高中教案数学模板
编写教案有助于吸引学生的注意力,激发他们的学习兴趣,提升教学效果。下面是一些高中教案数学模板免费阅读下载,希望对大家写高中教案数学模板有用。
高中教案数学模板篇1
教学目标
知识与技能目标:
本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:
(1) 通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。
(2) 从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。
(3) 依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:
导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k
在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。
过程与方法目标:
(1) 学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。
(2) 学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。
(3) 结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。
情感、态度、价值观:
(1) 通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;
(2) 在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。
教学重点与难点
重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。
难点:发现、理解及应用导数的几何意义。
教学过程
一、复习提问
1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.
定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。
求导数的步骤:
第一步:求平均变化率导数的几何意义教案;
第二步:求瞬时变化率导数的几何意义教案.
(即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)
2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案 在图形中表示什么?
生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案
师:这就是平均变化率(导数的几何意义教案)的几何意义,
3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?
如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.
导数的几何意义教案
追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。
由导数的定义知导数的几何意义教案 导数的几何意义教案。
导数的几何意义教案
由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f'(x0).今天我们就来探究导数的几何意义。
C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.
二、新课
1、导数的几何意义:
函数y=f(x)在点x0处的导数f'(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.
即:导数的几何意义教案
口答练习:
(1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。
(C层学生做)
(2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)
导数的几何意义教案
2、如何用导数研究函数的增减?
小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。
同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。
例1 函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。
导数的几何意义教案
函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)
3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.
例2 求曲线y=x2在点M(2,4)处的切线方程.
解:导数的几何意义教案
∴y'|x=2=2×2=4.
∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.
由上例可归纳出求切线方程的两个步骤:
(1)先求出函数y=f(x)在点x0处的导数f'(x0).
(2)根据直线方程的点斜式,得切线方程为 y-y0=f'(x0)(x-x0).
提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)
(先由C类学生来回答,再由A,B补充.)
例3 已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;
(2)过P点的切线的方程。
解:(1)导数的几何意义教案,
导数的几何意义教案
y'|x=2=22=4. ∴ 在点P处的切线的斜率等于4.
(2)在点P处的切线方程为导数的几何意义教案 即 12x-3y-16=0.
练习:求抛物线y=x2+2在点M(2,6)处的切线方程.
(答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).
B类学生做题,A类学生纠错。
三、小结
1.导数的几何意义.(C组学生回答)
2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.
(B组学生回答)
四、布置作业
1. 求抛物线导数的几何意义教案在点(1,1)处的切线方程。
2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.
3. 求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角
4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;
(C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)
教学反思:
本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。
本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数 的几何意义解释实际问题”两个教学重心展开。 先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。
完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。 本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。
高中教案数学模板篇2
本节课是《等比数列的前n项和》的第一课时,学生在学习了等比数列的概念、等差与等比数列的通项公式及等差数列的前n项和公式前提下学习的,对于本节课所需的知识点和探究方法都有了一定的储备。这节课我充分利用情境,激发学生兴趣,顺利导入本节课的内容。
本节课我用心准备、精心设计、潜心专研,是我上好这节课的前提。在教学过程中,我充分体现了教学目标,抓住了教学重点,解决了教学难点,更重要的是,全班学生心、神、情、与我深度融合。这节课的.内容是“等差数列的前n项和”与“等比数列”内容的延续,为学生后面学综合数列的求和做了铺垫,重点是推导等比数列的前n项和的公式以及公式的简单应用,难点是用错位相减法推导等比数列的前n项和公式以及公式应用中对q与1的讨论。本节课我注重从“知识传授”的传统模式转变为“以学生为主体”的参与模式,注重数学思想方法的渗透和良好的思维品质的养成,注重学生创造精神和实践能力的培养,这在一定的程度上,激活了学生的思维,但对教师的挑战也是不言而喻的,不仅要透彻理解教材的意图,还要有宽厚的知识积累和深厚的自学功底。
在等比数列求和的教学时,开始我给同学们说了一个故事,“在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。”为什么呢?同学们很好奇,于是有计算器的同学拿出了计算器,结果没有计算完,计算器就算不出来了。激发学生的兴趣,调动学习的积极性,于是引入主题,等比数列求和。
