:用函数的观点看待数列
5.数列也是函数
问题9:在数列?an?中,对于每一个正整数n(或n??1,2,...,k?),是不是都有一个数an与之对应?
问题10:数列是不是函数?
通过前铺垫,学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是函数。
把序号看作看作自变量,数列中的项看作随之变动的量,用函数的观点来深化数列的概念。
6.用函数的观点看待数列
问题11:所以,除了用解析式表示数列,还有哪些方法?
再从函数的表示方法过渡到数列的三种表示方法:列表法,图象法,通项公式法。学生通过观察发现数列的图象是一些离散的点。
例2.已知数列?an?的通项公式,写出这个数列的前5项,并作出它的图象:(?1)nn(1)an?;(2).an?nn?12
问题12:数列的图象的特点是什么?
数列的图象是一些孤立的点。
通过学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是以特殊的函数,再从函数的表示方法过度到数列的三种表示方法:列表法,图象法,数列的通项。学生通过观察发现数列的图象是一些离散的点。最后通过通项求数列的项,进而升华到观察数列的前几项写出数列的通项。
【课堂小结】
1.数列的概念;
2.求数列的通项公式的要领.
高中数学ppt教案大全篇4
如何在高二这一关键性的一年中与这些同学一齐共同进步缩小差距,我选取了从课堂教学、作业布置、评价方式这三个方面入手,激发学生的学习用心性,尽量向学生带给从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基础的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
第一,用多变的课堂教学,充分调动学生的主动性
我认为数学教学是教师思维与学生思维相互沟通的过程。从信息论的角度看,这种沟通就是指数学信息的理解、加工、传递的动态过程,在这个过程中充满了师生之间的数学交流和信息的转换,离开了学生的参与,整个过程就难以畅通。北京师范大学曹才翰教授指出“数学学习是再创造再发现的过程,务必要主体的用心参与才能实现这个过程”;从当前全面实施素质教育的要求来看,激发学生用心参与课堂教学,就是为了提高课堂教学效率,培养学生的学习潜力和创造思维潜力,这与以培养创造型人才为目的的素质教育完全一致,因此,在数学课堂教学中提高学生的参与度,不仅仅具有提高数学教学质量的近期作用,而且具有提高学生素质的远期功效。
若要实现这个目标,在教学引入时我常常以问题作为出发点,选取的素材密切联系学生的现实生活,运用学生的求知欲,使学生感到数学就在他们身边,与现实世界联系紧密,同时问题情景的设置又具有必须的挑战性,引发了学生的思考。
如人教版初二几何《三角形》的《关于三角形的一些概念》在引入时我提出了以下几个问题:你能举出生活中一些有关三角形的实例吗?你能一笔画一个三角形吗?你能用语言叙述你的画图过程吗?
如人教版初二几何《三角形》的《三角形全等的判定(一)》在引入时我提出了这样一个问题:请你任意画一个三角形,你能否再画一个与其全等的三角形。画好后请你剪下来验证一下。学生的用心性被激发,热烈的讨论,课堂上出现了许多状况
有的学生用的是先确定一角再确定两边的画法;有的一个学生是利用尺规根据三边关系画的(这正是后面所要学的一个三角形全等的判定公理);有的学生是利用了垂直、平行、对顶角来省去作图中使用量角器的麻烦,学生充分利用已有的数学知识,利用自己对数学图形的感知,很好的解决了这个问题,透过剪一剪试一试从直观上验证了自己的画法。
如《相似形》的《相似三角形的性质》在引入时我提出了这样的问题:提到与我国并称为世界四大礼貌古国的埃及你会想到什么?学生们说到了法老、金字塔、木乃伊等等,说到金字塔你能测量出埃及大金字塔的高度吗?学生几乎是异口同声地告诉我用影长,当时我称赞他们与我们的几何学之父古希腊人欧几里得的测量方法一样,并讲述了欧几里得的故事,他等到自己在阳光下的影长与他的身高正好相等的时候,测量了金字塔的塔影的长度,这时,他宣布,“这就是大金字塔的高度。”从而激发了学生探索相似三角形的其它性质的兴趣。
我在课堂教学的过程中,为了使成绩较差同学减少对于数学的恐惧感,课堂上放慢教学速度,变换教学方法,如人教版初二几何《三角形》的《关于三角形的一些概念》我是这样处理的:1、请学生讲解三角形的有关概念;2、请学生用折纸的方法讲解角平分线和中线,折纸的过程中你还发现了什么?3、请学生任意作一个三角形,并做出这个三角形的一条角平分线和一条中线。三个要求层层深入了学生对于基本概念的理解,变教师讲为学生讲,取得了较好的效果。
