高中集合数学教案
教案可以帮助教师提高教学质量,以便更好地提升学生的学习成绩。怎么写出优秀的高中集合数学教案?这里给大家分享高中集合数学教案,方便大家学习。
高中集合数学教案篇1
[课程目标]
1.掌握集合的两种表示方法(列举法和描述法);
2.掌握用区间表示数集;
3.能够运用集合的两种表示方法表示一些简单集合,正确运用区间表示一些数集。
知识点一列举法表示集合
[填一填]
列举法
把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法叫做列举法。
[答一答]
1.什么类型的集合适合用列举法表示?
提示:当集合中的元素较少时,用列举法表示方便。
2.用列举法表示集合的优点与缺点是什么?
提示:用列举法表示集合的优点是元素清晰明确、一目了然;缺点是不易看出元素所具有的属性。
知识点二描述法表示集合
[填一填]
描述法
(1)集合的特征性质:
一般地,如果属于集合A的任意一个元素-都具有性质p(-),而不属于集合A的元素都不具有这个性质,则性质p(-)叫做集合A的一个特征性质。
(2)特征性质描述法:
集合A可以用它的特征性质p(-)描述为{-p(-)},这种表示集合的方法,叫做特征性质描述法,简称描述法。
[答一答]
3.什么类型的集合适合用描述法表示?
提示:描述法多用于集合中的元素有无限多个的无限集或元素个数较多的有限集。
4.集合{-->3}与集合{tt>3}表示同一个集合吗?
提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合。
知识点三区间及其表示
[填一填]
研究函数常常用到区间的概念,设a、b是两个实数,且a<b,我们规定:
(1)满足a≤-≤b的全体实数-的集合简写为[a,b],称为闭区间。
(2)满足a<-<b的全体实数-的集合简写为(a,b),称为开区间。
(3)满足a≤-<b的全体实数-的集合简写为[a,b),称为半开半闭区间。
(4)满足a
高中集合数学教案篇2
教学目标:
掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.
教学重点:
二倍角公式的推导及简单应用.
教学难点:
理解倍角公式,用单角的三角函数表示二倍角的三角函数.
教学过程:
Ⅰ.课题导入
前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.
先回忆和角公式
sin(α+β)=sinαcosβ+cosαsinβ
当α=β时,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
当α=β时cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
当α=β时,tan2α=2tanα1-tan2α
Ⅱ.讲授新课
同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α
同学们是否也考虑到了呢?
另外运用这些公式要注意如下几点:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)时才成立,否则不成立(因为当α=π2 +kπ,k∈Z时,tanα的值不存在;当α=π4 +kπ2 ,k∈Z时tan2α的值不存在).
当α=π2 +kπ(k∈Z)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情况下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k∈Z)时,sin2α=2sinα=0成立].
同样在一般情况下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为 α2 的2倍,将 α2 作为 α4 的2倍,将3α作为 3α2 的2倍等等.
高中集合数学教案篇3
一:说教材
平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。
二:说学习目标和要求
通过本节的学习,要让学生掌握
(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三:说教法
在教学过程中,我主要采用了以下几种教学方法:
(1)启发式教学法
因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法
主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!
主要辅助教学的手段(powerpoint)
(3)讨论式教学法
主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四:说学法
学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!
五:说教学过程
这节课我准备这样进行:
首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?
继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?
引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:
(1) 模的计算公式
(2)平面两点间的距离公式。
(3)两向量夹角的余弦的坐标表示
(4)两个向量垂直的标表示的充要条件
第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。
例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。
例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。
再配以练习,让学生能熟练的应用公式,掌握今天所学内容。
高中集合数学教案篇4
今天我说课的课题是《平面向量的概念》,这是江苏省职业学校文化课教材《基础模块·下册》第七章平面向量中的第一节的内容,我将尝试运用新课改的理念、中职学生的认知特点指导本节课的教学,新课标指出,学生是教学的主体,教师的教要本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。下面我将以此为基础从教材分析、学情分析、教法学法、教学过程、教学评价等五个环节,向各位专家谈谈我对本节课教材的理解和教学设计。
一、教材分析:
1、教材的地位和作用
向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础。
结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:
2、教学目标
(1)知识与技能目标
1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;
2)识记向量模的定义,会用字母和线段表示向量的模。
3)知道零向量、单位向量的概念。
(2)过程与方法目标
学生通过对向量的学习,能体会出向量来自于客观现实,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想。
(3)情感态度与价值观目标
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度。
3、教学重难点
教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量
教学难点:向量的几何表示的理解,对零向量和单位向量的理解
二、学情分析
(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想。
(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。
(3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。
三、教法学法
教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学
学法:在学法上,采用的是探究,发现,归纳,练习。从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程。
四、教学过程
课前:
为了打造高效课堂,以生为本我选择生本式的教学方式,以穿针引线的方式设计了前置性作业。其中包括一些向量的基本概念,并提出:
1、你学过的其他学科中有没有可以称为向量的?