首先让学生回忆等差数列的求和公式的推导方法,结合自己的预习谈谈自己对课本上等比数列求和公式推导过程的理解,其本质是什么?这样做的目的是什么?此时教师根据学生们的讨论和展示,适时点拨,指出问题的关键。在用错位相减法推出等比数列前n项和公式过程中,做差后提醒同学们,接下来要做什么工作,注意什么,学生们自然知道分母不能为零,因而知道了等比数列前n项和公式是分情况讨论的,为什么会有公比为1和公比不为1两种情况。此时再提醒学生等差数列求和公式是一个公式的两种形式,而等比数列求和公式是两种不同情况下的公式。然后是对求和公式的简单应用。所以让学生经历等比数列前n项和公式的推导过程成了本节课的重点与难点,在改善学生的学习方式上,是让学生提出问题并解决问题来进行自主学习、合作学习与探究学习。
在教学环节上我利用小组合作学习、学生自主学习、小组讨论、学生展示、师生点评,教师总结升华,当堂检测等环节,有效地实现本节课的教学目标。在教学评价上我关注学生,不单纯看学生是否会解题,关键是看学生是否动脑,看学生的思维过程来肯定和鼓励,如在解决情景问题的过程中,学生跃跃欲试、情绪高涨、讨论激烈,可能会探究出多种解决方案,适时地鼓励与评价,使学生的进取心得到增强,是激发学生学习数学兴趣的有效途径。我通过对学生的评价,将知识点和思想方法又得到强化。
总之,这节课也有不足,容量大,知识丰富,渗透归纳与推理、错位相减法、从特殊到一般、类比推理、分类讨论等数学思想,对学生要求高。但通过课堂反应,教学效果好,这是我感到欣慰的地方。
高中教案数学模板篇3
椭圆的简单几何性质中的考查点:
(一)、对性质的考查:
1、范围:要注意方程与函数的区别与联系;与椭圆有关的求最值是变量的取值范围;作椭圆的草图。
2、对称性:椭圆的中心及其对称性;判断曲线关于x轴、y轴及原点对称的依据;如果曲线具有关于x轴、y轴及原点对称中的任意两种,那么它也具有另一种对称性;注意椭圆不因坐标轴改变的固有性质。
3、顶点:椭圆的顶点坐标;一般二次曲线的顶点即是曲线与对称轴的交点;椭圆中a、b、c的几何意义(椭圆的特征三角形及离心率的三角函数表示)。
4、离心率:离心率的定义;椭圆离心率的取值范围:(0,1);椭圆的离心率的变化对椭圆的影响:当e趋向于1时:c趋向于a,此时,椭圆越扁平;当e趋向于0时:c趋向于0,此时,椭圆越接近于圆;当且仅当a=b时,c=0,两焦点重合,椭圆变成圆。
(二)、课本例题的变形考查:
1、近日点、远日点的概念:椭圆上任意一点p(x,y)到椭圆一焦点距离的最大值:a+c与最小值:a-c及取最值时点p的坐标;
2、椭圆的第二定义及其应用;椭圆的准线方程及两准线间的距离、焦准距:焦半径公式。
3、已知椭圆内一点m,在椭圆上求一点p,使点p到点m与到椭圆准线的距离的和最小的求法。
4、椭圆的参数方程及椭圆的离心角:椭圆的参数方程的简单应用:
5、直线与椭圆的位置关系,直线与椭圆相交时的弦长及弦中点问题。
高中教案数学模板篇4
一、教学目标
1.知识与能力目标
①使学生理解数列极限的概念和描述性定义。
②使学生会判断一些简单数列的极限,了解数列极限的“e-N"定义,能利用逐步分析的方法证明一些数列的极限。
③通过观察运动和变化的过程,归纳总结数列与其极限的特定关系,提高学生的数学概括能力和抽象思维能力。
2.过程与方法目标
培养学生的极限的思想方法和独立学习的能力。
3.情感、态度、价值观目标
使学生初步认识有限与无限、近似与精确、量变与质变的辩证关系,培养学生的辩证唯物主义观点。
二、教学重点和难点
教学重点:数列极限的概念和定义。
教学难点:数列极限的“ε―N”定义的理解。
三、教学对象分析
这节课是数列极限的第一节课,足学生学习极限的入门课,对于学生来说是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡阶段,在《立体几何》内容求球的表面积和体积时对极限思想已有接触,而学生在以往的数学学习中主要接触的是关于“有限”的问题,很少涉及“无限”的问题。极限这一抽象概念能够使他们做基于直观的理解,并引导他们作出描述性定义“当n无限增大时,数列{an}中的项an无限趋近于常数A,也就是an与A的差的绝对值无限趋近于0”,并能用这个定义判断一些简单数列的极限。但要使他们在一节课内掌握“ε-N”语言求极限要求过高。因此不宜讲得太难,能够通过具体的几个例子,归纳研究一些简单的数列的极限。使学生理解极限的基本概念,认识什么叫做数列的极限以及数列极限的定义即可。
四、教学策略及教法设计
本课是采用启发式讲授教学法,通过多媒体课件演示及学生讨论的方法进行教学。通过学生比较熟悉的一个实际问题入手,引起学生的注意,激发学生的学习兴趣。然后通过具体的两个比较简单的数列,运用多媒体课件演示向学生展示了数列中的各项随着项数的增大,无限地趋向于某个常数的过程,让学生在观察的基础上讨论总结出这两个数列的特征,从而得出数列极限的一个描述性定义。再在教师的引导下分析数列极限的各种不同情况。从而对数列极限有了直观上的认识,接着让学生根据数列中各项的情况判断一些简单的数列的极限。从而达到深化定义的效果。最后进行练习巩固,通过这样的一个完整的教学过程,由观察到分析、由定量到定性,由直观到抽象,并借助于多媒体课件的演示,使得学生逐步地了解极限这个新的概念,为下节课的极限的运算及应用做准备,为以后学习高等数学知识打下基础。在整个教学过程中注意突出重点,突破难点,达到教学目标的要求。
五、教学过程
1.创设情境
课件展示创设情境动画。
今天我们将要学习一个很重要的新的知识。
情境
1、我国古代数学家刘徽于公元263年创立“割圆术”,“割之弥细,所失弥少。割之又割,以至不可割,则与圆周合体而无所失矣”。
情境
2、我国古代哲学家庄周所著的《庄子?天下篇》引用过一句话:一尺之棰,日取其半,万世不竭。也就是说拿一根木棒,将它切成一半,拿其中一半来再切成一半,得到四分之一,再切成一半,就得到了八分之„„?如此下去,无限次地切,每次都切一半,问是否会切完?
大家都知道,这是不可能切完的,但是每次切了以后,木棒都比原来的少了一半,也就是说木棒的长度越来越短,但永远不会变成零。从而引出极限的概念。
2.定义探究
展示定义探索(一)动画演示。
问题1:请观察以下无穷数列,当n无限增大时,a,I的变化趋势有什么特点?
(1)1/2,2/3,3/4,„n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n„„
问题2:观察课件演示,请分析以上两个数列随项数n的增大项有那些特点?
师生一起归纳总结出以下结论:数列(1)项数n无限增大时,项无限趋近于1;数列(2)项数n无限增大时,项无限趋近于1。
那么就把1叫数列(1)的极限,1叫数列(2)的极限。这两个数列只是形式不同,它们都是随项数n的无限增大,项无限趋近于某一确定常数,这个常数叫做这个数列的极限。
那么,什么叫数列的极限呢?对于无穷数列an,如果当n无限增大时,an无限趋向于某一个常数A,则称A是数列an的极限。
提出问题3:怎样用数学语言来定量描述呢?怎样用数学语言来描述上述数列的变化趋势?
展示定义探索(二)动画演示,师生共同总结发现在数轴上两点间距离越小,项与1越趋近,因此可以借助两点间距离无限小的方式来描述项无限趋近常数。无论预先指定多么小的正数e,如取e=O-1,总能在数列中找到一项am,使得an项后面的所有项与1的差的绝对值都小于ε,若取£=0。0001,则第6项后面的所有项与1的差的绝对值都小于ε,即1是数列(1)的极限。最后,师生共同总结出数列的极限定义中应包含哪量(用这些量来描述数列1的极限)。
数列的极限为:对于任意的ε>0,如果总存在自然数N,当n>N时,不等式|an-A|n的极限。
定义探索动画(一):
课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值,并且动画演示数列的变化过程。如图1所示是课件运行时的一个画面。
定义探索动画(二)课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值和Ian一1I的值,并且动画演示出第an项和1之间的距离。如图2所示是课件运行时的一个画面。
3.知识应用
这里举了3道例题,与学生一块思考,一起分析作答。
例1.已知数列:
1,-1/2,1/3,-1/4,1/5„„,(-1)n+11/n,„„
(1)计算an-0(2)第几项后面的所有项与0的差的绝对值都小于0.017都小于任意指定的正数。
(3)确定这个数列的极限。
例2.已知数列:
已知数列:3/2,9/4,15/8„„,2+(-1/2)n,„„。
猜测这个数列有无极限,如果有,应该是什么数?并求出从第几项开始,各项与这个极限的差都小于0.1,从第几项开始,各项与这个极限的差都小于0.017
例3.求常数数列一7,一7,一7,一7,„„的极限。
5.知识小结
这节课我们研究了数列极限的概念,对数列极限有了初步的认识。数列极限研究的是无限变化的趋势,而通过对数列极限定义的探讨,我们看到这一过程又是通过有限来把握的,有限与无限、近似与精确、量变与质变之间的辩证关系在这里得到了充分的体现。
课后练习:
(1)判断下列数列是否有极限,如果有的话请求出它的极限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。
(2)课本练习1,2。
6.探究性问题
设计研究性学习的思考题。
提出问题:
芝诺悖论:阿基里斯是《荷马史诗》中的善跑英雄。奔跑中的阿基里斯永远也无法超过在他前面慢慢爬行的乌龟,因为当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了。这样,阿基里斯可无限接近它,但不能追到它。假定阿基里斯跑步的速度是乌龟速度的10倍,阿基里斯与乌龟赛跑的路程是1公里。如果让乌龟先跑0.1公里,当阿基里斯追到O.1公里的地方,乌龟又向前跑了0.01公里。当阿基里斯追到0.01公里的地方,乌龟又向前跑了0.001公里„„这样一直追下去,阿基里斯能追上乌龟吗?