我在课堂上放慢教学速度是能够照顾到大部分学生的,但一小批优等生就会出现没事做的状况,这时学习小组就是他们发挥余热的地方,在具体的教学过程中给学生建立了数学学习小组,让学生在各自的小组中相互帮忙,让每一个学生都能从事小组中不同的工作,并最终完成一个共同的目标。透过小组学习,使学生树立正确的团队观,尊重他人、尊重自己,敢于发表自己的观点,又不固执己见,对同学的见解,既要乐于理解合理成分,又要勇于表达自己不同的看法。在具体实施的过程中,我越发的认识到讨论的重要性,我鼓励学生质疑,质疑教师,质疑教科书,鼓励学生争论,有些知识点在学生的争论中被突破,知识在争论中被融会贯通,我发现学生之间的语言他们更容易理解,于是我开始尝试让学生讲课,讲过三角形的分类等。又如学习基本作图时,教科书就如一本说明书,让学生以学习小组为单位,阅读、画图,互教互学,实际教学时取得了很好的效果。让各层次的学生都能有所知,有所得。在认知效果和记忆效果方面比教师直接给出要好。
第二,布置多样的作业,引导学生的用心性
让学生作业的目的在于巩固和消化所学的知识,并使知识转化为技能技巧。正确组织好学生作业,对于培养学生的独立学习的潜力和习惯,发展学生的智力和创造潜力有着重大好处。因此,教师应重视作业的布置,《数学课程标准》中明确指出:“义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。”作业布置如何体现这一基本理念,如何调整作业在学生学习活动中的位置,也是提高课堂教学效率的关键。
课堂结束新课后,我透过作业的布置渗透数学学习方法如自学,这样才能真正提高学生数学学习的水平,开始时每一天的第一样作业是复习,最后一项作业是预习,而且把具体的页数写清楚提出具体的预习提纲,加强学生看书的针对性,开始时还带有必须的强制性如让家长签字,从而提高学生阅读理解的潜力。
对数学的兴趣能激发学生的学习动机,富有情境的作业具有必须吸引力,能使学生充分发挥自己的智力水平去完成。趣味性要体现出题型多样,方式新颖,资料有创造性,如课本习题、自编习题、计算类题目、表述类题目(如单元小结、学习体会、数学故事、小论文等)互相穿插,让学生感受到作业资料和形式的丰富多采,使之情绪高昂,乐于思考,从而感受作业的乐趣。
根据上课资料所需经常让学生动手做教具如剪钝角三角形、锐角三角形、直角三角形,做教具说明三角形具有稳定性而四边形没有此特性等,这种做法不但能够提高学生学习的兴趣,而且会有一些意想不到的事情。如:学生做教具说明三角形具有稳定性而四边形没有此特性时,有的学生用线绳打结连接四边,有的学生为了省事用订书钉订的,而订的不同方法得到有的四边形能动而有的不能,经过学生的讨论得出关键在于连接处是一个点还是两个点的问题,学生很受启发。
高中数学ppt教案大全篇5
教学目的
1、使学生通过观察、猜测、实验等活动,找出简单事物的排列数与组合数。
2、培养学生初步的观察、分析、推理能力以及有顺序地全面思考问题的意识。
3、引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。
4、培养学生的合作意识和人际交往能力。
教学重点:
自主探究,掌握有序排列、巧妙组合的方法,并用所学知识解决实际生活的问题。
教学难点:
怎样排列可以不重复、不遗漏。
教学准备:
三只小动物的头像、两顶小雨伞图片、上锁的大门图片、纸条、实物投影仪等。
教学过程:
一、以故事形式引入新课
师:同学们,今天老师为大家带来了3只可爱的小动物,你们看它们是谁呀?小刺猬、小鸭和小鸡三个好朋友今天准备到企鹅博士家去做客呢,可是刚走了一半路,突然下起雨来,可是三只小动物只有两把伞,怎么办呢?
▲当学生在回答以上方法时,教师根据学生的回答把相应的动物头像帖在伞的下面。
师:大家想的办法都不错。的确,三只小动物都和你们一样试了上面这三种方法,可最后它们却选择了第③种方法,你们知道这是为什么吗?原来呀,当它们开始用前面两种方法时,可没走几步,小刺猬身上的刺就把小鸭和小鸡给刺疼了,所以只能选择第③种方法。
二、用开密码锁的方法进行数的排列活动
师:三只小动物到了企鹅博士家的数学城堡,却发现大门紧闭,门上还挂着一把锁。想要开锁就要找到开锁的密码。锁的密码提示是:请用数字1、2、3摆出所有的两位数,密码就是这些数从小到大排列中的第4个。──企鹅博士留。)
师:三只小动物都犯傻了,怎么办呢?同学们能不能给他们帮帮忙?
(生略)
师:那么我们就先每人拿出数字卡片,自己摆一摆,边摆边记,完成后,再小组内交流汇总,组长把整个小组摆出的数全写出来,当然重复的数字不用再写,然后全组同学一起把这些两位数从小到大排列起来,找到密码。
▲学生先自己摆、记,然后小组汇总、排列、交流,教师进行巡视并作适当指导。
师:你们找到密码了吗?是多少?你们是怎么找到的呢?