2、向量的特点是什么?有几种描述向量的表示方法?
3、零向量的特点是什么?
【设计意图】目的是通过课前的预习明确自己需要在本节课中解决的问题,带着问题听课,我会在上课前就学生的完成情况明确主要的教学侧重点,真正打造高效课堂。
课上教学过程:
1、创设情境
数学的学习应该是与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中发现数学,探究数学,认识并掌握数学,由生活的实例引入,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题平面向量
【设计意图】形成对概念的初步认识,为进一步抽象概括做准备。
2、形成概念
结合物理学中对矢量的定义,给出向量的描述性概念。对于一个新学的量定义概念后,通常要用符号表示它。怎样把我们所举例子中的向量表示出来呢?
采取让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量。明确为什么可以用有向线段表示向量,引导学生总结出向量的表示方法,强调印刷体与手写体的区别。结合板书的有向线段给出向量的模。
单位向量、零向量的概念
【即时训练】
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知
3、知识应用
本阶段的教学,我采用的是教材上的两个例题,旨在巩固学生对平面向量的观念,提高学生的动手实践能力,掌握求模的基本方法,提升识图能力。
4、学以致用
为了调动学生的积极性,培养学生团队合作的精神,本环节我采用小组竞争的方式开展教学,小组讨论并选派代表回答,各组之间取长补短,将课堂教学推向高潮,再次加强学生对向量概念的理解。
5、课堂小结
为了了解学生本节课的学习效果,并且将所学做个很好的总结。设置问题:通过本节课的学习你有哪些收获?(可以从各种角度入手)
【设计意图】通过总结使学生明确本节的学习内容,强化重点,为今后的学习打下坚定的基础
6、布置作业
出选做题的目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动眼观察,动脑思考,层层递进,亲身经历了知识的形成和发展过程,以问题为驱动,使学生对知识的理解逐步深入。而最后的实际应用又将激发学生的学习兴趣,带领学生进入对本节课更深一步的思考和研究之中,从而达到知识在课堂以外的延伸。
以上就是我对本节课的设计和说明,请各位领导,老师批评指正
高中集合数学教案篇5
一、课前检测
1.在数列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求数列{bn}的前n项的和.
解:由已知得:an=1n+1(1+2+3++n)=n2,
bn=2n2n+12=8(1n-1n+1)数列{bn}的前n项和为
Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.
2.已知在各项不为零的数列中,。
(1)求数列的通项;
(2)若数列满足,数列的前项的和为,求
解:(1)依题意,,故可将整理得:
所以即
,上式也成立,所以
(2)
二、知识梳理
(一)前n项和公式Sn的定义:Sn=a1+a2+an。
(二)数列求和的方法(共8种)
5.错位相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。
如:等比数列的前n项和就是用此法推导的.
解读:
6.累加(乘)法
解读:
7.并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.
形如an=(-1)nf(n)类型,可采用两项合并求。
解读:
8.其它方法:归纳、猜想、证明;周期数列的求和等等。
解读:
三、典型例题分析
题型1错位相减法
例1求数列前n项的和.
解:由题可知{}的通项是等差数列{2n}的通项与等比数列{}的通项之积
设①
②(设制错位)
①-②得(错位相减)
变式训练1(20__昌平模拟)设数列{an}满足a1+3a2+32a3++3n-1an=n3,nN__.
(1)求数列{an}的通项公式;
(2)设bn=nan,求数列{bn}的&39;前n项和Sn.
解:(1)∵a1+3a2+32a3++3n-1an=n3,①
当n2时,a1+3a2+32a3++3n-2an-1=n-13.②
①-②得3n-1an=13,an=13n.
在①中,令n=1,得a1=13,适合an=13n,an=13n.
(2)∵bn=nan,bn=n3n.
Sn=3+232+333++n3n,③
3Sn=32+233+334++n3n+1.④
④-③得2Sn=n3n+1-(3+32+33++3n),
即2Sn=n3n+1-3(1-3n)1-3,Sn=(2n-1)3n+14+34.