这里是研究性学习内容,以学生感兴趣的悖论作为课后作业,巩固本节所学内容,进一步提高了学生学习数列的极限的兴趣。同时也为学生创设了课下交流与讨论的情境,逐步培养学生相互合作、交流和讨论的习惯,使学生感受到了数学来源于生活,又服务于生活的实质,逐步养成用数学的知识去解决生活中遇到的实际问题的习惯。
高中教案数学模板篇5
数列的极限教学设计
西南位育中学肖添忆
一、教材分析
《数列的极限》为沪教版第七章第七节第一课时内容,是一节概念课。极限概念是数学中最重要和最基本的概念之一,因为极限理论是微积分学中的基础理论,它的产生建立了有限与无限、常量数学与变量数学之间的桥梁,从而弥补和完善了微积分在理论上的欠缺。本节后续内容如:数列极限的运算法则、无穷等比数列各项和的求解也要用到数列极限的运算与性质来推导,所以极限概念的掌握至关重要。
课本在内容展开时,以观察n时无穷等比数列an列anqn,(q1)与an1的发展趋势为出发点,结合数n21的发展趋势,从特殊到一般地给出数列极限的描述性定义。在n由定义给出两个常用极限。但引入部分的表述如“无限趋近于0,但它永远不会成为0”、“不管n取值有多大,点(n,an)始终在横轴的上方”可能会造成学生对“无限趋近”的理解偏差。
二、学情分析
通过第七章前半部分的学习,学生已经掌握了数列的有关概念,以及研究一些特殊数列的方法。但对于学生来说,数列极限是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡的阶段。
由于已有的学习经验与不当的推理类比,学生在理解“极限”、“无限趋近”时可能产生偏差,比如认为极限代表着一种无法逾越的程度,或是近似值。这与数学中“极限”的含义相差甚远。在学习数列极限之前,又曾多次利用“无限趋近”描述反比例函数、指数函数、对数函数的图像特征,这又与数列中“无限趋近”的含义有所差异,学生往往会因为常数列能达到某一个常数而否定常数列存在极限的事实。
三、教学目标与重难点教学目标:
1、通过数列极限发展史的介绍,感受数学知识的形成与发展,更好地把握极限概念的来龙去脉;
2、经历极限定义在漫长时期内发展的过程,体会数学家们从概念发现到完善所作出的努力,从数列的变化趋势,正确理解数列极限的概念和描述性定义;
3、会根据数列极限的意义,由数列的通项公式来考察数列的极限;掌握三个常用极限。教学重点:理解数列极限的概念
教学难点:正确理解数列极限的描述性定义
四、教学策略分析
在问题引入时着重突出“万世不竭”与“讲台可以走到”在认知上的矛盾,激发学生的学习兴趣与求知欲,并由此引出本节课的学习内容。在极限概念形成时,结合极限概念的发展史展开教学,让学生意识到数学理论不是一成不变的,而是不断发展变化的。数学的历史发展过程与学生的认知过程有着一定的相似性,学生在某些概念上的进展有时与数学史上的概念进展平行。比如部分学生的想法与许多古希腊的数学家一样,认为无限扩大的正多边形不会与圆周重合,它的周长始终小于其外接圆的周长。教师通过梳理极限发展史上的代表性观点,介绍概念的发展历程以及前人对此的一系列观点,能帮助学生发现自己可能也存在着类似于前人的一些错误想法。对数学发现的过程以认知角度加以分析,有助于学生学习数学家的思维方式,了解数学概念的发展,进而建构推理过程,使学生发生概念转变。在课堂练习诊断部分,不但要求回答问题,还需对选择原因进行辨析,进而强化概念的正确理解。
五、教学过程提纲与设计意图1.问题引入
让一名学生从距离讲台一米处朝讲台走动,每次都移动距讲台距离的一半,在黑板上写出表示学生到讲台距离的数列。这名学生是否能走到讲台呢?类比“一尺之捶,日取其半,万世不竭”,庄子认为这样的过程是永远不会完结的,然而“讲台永远走不到”这一结果显然与事实不同,要回答这一矛盾,让我们看看历史上的数学家们是如何思考的。【设计意图】
改编自芝诺悖论的引入问题,与庄子的“一尺之捶”产生了认知冲突,激发学生的学习兴趣与求知欲,并引出本节课的学习内容
2.极限概念的发展与完善
极限概念的发展经历了三个阶段:从早期以“割圆术”“穷竭法”为代表的朴素极限思想,到极限概念被提出后因“无穷小量是否为0”的争论而引发的质疑,再经由柯西、魏尔斯特拉斯等人的工作以及实数理论的形成,严格的极限理论至此才真正建立。【设计意图】
教师引导学生梳理极限发展史上的代表性观点,了解数学家们提出观点的时代背景,对照反思自己的想法,发现自己可能也存在着类似于前人的一些错误想法。教师在比较概念发展史上被否定的观点与现今数学界认可的观点时,会使学生产生认知冲突。从而可能使学生发生概念转变,抛弃不正确的、不完整的、受限的想法,接受新的概念。在数学教学中,结合数学史展开教学可以让学生意识到数学理论不是一成不变的,而是不断发展变化的,从而提升学生概念转变的动机。
3.数列极限的概念
极限思想的产生最早可追溯于中国古代。极限理论的完善出于社会实践的需要,不是哪一名数学家苦思冥想得出,而是几代人奋斗的结果。极限的严格定义经历了相当漫长的时期才得以完善,它是人类智慧高度文明的体现,反映了数学发展的辩证规律。今天的主题,极限的定义,援引的便是柯西对于极限的阐述。
定义:在n无限增大的变化过程中,如果无穷数列{an}中的an无限趋近于一个常数A,那么A叫做数列{an}的极限,或叫做数列{an}收敛于A,记作limanA,读作“n趋向于
n无穷大时,an的极限等于A”。
在数列极限的定义中,可用an-A无限趋近于0来描述an无限趋近于A。
如前阐述,柯西版本的极限定义虽然不是最完美的,但作为摆脱几何直观的首次尝试,也是历史上一个较为成功的版本,在历史上的地位颇高。有时,我们也称其为数列极限的描述性定义。
【设计意图】
通过比较历史上不同观点下的极限定义,教师呈现数列极限的描述性定义,分析该定义的历史意义,让学生进一步明确数列极限的含义。4.课堂练习诊断
由数列极限的定义得到三个常用数列的极限:(1)limCC(C为常数);
n(2)lim10(nN__);nnnn(3)当q判断下列数列是否存在极限,若存在求出其极限,若不存在请说明理由
20--20--(1)an;
nsinn;n(3)1,1,1,1,,1(2)an(4)an4(1n1000)
4(n1001)11-,n为奇数(5)ann
1,n为偶数注:
(1)、(2)考察三个常用极限
(3)考查学生是否能清楚认识到数列极限概念是基于无穷项数列的背景下探讨的。当项数无限增大时,数列的项若无限趋近于一个常数,则认为数列的极限存在。因此,数列极限可以看作是数列的一种趋于稳定的发展趋势。有穷数列的项数是有限的,因而并不存在极限这个概念。
(4)引用柯西的观点,解释此处无限趋近的含义,是指随着数列项数的增加,数列的项与某一常数要多接近就有多接近,由此得出结论:数列极限与前有限项无关且无穷常数数列存在极限的。