▲请几个小组的学生汇报找密码的过程。(略)
师:那么刚才你们摆两位数时,你摆出了几个呢?请用手势表示一下。
▲学生举手后,问没摆全的学生是怎么摆的,问全摆出的学生又是怎么摆的,学生出现的情况可能有:有把1、2组成12,然后再交换位置变成21;1、3组成13,交换位置后是31;2、3组成23,交换位置后是32。或者是随便摆一个看一个的。或者是这样摆12、13、23、21、31、32等。对这些摆法可让学生去比较一下,得出这两种方法都是可行的。
师:同学们都摆得很好,都动了脑筋,要想摆得快又不漏掉,我们应该选择一定的顺序去摆。
三、模拟小动物之间的握手来解决组合问题。
师:通过大家的帮忙,企鹅博士家的密码锁被打开了,欢迎各位小动物来闯关。
第一关:握握手
小明、小红、小华三个小朋友,如果每两人握一次手,三人一共握几次手。
▲学生猜好后,教师指出可以以四人小组为单位,三人模拟小动物握手,一人数握手的次数,找出答案。最后通过模拟得出:3人一共握了3次手。
师:排数时用了3个数字,握手时是3个学生,都是“3”,为什么出现的结果却不一样呢?
第二关:购买大比拼
如果要买一本5角的练习本,你有几种不同的付法呢?
先自己独立思考,然后在小组中交流一下,组长负责收集不同的方法,记录在表格中。
四、通过不同层次的练习,使知识得到巩固。
师:同学们说得都非常好。今天,我们不仅帮3只小动物解决了不少的问题,还学到了许多的数学知识,大家高兴吗?
师:那现在我们就带着这份兴奋的心情,来做几道题吧!
1、问有几种不同的穿法?
2、乒乓球大赛
小明、小红、小华、小丽想参加学校的乒乓球双打比赛,你认为他们有多少种不同的组合方式呢?
高中数学ppt教案大全篇6
圆的方程
教学目标
(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.
(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.
(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.
(4)掌握直线和圆的位置关系,会求圆的切线.
(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.
教学建议
教材分析
(1)知识结构
(2)重点、难点分析
①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.
②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.
教法建议
(1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.
(2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.
(3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.
(4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.
教学设计示例
圆的一般方程
教学目标:
(1)掌握圆的一般方程及其特点.
(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.
(3)能用待定系数法,由已知条件求出圆的一般方程.
(4)通过本节课学习,进一步掌握配方法和待定系数法.
教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.
(2)用待定系数法求圆的方程.
教学难点:圆的一般方程特点的研究.
教学用具:计算机.
教学方法:启发引导法,讨论法.
教学过程:
【引入】
前边已经学过了圆的标准方程
把它展开得
任何圆的方程都可以通过展开化成形如
①
的方程
【问题1】
形如①的方程的曲线是否都是圆?
师生共同讨论分析:
如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得
②
显然②是不是圆方程与 是什么样的数密切相关,具体如下:
(1)当 时,②表示以 为圆心、以 为半径的圆;
(2)当 时,②表示一个点 ;
(3)当 时,②不表示任何曲线.
总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.
圆的一般方程的定义:
当 时,①表示以 为圆心、以 为半径的圆,
此时①称作圆的一般方程.
即称形如 的方程为圆的一般方程.
【问题2】圆的一般方程的特点,与圆的标准方程的异同.
(1) 和 的系数相同,都不为0.
(2)没有形如 的二次项.
圆的一般方程与一般的二元二次方程
③
相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.
圆的一般方程与圆的标准方程各有千秋:
(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.
(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.
【实例分析】
例1:下列方程各表示什么图形.
(1) ;
(2) ;
(3) .
学生演算并回答
(1)表示点(0,0);
(2)配方得 ,表示以 为圆心,3为半径的圆;
(3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.
例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.
分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.
解:设圆的方程为
因为 、 、 三点在圆上,则有
解得: , ,
所求圆的方程为
可化为
圆心为 ,半径为5.
请同学们再用标准方程求解,比较两种解法的区别.
【概括总结】通过学生讨论,师生共同总结:
(1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.
(2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.
下面再看一个问题:
例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.
解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.
∵
∴
即
化简得
点 在曲线上,并且曲线为圆 内部的一段圆弧.
【练习巩固】
(1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)
(2)求经过三点 、 、 的圆的方程.
分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .
(3)课本第79页练习1,2.
【小结】师生共同总结:
(1)圆的一般方程及其特点.
(2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.
(3)用待定系数法求圆的方程.
【作业】课本第82页5,6,7,8.
高中数学ppt教案大全篇7
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.
(2)进一步理解曲线的方程和方程的曲线.
(3)初步掌握求曲线方程的方法.
(4)通过本节内容的教学,培养学生分析问题和转化的能力.
教学重点、难点:求曲线的方程.
教学用具:计算机.
教学方法:启发引导法,讨论法.
教学过程:
【引入】
1.提问:什么是曲线的方程和方程的曲线.
学生思考并回答.教师强调.
2.坐标法和解析几何的意义、基本问题.
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程.
(2)通过方程,研究平面曲线的性质.
事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.
【问题】
如何根据已知条件,求出曲线的方程.
【实例分析】
例1:设 、 两点的坐标是 、(3,7),求线段 的垂直平分线 的方程.
首先由学生分析:根据直线方程的知识,运用点斜式即可解决.
解法一:易求线段 的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线 的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).
证明:(1)曲线上的点的坐标都是这个方程的解.