小结与拓展:
题型2并项求和法
例2求=1002-992+982-972++22-12
解:=1002-992+982-972++22-12=(100+99)+(98+97)++(2+1)=5050.
变式训练2数列{(-1)nn}的前20__项的和S2010为(D)
A.-20__B.-1005C.20__D.1005
解:S2010=-1+2-3+4-5++2008-2009+2010
=(2-1)+(4-3)+(6-5)++(2010-2009)=1005.
小结与拓展:
题型3累加(乘)法及其它方法:归纳、猜想、证明;周期数列的求和等等
例3(1)求之和.
(2)已知各项均为正数的数列{an}的前n项的乘积等于Tn=(nN__),
,则数列{bn}的前n项和Sn中最大的一项是(D)
A.S6B.S5C.S4D.S3
解:(1)由于(找通项及特征)
=(分组求和)==
=
(2)D.
变式训练3(1)(20__福州八中)已知数列则,。答案:100.5000。
(2)数列中,,且,则前20__项的和等于(A)
A.1005B.20__C.1D.0
小结与拓展:
四、归纳与总结(以学生为主,师生共同完成)
以上一个8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使
其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。
高中集合数学教案篇6
一、教学目标
1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.
2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程.领悟直角坐标系的工具功能,丰富数形结合的经验.
3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.
4.培养学生求真务实、实事求是的科学态度.
二、重点、难点、关键
重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.
难点:把三角函数理解为以实数为自变量的函数.
关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).
三、教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用"启发探索、讲练结合"的方法组织教学.
四、教学过程
[执教线索:
回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)--问题情境:能推广到任意角吗?--它山之石:建立直角坐标系(为何?)--优化认知:用直角坐标系研究锐角三角函数--探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)--自主定义:任意角三角函数定义--登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)--例题与练习小明回顾小结--布置作业]
(一)复习引入、回想再认
开门见山,面对全体学生提问:
在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?
探索任意角的三角函数(板书课题),请同学们回想,再明确一下:
(情景1)什么叫函数?或者说函数是怎样定义的?
让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:
传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.
现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域.
设计意图:
函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程.教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备.
(情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数.请回想:这三个三角函数分别是怎样规定的?
学生口述后再投影展示,教师再根据投影进行强调:
设计意图:
学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展).温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少.
(二)引伸铺垫、创设情景
(情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!
留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导.
能推广吗?怎样推广?针对刚才的问题点名让学生回答.用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数.
设计意图:
从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的"再创造"征程.
教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!
师生共做(学生口述,教师板书图形和比值):
把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的临边om=x、对边mP=y,斜边长oP∣=r.
根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值:
设计意图:
此处做法简单,思想重要.为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形.由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数.初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义.这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等).
(情景4)各个比值与角之间有怎样的关系?比值是角的函数吗?
追问:锐角α大小发生变化时,比值会改变吗?
先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:比值随α的变化而变化.
引导学生观察图3,联系相似三角形知识,
探索发现:
对于锐角α的每一个确定值,六个比值都是
确定的,不会随P在终边上的移动而变化.
得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.所以,六个比值分别是以角α为自变量、以比值为函数值的函数.
设计意图:
初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键.这样做能够使学生有效地增强函数观念.
(三)分析归纳、自主定义
(情境5)能将锐角的比值情形推广到任意角α吗?
水到渠成,师生共同进行探索和推广:
对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析):
终边分别在四个象限的情形:终边分别在四个半轴上的情形:
;
(指出:不画出角的方向,表明角具有任意性)
怎样刻画任意角的三角函数呢?研究它的六个比值:
(板书)设α是一个任意角,在α终边上除原点外任意取一点P(x,y),P与原点o之间的距离记作r(r=>0),列出六个比值:
α=kππ/2时,x=0,比值y/x、r/x无意义;
α=kπ时,y=0,比值x/y、r/y无意义.
追问:α大小发生变化时,比值会改变吗?
先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,P绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:各比值随α的变化而变化.
再引导学生利用相似三角形知识,探索发现:对于任意角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.
综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α,六个比值(如果存在的话)都不会随P在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析).
因此,六个比值分别是以角α为自变量、以比值为函数值的函数.
根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x).其它几个三角函数也如此
投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵:
(图六)
指导学生识记六个比值及函数名称.
教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求).
引导学生进一步分析理解:
已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值.因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便.
设计意图:
把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握.明确比值存在与否的条件,为确定函数定义域作准备.动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵.引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务.由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对"三角函数可以看成是以实数为自变量的函数"的理解有半信半疑之感,有待通过后续的应用加深理解.