(5)扩充对三种趋近方式的理解:小于A趋近、大于A趋近和摆动趋近。本题中的数列没有呈现出以上三种方式的任意一种。避免学生将趋近误解为项数与常数间的差距不断缩小。练习若A=0.9+0.09+0.009+0.0009+...,则以下对A的描述正确的是_____.A、A是小于1的最大正数
B、A的精确值为1C、A的近似值为1
选择此选项的原因是_________①由于A的小数位都是9,找不到比A大但比1小的数;
②A是由无限多个正数的和组成,它们可以一直不断得加下去,但总小于2;
③A表示的数是数列0.9,0.99,0.999,0.9999,...的极限;
④1与A的差等于0.00…01。
注:此题是为考查学生对于无穷小量和极限概念的理解。由极限概念的发展史可以看出,数学家们曾长时期陷入对无穷小概念理解的误区中,极大地阻碍了对极限概念的理解。学生学习极限概念时可能也会遇到类似的误区。
练习顺次连接△ABC各边中点A1、B1、C1,得到△A1B1C1。取△A1B1C1各边中点A2、B2、C2并顺次连接又得到一个新三角形△A2B2C2。再按上述方法一直进行下去,那么最终得到的图形是_________.A、一个点
B、一个三角形
C、不确定
选择此选项的原因是_________.①
无限次操作后所得三角形的面积无限趋近于0但不可能等于0。②
当操作一定次数后,三角形的三点会重合。
③
该项操作可以无限多次进行下去,因而总能作出类似的三角形。
④
无限次操作后所得三角形的三个顶点会趋向于一点。
注:此题从无限观的角度考察学生对极限概念的的理解。学生容易忽视极限概念中的实无限,他们在视觉上采用无穷叠加的形式,但是会受最后一项的惯性思维,导致采用潜无限的思辨方式。所谓实无限是指把无限的整体本身作为一个现成的单位,是可以自我完成的过程或无穷整体。相对地,潜无限是指把无限看作永远在延伸着的,一种变化着成长着不断产生出来的东西。它永远处在构造中,永远完成不了,是潜在的,而不是实在的。持有潜无限观点的学生在理解极限概念时,会将极限理解为是一个渐进过程,或是一个不可达到的极值。
通过习题,分析总结以下三个注意点:
(1)数列{an}有极限必须是一个无穷数列,但无穷数列不一定有极限存在;
1}可以说随着n的无限增大,n1数列的项与-1会越来越接近,但这种接近不是无限趋近,所以不能说lim1;
nn(2)“无限趋近”不能用“越来越接近”代替,例如数列{(3)数列{an}趋向极限A的过程可有多种呈现形式。
【设计意图】
通过例题与选项原因的分析,消除关于数列极限理解的三类误区:
第一类是将数列极限等同于如下的三种概念:渐近线、最大限度或是近似值。第二类是学生对于数列趋向于极限方式的错误认知。第三类是对于无限的错误认知。
5.课堂小结
极限的描述性定义与注意点三个常用的极限
6.作业布置
1>任课老师布置的其他作业
2>学习魏尔斯特拉斯的数列极限定义,并用该定义证明习题的第一第二小问【设计意图】
通过与数列极限相关的延伸问题,完善极限概念的体系,为学生创设课后自主探究平台,感受静态定义中凝结的数学家的智慧。
高中教案数学模板篇6
【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!
本文题目:空间几何体的三视图和直观图高一数学教案
第一课时 1.2.1中心投影与平行投影1.2.2空间几何体的三视图
教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体.
教学重点:画出三视图、识别三视图.
教学难点:识别三视图所表示的空间几何体.
教学过程:
一、新课导入:
1.讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
2.引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。对于我们所学几何体,常用三视图和直观图来画在纸上.
三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;
直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.
用途:工程建设、机械制造、日常生活.
二、讲授新课:
1.教学中心投影与平行投影:
①投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。
②中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.
③平行投影:在一束平行光线照射下形成的投影.分正投影、斜投影.
讨论:点、线、三角形在平行投影后的结果.
2.教学柱、锥、台、球的三视图:
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图
讨论:三视图与平面图形的关系?画出长方体的三视图,并讨论所反应的长、宽、高
结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果.正视图、侧视图、俯视图.
③试画出:棱柱、棱锥、棱台、圆台的三视图.(
④讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
⑤讨论:根据以上的三视图,如何逆向得到几何体的形状.
(试变化以上的三视图,说出相应几何体的摆放)
3.教学简单组合体的三视图:
①画出教材P16图(2)、(3)、(4)的三视图.
②从教材P16思考中三视图,说出几何体.
4.练习:
①画出正四棱锥的三视图.
画出右图所示几何体的三视图.
③右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.
5.小结:投影法;三视图;顺与逆
三、巩固练习: 练习:教材P171、2、3、4
第二课时1.2.3空间几何体的直观图
教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.
教学重点:画出直观图.
高中教案数学模板篇7
一、 知识梳理
1.三种抽样方法的联系与区别:
类别 共同点 不同点 相互联系 适用范围
简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少
系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多
分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异
(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为
(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.
(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.