设 是线段 的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点 的坐标 是方程 的解.
(2)以这个方程的解为坐标的点都是曲线上的点.
设点 的坐标 是方程①的任意一解,则
到 、 的距离分别为
所以 ,即点 在直线 上.
综合(1)、(2),①是所求直线的方程.
至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设 是线段 的垂直平分线上任意一点,最后得到式子 ,如果去掉脚标,这不就是所求方程 吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设 是线段 的垂直平分线上任意一点,也就是点 属于集合
由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.
这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.
让我们用这个方法试解如下问题:
例2:点 与两条互相垂直的直线的距离的积是常数 求点 的轨迹方程.
分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.
求解过程略.
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如 表示曲线上任意一点 的坐标;
(2)写出适合条件 的点 的集合
;
(3)用坐标表示条件 ,列出方程 ;
(4)化方程 为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点.
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.
下面再看一个问题:
例3:已知一条曲线在 轴的上方,它上面的每一点到 点的距离减去它到 轴的距离的差都是2,求这条曲线的方程.
【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.
解:设点 是曲线上任意一点, 轴,垂足是 (如图2),那么点 属于集合
由距离公式,点 适合的条件可表示为
①
将①式 移项后再两边平方,得
化简得
由题意,曲线在 轴的上方,所以 ,虽然原点 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为 ,它是关于 轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.
【练习巩固】
题目:在正三角形 内有一动点 ,已知 到三个顶点的距离分别为 、 、 ,且有 ,求点 轨迹方程.
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设 、 的坐标为 、 ,则 的坐标为 , 的坐标为 .
根据条件 ,代入坐标可得
化简得
①
由于题目中要求点 在三角形内,所以 ,在结合①式可进一步求出 、 的范围,最后曲线方程可表示为
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?
【作业】课本第72页练习1,2,3;
高中数学ppt教案大全篇8
一.教学目标:
1.知识与技能:认识正弦、余弦定理,了解三角形中的边与角的关系。
2.过程与方法:通过具体的探究活动,了解正弦、余弦定理的内容,并从具体的实例掌握正弦、余弦定理的应用。
3.情感态度与价值观:通过对实例的探究,体会到三角形的和谐美,学会稳定性的重要。
二.教学重、难点:
重点:
正弦、余弦定理应用以及公式的变形
难点:
运用正、余弦定理解决有关斜三角形问题。
知识梳理
1.正弦定理和余弦定理
在△ABC中,若角A,B,C所对的边分别是a,b,c,则
(1)S=2ah(h表示边a上的高)
(2)S=2bcsinA=2sinC=2acsinB
(3)S=2r(a+b+c)(r为△ABC内切圆半径)
问题1:在△ABC中,a=3,b2,A=60°求c及BC问题2在△ABC中,c=6A=30°B=120°求ab及C
问题3在△ABC中,a=5,c=4,cosA=16,则b=
通过对上述三个较简单问题的解答指导学生总结正余弦定理的应用;正弦定理可以解决
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边和其他两角
余弦定理可以解决
(1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两角
我们不难发现利用正余弦定理可以解决三角形中“知三求三”知三中必须要有一边
应用举例
【例1】(1)(2013·湖南卷)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB3b,则角A等于()
A.3B.4C.6
(2)(20__·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=2,B=45°,则sinC=______.
解析(1)在△ABC中,由正弦定理及已知得2sinA·sinB=3sinB,∵B为△ABC的内角,∴sinB≠0.3
∴sinA=2又∵△ABC为锐角三角形,
∴A∈02,∴A=3
(2)由余弦定理,得b2=a2+c2-2accosB=1+32-2×2=25,即b=5.c·sinB
所以sinCb4
答案(1)A(2)5
【训练1】(1)在△ABC中,a=3,c=2,A=60°,则C=
A.30°B.45°C.45°或135°D.60°
(2)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sinC=3sinB,则A=
A.30°B.60°C.120°D.150°
解析(1)由正弦定理,得sin60°sinC,解得:sinC=2,又c<a,所以C<60°,所以C=45°
(2)∵sinC=23sinB,由正弦定理,得c=23b,b2+c2-a2-3bc+c2-3bc+3bc3∴cosA=2bc==2bc2bc2,又A为三角形的内角,∴A=30°.
答案(1)B(2)A
规律方法
已知两角和一边,该三角形是确定的,其解是唯一的;
已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断。
【例2】(20__·临沂一模)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC.(1)求角A的大小;
(2)若sinB+sinC=3,试判断△ABC的形状。
解(1)由2asinA=(2b-c)sinB+(2c-b)sinC,
得2a2=(2b-c)b+(2c-b)c,
即bc=b2+c2-a2,b2+c2-a21
∴cosA=2bc=2,
∴A=60°.
(2)∵A+B+C=180°,
∴B+C=180°-60°=120°
由sinB+sinC=3,
得sinB+sin(120°-B)=3,
∴sinB+sin120°cosB-cos120°sinB=3.33
∴2sinB+2B=3,
即sin(B+30°)=1.∵0°<b<120°,<p="">
∴30°<b+30°<150°.<p="">
∴B+30°=90°,B=60°.