(四)探索定义域
(情景6)(1)函数概念的三要素是什么?
函数三要素:对应法则、定义域、值域.
正弦函数sinα的对应法则是什么?
正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→y/r=sinα.
(2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表:
三角函数
sinα
cosα
tanα
cotα
cscα
secα
定义域
引导学生自主探索:
如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围.
关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集R.
对于tanα=y/x,α=kππ/2时x=0,y/x无意义,tanα的定义域是:{αα∈R,且α≠kππ/2}..........
教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆.
(关于值域,到后面再学习).
设计意图:
定义域是函数三要素之一,研究函数必须明确定义域.指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握.
(五)符号判断、形象识记
(情景7)能判断三角函数值的正、负吗?试试看!
引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀:
(同好得正、异号得负)
sinα=y/r:上正下负横为0cosα=x/r:左负右正纵为0tanα=y/x:交叉正负
设计意图:
判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求.要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键.
(六)练习巩固、理解记忆
1、自学例1:已知角α的终边经过点P(2,-3),求α的六个三角函数值.
要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照解答,模仿书面表达格式,巩固定义.
课堂练习:
p19题1:已知角α的终边经过点P(-3,-1),求α的六个三角函数值.
要求心算,并提问中下学生检验,--------
点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义).
补充例题:已知角α的终边经过点P(x,-3),cosα=4/5,求α的其它五个三角函数值.
师生探索:已知y=-3,要求其它五个三角函数值,须知r=?,x=?.根据定义得=(方程思想),x>0,解得x=4,从而--------.解答略.
2、自学例2:求下列各角的六个三角函数值:(1)0;(2)π/2;(3)3π/2.
提问,据反馈信息作点评、修正.
师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。
取特殊点能使计算更简明。课堂练习:p19题2.(改编)填表:
角α(角度)
0°
90°
180°
270°
360°
角α(弧度)
sinα
cosα
tanα
处理:要求取点用定义求解,针对计算过程提问、点评,理解巩固定义.
强调:终边在坐标轴上的角叫轴线角,如0、π/2、π、3π/2等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值.
设计意图:
及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把"培养学生分析解决问题的能力"贯穿在每一节课的课堂教学始终.
(七)回顾小结、建构网络
要求全体学生根据教师所提问题进行总结识记,提问检查并强调:
1.你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的?(建立直角坐标系,使角的顶点与坐标原点重合,---,在终边上任意取定一点P,---)
2.你如何判断和记忆正弦、余弦、正切函数的定义域?(根据定义,------)
3.你如何记忆正弦、余弦、正切函数值的符号?(根据定义,想象坐标位置,-----)
设计意图:
遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策.此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力.
(八)布置课外作业
1.书面作业:习题4.3第3、4、5题.
2.认真阅读p22"阅读材料:三角函数与欧拉",了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况.
教学设计说明
一、对本节教材的理解
三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用.
星星之火,可以燎原.
直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、辅助角公式、图象和性质,本章教材就是这些内容的具体安排.定义直接用于解析几何(如直线斜率公式、极坐标、部分曲线的参数方程等),定义还是直接解决某些问题的工具,三角函数知识是物理学、高等数学、测量学、天文学的重要基础.
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身.
二、教学法加工
数学教材通常用抽象概括的形式化的数学书面语言阐述其知识和方法,教师只有通过教学法加工,始终贯彻"以学生的发展为本"的科学教育观,"将数学的学术形态转化为教育形态"(张奠宙语),引导学生积极主动地进行思考活动,直接参与体验数学知识产生发展的背景、过程,返璞归真,揭示本质,体会其中的思想和方法,学生只有这样才能真正理解掌握数学知识和方法,有效地发展智力、培养能力.
在本节教材中,三角函数定义是重点,三角函数线是难点,为了较好地突出重点和突破难点,分散重点和难点,同时兼顾例题、课堂练习的协调匹配,将不按教材顺序来进行教学,第一课时安排三角函数的定义(突出重点)、定义域、符号判断、例题1、2及p19课堂练习1、2、3,第二课时安排三角函数线、p15练习(突破难点)、诱导公式一及课本例题3、4和其它练习.本课例属第一课时.
教学经验表明,三角函数定义"简单易记",学生很容易轻视它,不少学生机械记忆、一知半解.本课例坚持"教师主导、学生主体"的原则,采用"启发探索、讲练结合"的常规教学方法,在学生的最近发展区围绕学生的学习目标设计了一系列符合学生认知规律的程序,通过多媒体辅助教学动画演示比值与角之间的依赖关系,拓展思维活动时空,力求使学生全员主动参与,积极思考,体会定义产生、发展的过程,通过思维过程来理解知识、培养能力.