(4) 要懂得从图表中提取有用信息
如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值
2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差
3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=
特别提醒:古典概型的两个共同特点:
○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;
○2 ,即每个基本事件出现的可能性相等。
4. 几何概型的概率公式: P(A)=
特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。
二、夯实基础
(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.
(2)某赛季,甲、乙两名篮球运动员都参加了
11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,
则甲、乙两名运动员得分的中位数分别为( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)统计某校1000名学生的数学会考成绩,
得到样本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是 ;优秀率为 。
(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一个分和一个最低分后,所剩数据的平均值和方差分别为( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.
(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )
三、高考链接
07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒; 第六组,成绩大于等于18秒且小于等于19秒.右图
是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为 ,成绩大于等于15秒且小于17秒的学生人数为 ,则从频率分布直方图中可分析出 和 分别为( )
08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )
分数 5 4 3 2 1
人数 20 10 30 30 10
09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).
08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.
高中教案数学模板篇8
教学目标:
1·进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题·
2·培养学生数形结合的思想,以及分析推理的能力·
教学重点:
对数函数性质的应用·
教学难点:
对数函数的性质向对数型函数的演变延伸·
教学过程:
一、问题情境
1·复习对数函数的性质·
2·回答下列问题·
(1)函数y=log2x的值域是;
(2)函数y=log2x(x≥1)的值域是;
(3)函数y=log2x(0
3·情境问题·
函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?
二、学生活动
探究完成情境问题·
三、数学运用
例1求函数y=log2(x2+2x+2)的定义域和值域·
练习:
(1)已知函数y=log2x的值域是[—2,3],则x的范围是________________·
(2)函数,x(0,8]的值域是·
(3)函数y=log(x2—6x+17)的值域·
(4)函数的.值域是_______________·
例2判断下列函数的奇偶性:
(1)f(x)=lg(2)f(x)=ln(—x)
例3已知loga0·75>1,试求实数a取值范围·
例4已知函数y=loga(1—ax)(a>0,a≠1)·
(1)求函数的定义域与值域;
(2)求函数的单调区间·
练习:
1·下列函数(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号)·
2·函数y=lg(—1)的图象关于对称·
3·已知函数(a>0,a≠1)的图象关于原点对称,那么实数m=·
4·求函数,其中x[,9]的值域·
四、要点归纳与方法小结
(1)借助于对数函数的性质研究对数型函数的定义域与值域;
(2)换元法;
(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合)·
五、作业
课本P70~71—4,5,10,11·
高中教案数学模板篇9
第二教时教材:
1、复习
2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:
一、复习:(结合提问)
1.集合的概念含集合三要素
2.集合的表示、符号、常用数集、列举法、描述法
3.集合的分类:有限集、无限集、空集、单元集、二元集
4.关于“属于”的概念
二、例一用适当的方法表示下列集合:
1.平方后仍等于原数的数集解:{x x2=x}={0,1}
2.比2大3的数的集合解:{x x=2+3}={5}
3.不等式x2-x-6<0的整数解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}
4.过原点的直线的集合解:{(x,y)y=kx}
5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}
6.使函数y=有意义的实数x的集合解:{x x2+x-60}={x x2且x3,xR}
三、处理苏大《教学与测试》第一课含思考题、备用题
四、处理《课课练》
五、作业《教学与测试》第一课练习题
高中教案数学模板篇10
依据如下:
(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。
(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。
(3)从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。
突破难点方法:
(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。从而得知求等比数列前n项和……+的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法——错位相减法,说明这种方法的用途。
(2)值得一提的是公式的证明还有两种方法:
后两种方法可以启发引导学生自行完成。这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。
等比数列前n项和公式及应用是本节课的重点内容。
依据如下:
(1)新大纲中有较高层次的要求。
(2)教学地位重要,是教学中全部学习任务中必须优先完成的任务。
(3)这项知识内容有广泛的实际应用,很多问题都要转化为等比数列的求和上来。
突出重点方法:
(1)明确重点。利用高一学生求知积极性和初步具有的数学思维能力,运用比较法来突出公式的内容(彩色粉笔板书):,强调公式的应用范围:中可知三求二。
(2)运用纠错法对公式中学生容易出错的地方,即公式的条件,以精练的语言给予强调,并指出q=1时,。再有就是有些数列求和的项数易错,例如的项数是n+1而不是n。
(3)创设条件、充分保证。设置低、中、高三个层次的例题,即公式的直接应用、公式的变形应用和实际应用来突出这一重点。对应用题师生要共同分析讨论,从问题中抽象出等比数列,然后用公式求和。
2.实际应用题.
这样设置主要依据:
(1)练习题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。
(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的习题。
(3)应用题比较切合对智力技能进行检测,有利于数学能力的提高。同时,它可以使学生在后半程学习中保持兴趣的持续性和学习的主动性,。
根据高一学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,简称“例—规”法。
案例为浅层次要求,使学生有概括印象。
公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。
应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。
其中,案例是基础,是学生感知教材;公式为关键,是学生理解教材;练习为应用,是学生巩固知识,举一反三。
在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书、棋盘教具和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,加深了学生理解巩固与应用,有利于培养学生思维能力,落实好教学任务。
在提倡教育改革的今天,对学生进行思维技能培养已成了我们非常重要的一项教学任务。研究性学习已在全国范围内展开,等比数列就是一个进行研究性学习的好题材。在我们学校可以按照Intel未来教育计划培训的模式,学完本节课后,教师可以给学生布置一个研究分期付款的课题,让学生利用网络资源,多方查找资料,并通过完成多媒体演示文稿和网页制作来共同解决这一问题。这样不仅培养了学生主动探究问题、解决问题的能力,而且还提高了他们的创新意识和团结协作的精神。
高中教案数学模板篇11
课题:指数与指数幂的运算
课型:新授课
教学方法:讲授法与探究法
教学媒体选择:多媒体教学
指数与指数幂的运算——学习者分析:
1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础.
2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入.
指数与指数幂的运算——学习任务分析:
1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值.
2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.
3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算.
指数与指数幂的运算——教学目标阐明:
1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化.
2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力.
3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.
教学流程图:
指数与指数幂的运算——教学过程设计:
一.新课引入:
(一)本章知识结构介绍
(二)问题引入
1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P与死亡年数t之间的关系:
(1)当生物死亡了5730年后,它体内的碳14含量P的值为
(2)当生物死亡了5730×2年后,它体内的碳14含量P的值为
(3)当生物死亡了6000年后,它体内的碳14含量P的值为
(4)当生物死亡了10000年后,它体内的碳14含量P的值为
2.回顾整数指数幂的运算性质
整数指数幂的运算性质:
3.思考:这些运算性质对分数指数幂是否适用呢?
【师】这就是我们今天所要学习的内容《指数与指数幂的运算》
【板书】2.1.1指数与指数幂的运算
二.根式的概念:
【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引导学生总结n次方根的概念..