∴A=B=C=60°,
△ABC为等边三角形.
规律方法
解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;
或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系。另外,在变形过程中要注意A,B,C的范围对三角函数值的影响。
课堂小结
1.在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解。
2.正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化.如a2=b2+c2-2bccosA可以转化为sin2A=sin2B+sin2C-2sinBsinCcosA,利用这些变形可进行等式的化简与证明。
高中数学ppt教案大全篇9
教学目标:
掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.
教学重点:
二倍角公式的推导及简单应用.
教学难点:
理解倍角公式,用单角的三角函数表示二倍角的三角函数.
教学过程:
Ⅰ.课题导入
前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.
先回忆和角公式
sin(α+β)=sinαcosβ+cosαsinβ
当α=β时,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
当α=β时cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
当α=β时,tan2α=2tanα1-tan2α
Ⅱ.讲授新课
同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α
同学们是否也考虑到了呢?
另外运用这些公式要注意如下几点:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)时才成立,否则不成立(因为当α=π2 +kπ,k∈Z时,tanα的值不存在;当α=π4 +kπ2 ,k∈Z时tan2α的值不存在).
当α=π2 +kπ(k∈Z)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情况下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k∈Z)时,sin2α=2sinα=0成立].
同样在一般情况下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为 α2 的2倍,将 α2 作为 α4 的2倍,将3α作为 3α2 的2倍等等.
高中数学ppt教案大全篇10
重点难点教学:
1.正确理解映射的概念;
2.函数相等的两个条件;
3.求函数的定义域和值域。
一.教学过程:
1. 使学生熟练掌握函数的概念和映射的定义;
2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。
二.教学内容:
1.函数的定义
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数()fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作:
(),yfA
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fA叫值域(range)。显然,值域是集合B的子集。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素 定义域、对应关系和值域。
3、映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意
一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。
4. 区间及写法:
设a、b是两个实数,且a
(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];
(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);
5.函数的三种表示方法 ①解析法 ②列表法 ③图像法
高中数学ppt教案大全篇11
一、教学目标
(一)知识与技能
1、进一步熟练掌握求动点轨迹方程的基本方法。
2、体会数学实验的直观性、有效性,提高几何画板的操作能力。
(二)过程与方法
1、培养学生观察能力、抽象概括能力及创新能力。
2、体会感性到理性、形象到抽象的思维过程。
3、强化类比、联想的方法,领会方程、数形结合等思想。
(三)情感态度价值观
1、感受动点轨迹的动态美、和谐美、对称美
2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气
二、教学重点与难点
教学重点:运用类比、联想的方法探究不同条件下的轨迹
教学难点:图形、文字、符号三种语言之间的过渡
三、、教学方法和手段
【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。
【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。
【教学模式】重点中学实施素质教育的课堂模式"创设情境、激发情感、主动发现、主动发展"。
四、教学过程
1、创设情景,引入课题
生活中我们四处可见轨迹曲线的影子
【演示】这是美丽的城市夜景图
【演示】许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多
【演示】建筑中也有许多美丽的轨迹曲线
设计意图:让学生感受数学就在我们身边,感受轨迹曲线的动态美、和谐美、对称美,激发学习兴趣。
2、激发情感,引导探索
靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;
例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。
第一步:让学生借助画板动手验证轨迹
第二步:要求学生求出轨迹方程
法一:设,则
由得,
化简得
法二:设,由得
化简得
法三:设, 由点到定点的距离等于定长,
根据圆的定义得;
第三步:复习求轨迹方程的一般步骤
(1)建立适当的坐标系
(2)设动点的坐标M(x,y)
(3)列出动点相关的约束条件p(M)
(4)将其坐标化并化简,f(x,y)=0
(5)证明
其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化
设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。
3、主动发现、主动发展
由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。
第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)
设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。
第二步:分解动作,向学生提出3个问题:
问题1:当M位置不同时,线段BM与MA的大小关系如何?
问题2、体现BM与MA大小关系还有什么常见的形式?
问题3、你能类比例1把这种数量关系表达出来吗?
第三步:展示学生归纳、概括出来的数学问题
1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。
2、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。
3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。(说明是什么轨迹)
第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成
4、合作探究、实现创新
改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展
1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。
2、已知A(4,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。
3、已知A(2,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。
4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。
以下是学生课后探究得到的一些轨迹图形
课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?
可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。
以下是X轴和Y轴不垂直时的轨迹图形
五、教学设计说明:
(一)、教材
《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。
(二)、校情、学情
校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子阅室,并且能随时上网。
学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。
(三)学法
观察、实验、交流、合作、类比、联想、归纳、总结
(四)、教学过程
1、创设情景,引入课题
2、激发情感,引导探索
由梯子滑落问题抽象、概括出数学问题
第一步:让学生借助画板动手验证轨迹
第二步:要求学生求出轨迹方程
第三步:复习求轨迹方程的一般步骤
3、主动发现、主动发展
探究M不是中点时的轨迹
第一步:利用网络平台展示学生得到的轨迹
第二步:分解动作,向学生提出3个问题:
第三步:展示学生归纳、概括出来的数学问题
4、合作探究、实现创新
改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展
(五)、教学特色:
借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。
整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。
本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。
高中数学ppt教案大全篇12
教学类型:探究研究型
设计思路:通过一系列的猜想得出德·摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课·
教学过程:
一、片头
(20秒以内)
内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的&39;数学规律(第二讲)》。
第1张PPT
12秒以内
二、正文讲解
(4分20秒左右)
1·引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”
上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?