将六个比值放在一起来研究,同时给出六个三角函数的定义,能够增强对比感和整体感,至于大纲对两组函数掌握与了解的不同要求,在下一步的教学中注意区分就行了.
教学中关于符号sinα、cosα、tanα的出场安排,教材首先对比值取名并给出英文记法,再研究它们与α的函数关系;另外可以先研究六个比值与α之间的函数关系,然后再对六个比值取名给出记法.后者更能突出函数内涵,揭示三角函数本质.本课例采用后者组织教学.
三、教学过程分析(见穿插在教案中的设计意图).
高中集合数学教案篇7
学习目标
明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.
学习过程
一、学前准备
复习:
(课本P28A13)填空:
(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;
(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;
(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;
(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;
二、新课导学
探究新知(复习教材P14~P25,找出疑惑之处)
问题1:判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
应用示例:
例1:从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
例2:7位同学站成一排,分别求出符合下列要求的不同排法的种数.
(1)甲站在中间;
(2)甲、乙必须相邻;
(3)甲在乙的左边(但不一定相邻);
(4)甲、乙必须相邻,且丙不能站在排头和排尾;
(5)甲、乙、丙相邻;
(6)甲、乙不相邻;
(7)甲、乙、丙两两不相邻。
反馈练习
1、(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?
2、5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列
3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.
当堂检测
1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()
A.42B.30C.20D.12
2、(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?
课后作业
1、(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?
2、(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?
高中集合数学教案篇8
教学目标
1。 理解的定义,初步掌握的图象,性质及其简单应用。
2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。
3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。
教学重点和难点
重点是理解的定义,把握图象和性质。
难点是认识底数对函数值影响的认识。
教学用具
投影仪
教学方法
启发讨论研究式
教学过程
一。 引入新课
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。
1。6。(板书)
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:
问题1:某种细胞_时,由1个_成2个,2个_成4个,……一个这样的细胞_ 次后,得到的细胞_的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?
由学生回答: 与 之间的关系式,可以表示为 。
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。
由学生回答: 。
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。
一。 的概念(板书)
1。定义:形如 的函数称为。(板书)
教师在给出定义之后再对定义作几点说明。
2。几点说明 (板书)
(1) 关于对 的规定:
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。
若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。
(2)关于的定义域 (板书)
教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。
(3)关于是否是的判断(板书)
刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。
(1) , (2) , (3)
(4) , (5) 。
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。
最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。
3。归纳性质
作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。
函数
1。定义域 :
2。值域:
3。奇偶性 :既不是奇函数也不是偶函数
4。截距:在 轴上没有,在 轴上为1。
对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)
在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线。
二。图象与性质(板书)
1。图象的画法:性质指导下的列表描点法。
2。草图:
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。
最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)
由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。
填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。
3。性质。
(1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。
(2) 时, 在定义域内为增函数, 时, 为减函数。
(3) 时, , 时, 。
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。
三。简单应用 (板书)
1。利用单调性比大小。 (板书)
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。
例1。 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与1 。(板书)
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。
解: 在 上是增函数,且< 。(板书)
教师最后再强调过程必须写清三句话:
(1) 构造函数并指明函数的单调区间及相应的单调性。
(2) 自变量的大小比较。
(3) 函数值的大小比较。
后两个题的过程略。要求学生仿照第(1)题叙述过程。
例2。比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 。(板书)
先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)
最后由学生说出 >1,<1,>。
解决后由教师小结比较大小的方法
(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)
(2) 搭桥比较法: 用特殊的数1或0。
三。巩固练习
练习:比较下列各组数的大小(板书)
(1) 与 (2) 与 ;
(3) 与 ; (4) 与 。解答过程略
四。小结
1。的概念
2。的图象和性质
3。简单应用
五 。板书设计
高中集合数学教案篇9
一、教材分析
《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。
二、教学目标
知识与技能:
1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。过程与方法:
1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。
3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
情感态度与价值观:
1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。
三、教学重难点
重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
四、教学用具
普通教学工具、多媒体工具(以上均为命题教学的准备)
高中集合数学教案篇10
六年级,让好习惯不离身
一、目标
“要做事,先做人”,“好习惯使人终生收益”。
二、数学学科行为训导内容
1、专心听
讲的习惯。
2、勤思好问的习惯。
3、预习习惯。
4、主动探究的习惯。
5、自觉作笔记的习惯。
6、独立完成作业的习惯。
三、教学过程
“同学们,为了能在20__年6月顺利毕业,你准备好了吗?”