【板书】平方根,立方根,n次方根的符号,并举一些简单的方根运算,以便学生观察总结.
【师】现在我们请同学来总结n次方根的概念..
1.根式的概念
【板书】概念
即如果一个数的n次方等于a(n>1,且n∈N_),那么这个数叫做a的n次方根.
【师】通过刚才所举的例子不难看出n的奇偶以及a的正负都会影响a的n次方根,下面我们来共同完成这样一个表格.
【板书】表格
【师】通过这个表格,我们知道负数没有偶次方根.那么0的n次方根是什么?
【学生】0的n次方根是0.
【师】现在我们来对这个符号作一说明.
例1.求下列各式的值
【注】本题较为简单,由学生口答即可,此处过程省略.
三.n次方根的性质
【注】对于1提问学生a的取值范围,让学生思考便能得出结论.
【注】对于2,少举几个例子让学生观察,并起来说他们的结论.
1.n次方根的性质
四.分数指数幂
【师】这两个根式可以写成分数指数幂的形式,是因为根指数能整除被开方数的指数,那么请大家思考下面的问题.
思考:根指数不能整除被开方数的指数时还能写成分数指数幂的形式吗
【师】如果成立那么它的意义是什么,我们有这样的规定.
(一)分数指数幂的意义:
1.我们规定正数的正分数指数幂的意义是:
2.我们规定正数的负分数指数幂的意义是:
3.0的正分数指数幂等于0,0的负分数指数幂没有意义.
(二)指数幂运算性质的推广:
五.例题
例2.求值
【注】此处例2让学生上黑板做,例3待学生完成后老师在黑板板演,例4让学生黑板上做,然后纠正错误.
六.课堂小结
1.根式的定义;
2.n次方根的性质;
3.分数指数幂.
七.课后作业
P59习题2.1A组1.2.4.
八.课后反思
1.在第一节课的时候没有把重要的内容写在黑板上,而且运算性质中a,r,s的条件没有给出,另外课件中有一处错误.第二节课时改正了第一节课的错误.
2.有许多问题应让学生回答,不能自问自答.根式性质的思考没有讲清楚,应该给学生更多的时间来回答和思考问题,与之互动太少.
3.讲课过程中还有很多细节处理不好,并且讲课声音较小,没有起伏.
4.课前的章节知识结构很好,引入简单到位,亮点是概念后的表格.
高中教案数学模板篇12
教学类型:探究研究型
设计思路:通过一系列的猜想得出德·摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课·
教学过程:
一、片头
(20秒以内)
内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的&39;数学规律(第二讲)》。
第1张PPT
12秒以内
二、正文讲解
(4分20秒左右)
1·引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”
上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?
那么,这个规律是偶然的,还是一个恒等式呢?
第2张PPT
28秒以内
2·规律的`验证:
试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用
第3张PPT
2分10秒以内
3·抽象概括:通过我们的观察和验证,我们发现这个规律是一个恒等式。
而这个规律就是180年前著名的英国数学家德摩根发现的。
为了纪念他,我们将它称为德摩根律。
原来我们通过自己的探索也能发现这么伟大的数学规律。
第4张PPT
30秒以内
4·例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算
第5张PPT
1分20秒以内
三、结尾
(20秒以内)
通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。
希望你在今后的学习中,勇于探索,发现更多有趣的规律。
第6张PPT
10秒以内
教学反思(自我评价)
学生在学习集合时会接触到很多的集合运算,往往学生觉得这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展示,让学生在直观的环境下轻松的学习,提高学生学习数学的兴趣,并通过层层深入的讲解,让学生进一步加强对集合运算的理解和应用能力,效果非常好·
高中教案数学模板篇13
教学目标:
1、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。
2、培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。
3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。使学生在数学活动中养成与人合作的良好习惯。
教学过程:
一、创设增境,激发兴趣。
师:今天我们要去"数学广角乐园"游玩,你们想去吗?
二、操作探究,学习新知。
<一>组合问题
l、看一看,说一说
师:那我们先在家里挑选穿上漂亮的衣服吧。(课件出示主题图)
师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)
2、想一想,摆一摆
(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?
①学生小组讨论交流,老师参与小组讨论。
②学生汇报
(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在展示板上。(要求:小组长拿出学具衣服图片、展示板)
①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:
第一种方案(按上装搭配下装)有几种穿法?(4种)
第二种方案(按下装搭配上装)有几种穿法?(4种)
师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
<二>排列问题
师:数学广角乐园到了,不过进门之前我们必须找到开门密码。(课件出示课件密码门)
密码是由1、2、3组成的两位数.
(1)小组讨论摆出不同的两位数,并记下结果。
(2)学生汇报交流(老师根据学生的回答,点击课件展示密码)
(3)生生相互评价。方法一:每次拿出两张数字卡片能摆出不同的两位数;
方法二:固定十位上的数字,交换个位数字得到不同的两位数;
方法三:固定个位上的数字,交换十位数字得到不同的两位数.
师小结:三种方法虽然不同,但都能正确并有序地摆出6个不同的两位数,同学们可以用自己喜欢的方法.
三、课堂实践,巩固新知。
1、乒乓球赛场次安排。
师:我们先去活动乐园看看,这儿正好有乒乓球比赛呢.(课件出示情境图)
(l)老师提出要求:每两个运动员之间打一场球赛,一共要比几场?
(2)学生独立思考.
(3)指名学生汇报.规
2、路线选择。(课件展示游玩景点图)
师:我们去公园看看吧。途中要经过游戏乐园。
(l)师引导观察:从活动乐园到游戏乐园有几条路线?哪几条?(甲,乙两条)从游戏乐园去公园有几条路线?哪几条?(A,B,C三条)(根据学生的回答课件展示)
从活动乐园到时公园到底有几种不同的走法?
(2)学生独立思索后小组交流。
(3)全班同学互相交流。
3、照像活动。
师:我们来到公园,这儿的景色真不错,大家照几张像吧.
师提出要求:摄影师要求三名同学站成一排照像,每小组根据每次合影人数(双人照或三人照)设计排列方案,由组长作好活动记录。
(1)小组活动,老师参与小组活动。
(2)各小组展示记录方案。
(3)师生共同评价。
4、欣赏照片.
师:在同学们照像的同时,小丽一家三口人也正在照像呢,看看她们是怎样照的.(课件展示照片集欣赏)
四、总结
今天的游玩到此结束,同学们互相握手告别好吗?如果小组里的四个同学每两人握一次手,一共要握几次手?