那么,这个规律是偶然的,还是一个恒等式呢?
第2张PPT
28秒以内
2·规律的`验证:
试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用
第3张PPT
2分10秒以内
3·抽象概括:通过我们的观察和验证,我们发现这个规律是一个恒等式。
而这个规律就是180年前著名的英国数学家德摩根发现的。
为了纪念他,我们将它称为德摩根律。
原来我们通过自己的探索也能发现这么伟大的数学规律。
第4张PPT
30秒以内
4·例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算
第5张PPT
1分20秒以内
三、结尾
(20秒以内)
通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。
希望你在今后的学习中,勇于探索,发现更多有趣的规律。
第6张PPT
10秒以内
教学反思(自我评价)
学生在学习集合时会接触到很多的集合运算,往往学生觉得这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展示,让学生在直观的环境下轻松的学习,提高学生学习数学的兴趣,并通过层层深入的讲解,让学生进一步加强对集合运算的理解和应用能力,效果非常好·
高中数学ppt教案大全篇13
一、说教材
1、教材的地位和作用
《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。
2、教学目标
(1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念;
b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。
(2)能力目标:a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;
b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。
(3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;
b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
3、重点和难点
重点:集合的概念,元素与集合的关系。
难点:准确理解集合的概念。
二、学情分析(说学情)
对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。
三、说教法
针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。
四、学习指导(说学法)
教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。
五、教学过程
1、引入新课:
a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。
b、介绍集合论的创始者康托尔
2、究竟什么是集合?(实例探究)切合学生现有的认知水平,以学生熟悉的事物(物体),以实际生活为背景进行探究,为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。
3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。
教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。
4、熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。
5、集合的符号记法,为本节重点做好铺垫。
6、从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:⑴集合元素的确定。⑵理解两符号的含义。
7、思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。
8、从所举的例子中抽象出数集的概念,并给出常见数集的记法。
9、学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。
10、知识的实际应用:
问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。
11、课堂小节
以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。
六、评价
教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。
七、教学反思
1、通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。
2、启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。
八、板书设计
高中数学ppt教案大全篇14
一、教学目标
1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点难点
重点:画出简单几何体、简单组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:
观察、动手实践、讨论、类比。
四、教学过程
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的`投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本P15练习1、2;P20习题1.2[A组]2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本P20习题1.2[A组]1。
高中数学ppt教案大全篇15
教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。
教学过程:
一、阅读下列语句:
1)全体自然数0,1,2,3,4,5,
2)代数式
3)抛物线上所有的点
4)今年本校高一(1)(或(2))班的全体学生
5)本校实验室的所有天平
6)本班级全体高个子同学
7)著名的科学家
上述每组语句所描述的对象是否是确定的?
二、
1)集合:
2)集合的元素:
3)集合按元素的个数分,可分为1)__________2)_________
三、集合中元素的三个性质:
1)___________2)___________3)_____________
四、元素与集合的关系:1)____________2)____________
五、特殊数集专用记号:
1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______4)有理数集______5)实数集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例题讲解:
例1、中三个元素可构成某一个三角形的三边长,那么此三角形一定不是()
a,直角三角形b,锐角三角形c,钝角三角形d,等腰三角形
例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?
1)地球上的四大洋构成的集合;
2)函数的全体值的集合;
3)函数的全体自变量的集合;
4)方程组解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇数组成的集合;
8)所有正偶数组成的集合;
例3、用符号或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)设,,则
例4、用列举法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的数
2.图中阴影部分点(含边界)的坐标的集合
课堂练习:
例6、设含有三个实数的集合既可以表示为,也可以表示为,则的值等于___________
例7、已知:,若中元素至多只有一个,求的取值范围。
思考题:数集a满足:若,则,证明1):若2,则集合中还有另外两个元素;2)若则集合a不可能是单元素集合。
小结:
作业班级姓名学号
1.下列集合中,表示同一个集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.则()
a.b.c.d.