老师知道,你们都是很优秀的,相信你们以后会做得更优秀。有没有信心?
(一)讲故事,感悟
第一个故事:一个人在高山之巅的鹰巢里,抓到了一只幼鹰,他把幼鹰带回家,养在鸡笼里。这只幼鹰和鸡一起啄食、嬉闹和休息,它以为自己是一只鸡。这只鹰渐渐长大,羽翼丰满了,主人想把它训练成猎鹰,可是由于终日和鸡混在一起,它已经变得和鸡完全一样,根本没有飞的愿望了。主人试了各种办法,都毫无效果,最后把它带到山顶上,一把将它扔了出去。这只鹰像块石头似的,直掉下去,慌乱之中它拼命地扑打翅膀,就这样,它终于飞了起来!(——相信自己是一只雄鹰,勇敢面对一切挑战和失败。)
第二个故事:开学第一天,大哲学家苏格拉底对学生们说:“今天,我们只做一件最简单也是最容易做的事儿:每个人把胳膊尽量都往前甩,然后再尽量往后甩。”说着,苏格拉底示范了一遍,“从今天开始,每天做300下,大家能做到吗?”学生们都笑了,这么简单的事情,有什么做不到的?过了一个月,苏格拉底问学生们:“每天甩手300下,哪些同学坚持了?”有90%的同学骄傲地举起了手。又过了一个月,苏格拉底再问,这回,坚持下来的同学只剩下了八成。一年过后,苏格拉底再一次问大家:“请大家告诉我,最简单的甩手运动,还有哪几位同学坚持了?”这时候,整个教室里,只有一个人举起了手。这个学生就是后来成为古希腊另一位大哲学家的柏拉图。(——成功在于坚持,这是一个并不神秘的秘诀。)
第三个故事:有个老人在河边钓鱼,一个小孩走过去看他钓鱼,老人技巧纯熟,所以没多久就钓上了满篓的鱼,老人见小孩很可爱,要把整篓的鱼送给他,小孩摇摇头,老人惊异的问道你为何不要?小孩回答:“我想要你手中的钓竿。”老人问:“你要钓竿做什么?小孩说:“这篓鱼没多久就吃完了,要是我有钓竿,我就可以自己钓,一辈子也吃不完。”你们说,这个小孩是不是很聪明?(——重要的还在钓技。学习,不能只记住知识,更重要的是掌握方法,形成能力。)
第四个故事:某人在屋檐下躲雨,看见观音正撑伞走过。这人说:“观音菩萨,普度一下众生吧,带我一段如何?”观音说:“我在雨里,你在檐下,而檐下无雨,你不需要我度。”这人立刻跳出檐下,站在雨中:“现在我也在雨中了,该度我了吧?”观音说:“你在雨中,我也在雨中,我不被淋,因为有伞;你被雨淋,因为无伞。所以不是我度自己,而是伞度我。你要想度,不必找我,请自找伞去!”说完便走了。第二天,这人遇到了难事,便去寺庙里求观音。走进庙里,才发现观音的像前也有一个人在拜,那个人长得和观音一模一样,丝毫不差。这人问:“你是观音吗?”那人答道:“我正是观音。”这人又问:“那你为何还拜自己?”观音笑道:“我也遇到了难事,但我知道,求人不如求己。”第五个故事:一头驮着沉重货物的驴,气喘吁吁地请求只驮了一点货物的马:“帮我驮一点东西吧。对你来说,这不算什么;可对我来说,却可以减轻不少负担。”马不高兴地回答:“你凭什么让我帮你驮东西,我乐得轻松呢。”不久,驴累死了。主人将驴背上的所有货物全部加在马背上,马懊悔不已。
膨胀的自我使我们忽略了一个基本事实,那就是:我们同在生活这条大船上,别人的好坏与我们休戚相关。别人的不幸不能给我们带来快乐,相反,在帮助别人的时候,其实也是在帮助我们自己。一位信佛的老人告诉我,人好比一只空杯,里面的水满了,你得施一半给人家,待杯子里又满了,再施一半给人家。只有不断进、不断出,你这个杯子才会有价值,你这里的水才会是活水。如果只进不出,你那只杯子也就再也装不进了。当你得到一杯水的时候,你别忘记,其中的一半是奉献。假如你不愿奉献,你就再也得不到了。
小结:
第一,相信自己,勇敢面对
第二、养成习惯,重在坚持
第三、注重方法,培养能力
第四、求人不如求己
第五、帮助别人,追求双蠃
(二)六年级学生必须养成的学习习惯
1、专心听讲的习惯
课堂上全神贯注、静心聆听、积极思考、勇于发言是学习高效的前提条件,希望各位同学能够充分利用每天课堂上的40分钟时间漂亮地完成当天的学习任务。让自己的课余时间更轻松、更自由。
2、勤思好问的习惯
在课堂上除了认真听讲以外,还要勤于思考,善于提问,这样的学习才是更有效的学习,学习能力才会提升,学习成绩才会提高。
3、预习习惯。
预习可以培养和提高我们的自学能力、提高听课效率。学习新知识以前,老师会设计几个问题,让大家带着问题去预习。我们可用彩笔勾划出书中的重要内容,在不理解的地方标上记号,
(1)通过自学,将自己看到的,想到的用笔在书中某个地方规范地记录下来,能初步理解书中的概念,并能举例说明。
(2)会叙述书中阐明的算理,并尝试完成“做一做”中的习题。
(3)自拟思考题,在小组内交流并讨论。
4、主动探究的习惯。
(1)观察:观察要仔细、全面,要有目的、有条理,通过观察发现问题并提出问题、讨论问题、解决问题;
(2)在老师指导下画图分析或动手操作的习惯。
5、自觉作笔记的习惯。
在课堂上要养成记笔记的好习惯,可以记录在数学书上,但一定要规范,如可在书中某些空白地方画上一些条形格子,然后用工整的书写记录下每节课知识重点和要点,记知识结构与规律,记公式,记补充内容等。
6、独立完成作业的习惯。
(1)细心审题,弄清题目的要求,思考解题的方法
(2)独自去解决问题。
(3)书写格式符合要求。