高中教案数学模板篇14
高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养,谁的自学能力强,那么在一定程度上影响着你的成绩以及将来你发展的前途。同时还要注意以下几点:
第一、对数学学科特点有清楚的认识
数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是“想当然”的`话,那就学不下去了。
第二、要改变一个观念。
有人会说自己的基础不好。那什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础,
所以只要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。
第三、学数学要摸索自己的学习方法
学习重在方法,好的学习方法让学生事半功倍。学习、掌握并能灵活应用数学的途径有很多,做习题、用数学知识解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。同时,要注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。
相关文章推荐:
1.高中开学第一周教学反思
2.开学第一课教学反思精选
3.20--初中开学第一课教学反思【精选】
4.高三开学教学反思
5.高一信息技术教学反思
6.开学第一课语文教学反思
7.幼儿园开学第一课反思
8.高中英语教学反思精选
9.高中生物教育反思
10.20--开学第一课教学反思
高中教案数学模板篇15
今天我说课的课题是《锐角三角函数》(第一课时),所选用的教材为人教版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法和学法分析,教学过程分析四个方面加以说明。
一、教材的地位和作用
本节教材是人教版初中数学新教材九年级下第28章第一节内容,是初中数学的重要内容之一。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,也是高中进一步研究三角函数、反三角函数、三角方程的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
从学生的年龄特征和认知特征来看:
九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
从学生已具备的知识和技能来看:
九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础
从心理特征来看:初三学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
从学生有待于提高的知识和技能来看:
学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析。
3、教学重、难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:理解正弦函数意义,并会求锐角的正弦值。
难点确定为:根据锐角的正弦值及一边,求直角三角形的其他边长。
二、教学目标分析
新课标指出,教学目标应从知识技能、数学思考、问题解决、情感态度等四个方面阐述,而这四维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识技能为主线,渗透情感态度,并把前面两者通过数学思考充分体现在问题解决中。借此结合以上教材分析,我将四个目标进行整合,确定本节课的教学目标为:
1.理解锐角正弦的意义,并会求锐角的正弦值;
2.初步了解锐角正弦取值范围及增减性;
3.掌握根据锐角的正弦值及直角三角形的一边,求直角三角形的其他边长的方法;
4.经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力;
5.通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学方法和学法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的学情情况,本节课我采用“三动五自主”的教学模式,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和合作交流的形式,在教师的指道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
本节课的教法采用的是情境引导和探究发现教学法,在教学过程中,通过适宜的问题情境引发新的认知冲突;建立知识间的联系。教师通过引导、指导、反馈、评价,不断激发学生对问题的好奇心,使其在积极的自主活动中主动参与概念的建构过程,并运用数学知识解决实际问题,享受数学学习带来的乐趣。
本节课的学习方法采用自主探究法与合作交流法相结合。本节课数学活动贯穿始终,既有学生自主探究的,也有小组合作交流的,旨在让学生从自主探究中发展,从合作交流中提高。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(一)自主探究
1、复习旧知,温故知新
1、已知:在Rt△ABC中,∠C=900,∠A=350,则∠B=0
2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,则BC=
设计意图:建构注意主张教学应从学生已有的知识体系出发,相似的三角形性质是本节课深入研究锐角正弦的认知基础,这样设计有利于引导学生顺利地进入学习情境。
2、创设情境,提出问题
利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(二)自主合作
1、发现问题,探求新知(要求学生独立思考后小组内合作探究)
1、(播放绿化荒山的视频)课本P74问题与思考,求的值
2、课本P75思考:求的值
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。
2、分析思考,加深理解
1、课本P75探索,
问:与有什么关系?你能解释吗?
2、正弦函数定义:在Rt△ABC中,∠C=900,,把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=
对定义的几点说明:
1、sinA是一个完整的符号,表示∠A的正切习惯上省略“∠”的符号.
2、本章我们只研究锐角∠A的正弦.
3、sinA的范围:0
设计意图:数学教学论指出,数学概念要明确其内涵和外延(条件、结论、应用范围等),通过对锐角正弦定义阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生引入到下一环节。
(三)自主展示(强化训练,巩固双基)
1、(例1课本P76)已知:在Rt△ABC中,∠C=900,根据图中数据
求sinA和sinB
2、判断对错(学生口答)
(1)若锐角∠A=∠B,则sinA=sinB()
(2)sin600=sin300+sin300()
3、如图,将Rt△ABC各边扩大100倍,则tanA的值()
A.扩大100倍B.缩小100倍C.不变D.不确定
4、如图,平面直角坐标系中点P(3,-4),OP与x轴的夹角为∠1,求sin∠1的值。
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(四)自主拓展(提高升华)
1、课本习题28.1第1、2、题;
2、选做题:已知:在Rt△ABC中,∠C=900,sinA=,周长为60,求:斜边AB的长?
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
(五)自主评价(小结归纳,拓展深化)
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是那个方面进行归纳,我设计了这么三个问题:
①通过本节课的学习,你学会了哪些知识;
②通过本节课的学习,你最大的体验是什么;
③通过本节课的学习,你掌握了哪些学习数学的方法?
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,为了使课堂效益达到最佳状态,我设计以下问题加以追问:
1、sinA能为负吗?
2、比较sin450和sin300的大小?
设计要求:(1)先学生独立思考后小组内探究
(2)各组交流展示探究结果,并且组内或各组之间自主评价.
设计意图:
(1)有一定难度需要学生进行合作探究,有利于培养学生善于反思的好习惯.
(2)学生通过互评自评,可以使学生全面了解自己的学习过程,感受自己的成长和进步,同时促进学生对学习及时进行反思,为教师全面了解学生的学习状况,改进教学,实施因材施教提供重要依据。我的说课到此结束,敬请各位老师批评、指正,谢谢!
教学反思
1.本教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学。
2.在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用。
3.正弦是生活中应用较广泛的三角函数。因而在本节课的设计中力求贴近生活。又从意大利比萨斜塔提炼出了数学问题,让学生体会学数学、用数学的乐趣。
高中教案数学模板篇16
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.
在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.
要特别注意,不加特殊说明,本章不研究重复排列问题.
③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 , ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.
导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.
公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.