3.方程组的解集是____________________。
4.在(1)难解的题目,(2)方程在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________。
5.设集合a=,b=,
c=,d=,e=。
其中有限集的个数是____________。
6.设,则集合中所有元素的和为
7.设x,y,z都是非零实数,则用列举法将所有可能的值组成的集合表示为
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,试用列举法表示集合b=
9.把下列集合用另一种方法表示出来:
(1)(2)
(3)(4)
10.设a,b为整数,把形如a+b的一切数构成的集合记为m,设,试判断x+y,x-y,xy是否属于m,说明理由。
11.已知集合a=
(1)若a中只有一个元素,求a的值,并求出这个元素;
(2)若a中至多只有一个元素,求a的取值集合。
12.若-3,求实数a的值。
高中数学ppt教案大全篇16
教学主题:
主要涉及到简单排列组合问题,相同元素和不同元素排列组合问题。
捆绑法插空法特殊元素法特殊位置法定序法分组分配
教学内容及分析:
排列组合问题是高中数学知识的一个重要组成部分,在高考中也是必考内容,难度一般在中等偏上,只要掌握的排列组合的几种典型方法,就能快速理解题型题意,快速找到突破口,对症下药,事半功倍,关键是要把握住什么题型用什么方法,通过题型对比分析相同点和不同点,区分易错的,难点。另外,排列组合在适应新高考有着天然出题优势,因为排列组合更贴近显示生活,可以把我们课本上的抽象概念和数学公式和实际生活联系起来,数学知识走进生活,知识来与是但高于生活,最后回归于生活,才是我们学习知识,专研学问的立足点。本文就对数学中概率统计中的一小点内容——排列组合,做一个简单的对比分析。
教学对象及特点:
排列组合在高中数学选修2—3。人教版教材,高二的学生在日常生活中,有很多需要用排列组合来解决的知识。作为二年级的学生,已有了一定的生活经验及解决问题的能力。因此,在设计中,我通过创设一个完整的、有趣的生活情境来进行教学,力求使学生在经历日常生活最简单的事例中体验到重要的数学思想方法,从而也感受到数学思想也是依托于生活,来源于生活,是有生命活力的。
教学目标:
基于对教材的理解,我把本节课的教学重点定为:在经历简单事物排列与组合规律的过程中体会排列与组合的数学思想。教学难点定为:培养学生全面有序的思考问题的意识。通过观察、猜测、比较、实验等活动,培养学生学习初步的观察、分析能力和有序、全面地思考问题的意识。培养学生大胆猜想、积极思维的学习方法,使学生感受学习数学的快乐,进一步激发学生学习数学的兴趣。
教学过程:
一、排列问题
例1:有4个男生,5个女生站队,在下列条件下,有多少种情况?
(1)9个人全部站成一排;
(2)9个人站成两排,前排站4人,后排站5人;
(3)9个人全部站一排,全部女生站在一起;(捆绑法)
(4)9个人全部站一排,全部男生都不相邻;(插空法)
(5)9个人全部站一排,甲乙相邻,丙丁不相邻;
(6)9个人全部站一排,甲不在两端;(特殊元素法,特殊位置法)
(7)9个人全部站一排,甲不在最左边,乙不在最右边;
(8)9个人全部站一排,甲在乙的左边,可以不相邻;(定序)
(9)9个人全部站一排,甲在乙的前面,乙在丙的前面,可以不相邻;
(10)9个人全部站一排,甲在乙和丙的中间,可以不相邻;
二、组合问题
例2:有25件产品,其中5件次品,从中任取3件,在下列条件下,有多少种情况?
(1)次品甲在内;
(2)次品甲不在内;
(3)恰有1件次品;
(4)至少1件次品;
(5)至少2件次品;
三、分组分配问题(不同元素)
例3:有6名学生分配到三个班级,在下列条件下,有多少种情况?
(1)随机分配;
(2)每个班表达对一名学生的争取意愿,6名学生实力相当;
(3)分配到三个班的人数分别为1、2、3人;
(4)分配到三个班的人数分别为1、1、4人;
(5)分配到三个班的人数分别为2、2、2人;
四、分组分配问题(相同元素)
例4:9个相同的乒乓球分给3个不同的人,在下列条件下,有多少种情况?
(1)3个人分别分到2个乒乓球,3个乒乓球,4个乒乓球;
(2)3个人分别分到2个乒乓球,2个乒乓球,5个乒乓球;
(3)3个人平均分,每人得到3个乒乓球;
(4)3个人每人至少分到1个乒乓球;
(5)3个人每个人至少分到2个乒乓球;
(6)3个人随机分配这9个乒乓球;
五、分组分配问题(部分元素相同)
例5:有形状大小相同,颜色不全相同的乒乓球,其中红色乒乓球,黄色乒乓球,黑色乒乓球分别有5个,从中取出四个乒乓球排一排,在下列条件下,有多少种情况?
(1)取3个红色乒乓球,1个黄色乒乓球;
(2)取2个红色乒乓球,2个黄色乒乓球;
(3)取2个红色乒乓球,1个黑色乒乓球,1个黄色乒乓球;
(4)取出的4个乒乓球中刚好3个乒乓球颜色相同;
(5)取出的4个乒乓球中刚好2个乒乓球颜色相同,其他两个乒乓球颜色也相同;
取出的4个乒乓球中刚好2个乒乓球颜色相同,其他两个乒乓球颜色不同;
所选技术以及技术使用的目的:选取的技术是PPT演示文稿,电子文档,交互式电子白板,目的是能和学生共享资源,实时授课,不用边抄题目边讲课,节约时间,集中精力。便于分享交流保存,复习资料可以打印存档,电子档纸质档都可以,提高学习教学的效率。
高中数学ppt教案大全篇17
教学准备
教学目标
o了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·
o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·
o通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力·
教学重难点
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·
教学难点:平行向量、相等向量和共线向量的&39;区别和联系·
教学过程
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
课后小结
1、描述向量的两个指标:模和方向·
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
高中数学ppt教案大全篇18
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕.