(4)当天的作业当天完成。
(5)每天作业及时清理、每单元进行评比。
(6)每单元检测后自我查漏补缺的习惯。
高中集合数学教案篇11
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。
在分析应用题的`解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。
在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。
要特别注意,不加特殊说明,本章不研究重复排列问题。
③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导,,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。
导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。
公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:
(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;
(2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。
高中集合数学教案篇12
本文题目:高三数学复习教案:古典概型复习教案
【高考要求】古典概型(B);互斥事件及其发生的概率(A)
【学习目标】:1、了解概率的频率定义,知道随机事件的发生是随机性与规律性的统一;
2、理解古典概型的特点,会解较简单的古典概型问题;
3、了解互斥事件与对立事件的概率公式,并能运用于简单的概率计算.
【知识复习与自学质疑】
1、古典概型是一种理想化的概率模型,假设试验的结果数具有性和性.解古典概型问题关键是判断和计数,要掌握简单的记数方法(主要是列举法).借助于互斥、对立关系将事件分解或转化是很重要的方法.
2、(A)在10件同类产品中,其中8件为正品,2件为次品。从中任意抽出3件,则下列4个事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是.
3、(A)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是。
4、(A)同时抛两个各面上分别标有1、2、3、4、5、6均匀的正方体玩具一次,向上的两个数字之和为3的概率是.
5、(A)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是.
6、(B)若实数,则曲线表示焦点在y轴上的双曲线的概率是.
【例题精讲】
1、(A)甲、乙两人参加知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
2、(B)黄种人群中各种血型的人所占的比例如下表所示:
血型ABABO
该血型的人所占的比(%)2829835
已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:
(1)任找一个人,其血可以输给小明的概率是多少?
(2)任找一个人,其血不能输给小明的概率是多少?
3、(B)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8的概率;(3)向上的点数之和不超过10的概率.
4、(B)将一个各面上均涂有颜色的正方体锯成(n个同样大小的正方体,从这些小正方体中任取一个,求下列事件的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;
(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.
【矫正反馈】
1、(A)一个三位数的密码锁,每位上的数字都可在0到10这十个数字中任选,某人忘记了密码最后一个号码,开锁时在对好前两位号码后,随意拨动最后一个数字恰好能开锁的概率是.
2、(A)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是.
3、(A)某射击运动员在打靶中,连续射击3次,事件至少有两次中靶的对立事件是.
4、(B)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率.
5、(B)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.
【迁移应用】
1、(A)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是.
2、(A)从鱼塘中打一网鱼,共M条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共N条,其中K条有标记,估计池塘中鱼的条数为.
3、(A)从分别写有A,B,C,D,E的5张卡片中,任取2张,这两张上的字母恰好按字母顺序相邻的概率是.