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答.
答案提示:(1)排列;(2)组合.
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.
设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文.
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.
(教师活动)对照课文,逐一评析.
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识.
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.
(学生活动)倾听、思索、记录.
(教师活动)提出思考问题.
[投影] 与 的关系如何?
(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.
【例题示范 探求方法】
(教师活动)打出字幕,给出示范,指导训练.
[字幕]例1 列举从4个元素 中任取2个元素的所有组合.
例2 计算:(1) ;(2) .
(学生活动)板演、示范.
(教师活动)讲评并指出用两种方法计算例2的第2小题.
[字幕]例3 已知 ,求 的所有值.
(学生活动)思考分析.
解 首先,根据组合的定义,有
①
其次,由原不等式转化为
即
解得 ②
综合①、②,得 ,即
[点评]这是组合数公式的应用,关键是公式的选择.
设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.
【反馈练习 学会应用】
(教师活动)给出练习,学生解答,教师点评.
[课堂练习]课本P99练习第2,5,6题.
[补充练习]
[字幕]1.计算:
2.已知 ,求 .
(学生活动)板演、解答.
设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.
(三)小结
(师生活动)共同小结.
本节主要内容有
1.组合概念.
2.组合数计算的两个公式.
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题.
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.
高中数学ppt教案大全篇19
(一)教学具准备
直尺,投影仪.
(二)教学目标
1、掌握,的定义域、值域、最值、单调区间.
2、会求含有、的三角式的定义域.
(三)教学过程
1、设置情境
研究函数就是要讨论一些性质,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.
2、探索研究
师:同学们回想一下,研究一个函数常要研究它的哪些性质?
生:定义域、值域,单调性、奇偶性、等等.
师:很好,今天我们就来探索,两条最基本的性质定义域、值域.(板书课题正、余弦函数的定义域、值域.)
师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.
师:请同学思考以下几个问题:
(1)正弦、余弦函数的定义域是什么?
(2)正弦、余弦函数的值域是什么?
(3)他们最值情况如何?
(4)他们的正负值区间如何分?
(5)的解集如何?
师生一起归纳得出:
(1)正弦函数、余弦函数的定义域都是.
(2)正弦函数、余弦函数的值域都是即,称为正弦函数、余弦函数的有界性.
(3)取最大值、最小值情况:
正弦函数,当时,()函数值取最大值1,当时,()函数值取最小值-1.
余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1.
(4)正负值区间:
()
(5)零点:()
()
3、例题分析
【例1】求下列函数的定义域、值域:
(1);(2);(3).
解:(1),
(2)由()
又∵,∴
∴定义域为(),值域为.
(3)由(),又由
∴
∴定义域为(),值域为.
指出:求值域应注意用到或有界性的&39;条件.
【例2】求下列函数的最大值,并求出最大值时的集合:
(1),;(2),;
(3)(4).
解:(1)当,即()时,取得最大值
∴函数的最大值为2,取最大值时的集合为.
(2)当时,即()时,取得最大值.
∴函数的最大值为1,取最大值时的集合为.
(3)若,此时函数为常数函数.
若时,∴时,即()时,函数取最大值,
∴时函数的最大值为,取最大值时的集合为.
(4)若,则当时,函数取得最大值.
若,则,此时函数为常数函数.
若,当时,函数取得最大值.
∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.
指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.
思考:此例若改为求最小值,结果如何?
【例3】要使下列各式有意义应满足什么条件?
(1);(2).
解:(1)由,
∴当时,式子有意义.
(2)由,即
∴当时,式子有意义.
4.演练反馈(投影)
(1)函数,的简图是()
(2)函数的最大值和最小值分别为()
A.2,-2B.4,0C.2,0D.4,-4
(3)函数的最小值是()
A.B.-2C.D.
(4)如果与同时有意义,则的取值范围应为()
A.B.C.D.或
(5)与都是增函数的区间是()
A.,B.,
C.,D.,
(6)函数的定义域________,值域________,时的集合为_________.
参考答案:1.B2.B3.A4.C5.D
6.;;
5.总结提炼
(1),的定义域均为.
(2)、的值域都是
(3)有界性:
(4)最大值或最小值都存在,且取得极值的集合为无限集.
(5)正负敬意及零点,从图上一目了然.
(6)单调区间也可以从图上看出.
(四)板书设计
1.定义域
2.值域
3.最值
4.正负区间
5.零点
例1
例2
例3
课堂练习
课后思考题:求函数的最大值和最小值及取最值时的集合
提示:
高中数学ppt教案大全篇20
教学目标
1.明确等差数列的定义.
2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3.培养学生观察、归纳能力.
教学重点
1.等差数列的概念;
2.等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具准备
投影片1张(内容见下面)
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6;①
10,8,6,4,2,…;②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2,。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式(n≥1)
推导出公式:(V)课后作业
一、课本P118习题3.21,2
二、1.预习内容:课本P116例2P117例4
2.预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
板书设计
课题
一、定义
1.(n≥2)
一、通项公式
2.公式推导过程
例题
教学后记