4、(B)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是.
5、(B)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.
(1)若点P(a,b)落在不等式组表示的平面区域记为A,求事件A的概率;
(2)求P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.
高中集合数学教案篇13
教学目标
1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3、培养学生观察、归纳能力。
教学重点
1、等差数列的概念;
2、等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具准备
投影片1张
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6;①
10,8,6,4,2,…;②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:
三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:
①等差数列定义。
即(n≥2)
②等差数列通项公式(n≥1)
推导出公式:
(V)课后作业
一、课本P118习题3.21,2
二、1、预习内容:课本P116例2P117例4
2、预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
高中集合数学教案篇14
2。2。1等差数列学案
一、预习问题:
1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的,
即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:
①1,2,3,4,5是等差数列;()
②1,1,2,3,4,5是等差数列;()
③数列6,4,2,0是公差为2的等差数列;()
④数列是公差为的等差数列;()
⑤数列是等差数列;()
⑥若,则成等差数列;()
⑦若,则数列成等差数列;()
⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()
⑨等差数列的公差是该数列中任何相邻两项的差。()
6、思考:如何证明一个数列是等差数列。
二、实战操作:
例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?
(3)已知数列的公差则
例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?
例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
高中集合数学教案篇15
各位同仁,各位专家:
我说课的课题是《任意角的三角函数》,内容取自苏教版高中实验教科书《数学》第四册第1。2节
先对教材进行分析
教学内容:任意角三角函数的定义、定义域,三角函数值的符号。
地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。
教学重点:任意角三角函数的定义
教学难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;
学情分析:
学生已经掌握的内容,学生学习能力
1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2。我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。
3。在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行
针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下
知识目标:
(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,
能力目标:
(1)理解并掌握任意角的三角函数的定义;
(2)正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。
德育目标:
(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;
针对学生实际情况为达到教学目标须精心设计教学方法
教法学法:温故知新,逐步拓展
(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;
(2)通过例题讲解分析,逐步引出新知识,完善三角定义
运用多媒体工具
(1)提高直观性增强趣味性。
教学过程分析
总体来说,由旧及新,由易及难,
逐步加强,逐步推进
先由初中的直角三角形中锐角三角函数的定义
过度到直角坐标系中锐角三角函数的定义
再发展到直角坐标系中任意角三角函数的定义
给定定义后通过应用定义又逐步发现新知识拓展完善定义。
具体教学过程安排
引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?
由学生回答
SinA=对边/斜边=BC/AB
cosA=对边/斜边=AC/AB
tanA=对边/斜边=BC/AC
逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。
我们知道,随着角的概念的推广,研究角时多放在直角坐标系里,那么三角函数的定义能否也放到坐标系去研究呢?
引导学生发现B的坐标和边长的关系。进一步启发他们发现由于相似三角形的相似比导致OB上任一P点都可以代换B,把三角函数的定义发展到用终边上任一点的坐标来表示,从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了
从而得到
知识点一:任意一个角的三角函数的定义
提醒学生思考:由于相似比相等,对于确定的角A,这三个比值的大小和P点在角的终边上的位置无关。
精心设计例题,引出新内容深化概念,完善定义
例1已知角A的终边经过P(2,—3),求角A的三个三角函数值
(此题由学生自己分析独立动手完成)
例题变式1,已知角A的大小是30度,由定义求角A的三个三角函数值
结合变式我们发现三个三角函数值的大小与角的大小有关,只会随角的大小而变化,符合当初函数的定义,而我们又一直称呼为三角函数,
提出问题:这三个新的定义确实问是函数吗?为什么?
从而引出函数极其定义域
由学生分析讨论,得出结论
知识点二:三个三角函数的定义域
同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数
例题变式2,已知角A的终边经过P(—2a,—3a)(a不为0),求角A的三个三角函数值
解答中需要对变量的正负即角所在象限进行讨论,让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点
知识点三:三角函数值的正负与角所在象限的关系
由学生推出结论,教师总结符号记忆方法,便于学生记忆
例题2:已知A在第二象限且sinA=0。2求cosA,tanA
求cosA,tanA
综合练习巩固提高,更为下节的同角关系式打下基础
拓展,如果不限制A的象限呢,可以留作课外探讨
小结回顾课堂内容
课堂作业和课外作业以加强知识的记忆和理解
课堂作业P161,2,4
(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)
课后分层作业(有利于全体学生的发展)
必作P231(2),5(2),6(2)(4)选作P233,4
板书设计(见PPT)