高中教案数学模板篇17
椭圆的简单几何性质的重点是性质,难点是应用。椭圆的简单几何性质的知识是解析几何中一个重要内容,是训练学生逻辑思维,发展空间想像能力,提高分析和解决问题能力等的又一重要素材。新课开始,先复习椭圆定义和方程,然后结合图形观察分析得出椭圆有性质(范围、对称性、顶点、离心率、准线)。
当然,要真正掌握性质并灵活应用,适当的训练是必不可少的。由于椭圆的简单几何性质安排了六节数学课,还有足够的时间来开展反馈环节。课本后面的练习及习题比较多,其中习题的第5题及9题难度较大。对于比较简单的习题,基本上由学生独立完成,当然学生解题的时间必须要保证。而对于比较难的第5及9题,采取创设问题情境,注重启发艺术,体现“低起点、小步子、及时反馈”的教学原则,让尽可能多的学生思维和积极性得到最大的挑战和提高。当然,教学永远是一门遗憾的艺术,教学境界是无止境的,“启而不发,引而不导”是一个不断完善的操作过程。
对于习题的教学,如何提升习题的潜在价值,如何让学生得到最大的收获,这是我们每天面对和思考的焦点。在教学过程中几乎花了一节课的时间开展习题教学,由于自己一直担心时间的紧张,学生的主体性没有得到有效体现,进而数学思维及能力缺少了锤炼的机会。这部分的缺陷,将在今后的教学中找时间来给学生补上,不过这是在教学中应注意的,将要要求自己在今后的教学中尽量做到最好。
高中教案数学模板篇18
●知识梳理
函数的综合应用主要体现在以下几方面:
1.函数内容本身的相互综合,如函数概念、性质、图象等方面知识的综合.
2.函数与其他数学知识点的综合,如方程、不等式、数列、解析几何等方面的内容与函数的综合.这是高考主要考查的内容.
3.函数与实际应用问题的综合.
●点击双基
1.已知函数f(x)=lg(2x-b)(b为常数),若x[1,+)时,f(x)0恒成立,则
A.b1B.b1C.b1D.b=1
解析:当x[1,+)时,f(x)0,从而2x-b1,即b2x-1.而x[1,+)时,2x-1单调增加,
b2-1=1.
答案:A
2.若f(x)是R上的减函数,且f(x)的图象经过点A(0,3)和B(3,-1),则不等式f(x+1)-12的解集是___________________.
解析:由f(x+1)-12得-2
又f(x)是R上的减函数,且f(x)的图象过点A(0,3),B(3,-1),
f(3)
答案:(-1,2)
●典例剖析
【例1】取第一象限内的点P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差数列,1,y1,y2,2依次成等比数列,则点P1、P2与射线l:y=x(x0)的关系为
A.点P1、P2都在l的上方B.点P1、P2都在l上
C.点P1在l的下方,P2在l的上方D.点P1、P2都在l的下方
剖析:x1=+1=,x2=1+=,y1=1=,y2=,∵y1
P1、P2都在l的下方.
答案:D
【例2】已知f(x)是R上的偶函数,且f(2)=0,g(x)是R上的奇函数,且对于xR,都有g(x)=f(x-1),求f(20__)的值.
解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),
故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=
g(x-3)=f(x-4),也即f(x+4)=f(x),xR.
f(x)为周期函数,其周期T=4.
f(20__)=f(4500+2)=f(2)=0.
评述:应灵活掌握和运用函数的奇偶性、周期性等性质.
【例3】函数f(x)=(m0),x1、x2R,当x1+x2=1时,f(x1)+f(x2)=.
(1)求m的值;
(2)数列{an},已知an=f(0)+f()+f()++f()+f(1),求an.
解:(1)由f(x1)+f(x2)=,得+=,
4+4+2m=[4+m(4+4)+m2].
∵x1+x2=1,(2-m)(4+4)=(m-2)2.
4+4=2-m或2-m=0.
∵4+42=2=4,
而m0时2-m2,4+42-m.
m=2.
(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+f()++f()+f(0).
2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]=+++=.
an=.
深化拓展
用函数的思想处理方程、不等式、数列等问题是一重要的思想方法.
【例4】函数f(x)的定义域为R,且对任意x、yR,有f(x+y)=f(x)+f(y),且当x0时,f(x)0,f(1)=-2.
(1)证明f(x)是奇函数;
(2)证明f(x)在R上是减函数;
(3)求f(x)在区间[-3,3]上的最大值和最小值.
(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.从而有f(x)+f(-x)=0.
f(-x)=-f(x).f(x)是奇函数.
(2)证明:任取x1、x2R,且x10.f(x2-x1)0.
-f(x2-x1)0,即f(x1)f(x2),从而f(x)在R上是减函数.
(3)解:由于f(x)在R上是减函数,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.从而最大值是6,最小值是-6.
深化拓展
对于任意实数x、y,定义运算x__y=ax+by+cxy,其中a、b、c是常数,等式右边的运算是通常的加法和乘法运算.现已知1__2=3,2__3=4,并且有一个非零实数m,使得对于任意实数x,都有x__m=x,试求m的值.
提示:由1__2=3,2__3=4,得
b=2+2c,a=-1-6c.
又由x__m=ax+bm+cmx=x对于任意实数x恒成立,
b=0=2+2c.
c=-1.(-1-6c)+cm=1.
-1+6-m=1.m=4.
答案:4.
●闯关训练
夯实基础
1.已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上
A.单调递减且最大值为7B.单调递增且最大值为7
C.单调递减且最大值为3D.单调递增且最大值为3
解析:互为反函数的两个函数在各自定义区间上有相同的增减性,f-1(x)的值域是[1,3].
答案:C
2.关于x的方程x2-4x+3-a=0有三个不相等的实数根,则实数a的值是___________________.
解析:作函数y=x2-4x+3的图象,如下图.
由图象知直线y=1与y=x2-4x+3的图象有三个交点,即方程x2-4x+3=1也就是方程x2-4x+3-1=0有三个不相等的实数根,因此a=1.
答案:1
3.若存在常数p0,使得函数f(x)满足f(px)=f(px-)(xR),则f(x)的一个正周期为__________.
解析:由f(px)=f(px-),
令px=u,f(u)=f(u-)=f[(u+)-],T=或的整数倍.
答案:(或的整数倍)
4.已知关于x的方程sin2x-2sinx-a=0有实数解,求a的取值范围.
解:a=sin2x-2sinx=(sinx-1)2-1.
∵-11,0(sinx-1)24.
a的范围是[-1,3].
5.记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a1)的定义域为B.
(1)求A;
(2)若BA,求实数a的取值范围.
解:(1)由2-0,得0,
x-1或x1,即A=(-,-1)[1,+).
(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.
∵a1,a+12a.B=(2a,a+1).
∵BA,2a1或a+1-1,即a或a-2.
而a1,1或a-2.
故当BA时,实数a的取值范围是(-,-2][,1).
培养能力
6.(理)已知二次函数f(x)=x2+bx+c(b0,cR).
若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;若不存在,请说明理由.
解:设符合条件的f(x)存在,
∵函数图象的对称轴是x=-,
又b0,-0.
①当-0,即01时,
函数x=-有最小值-1,则
或(舍去).
②当-1-,即12时,则
(舍去)或(舍去).
③当--1,即b2时,函数在[-1,0]上单调递增,则解得
综上所述,符合条件的函数有两个,
f(x)=x2-1或f(x)=x2+2x.
(文)已知二次函数f(x)=x2+(b+1)x+c(b0,cR).
若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;若不存在,请说明理由.
解:∵函数图象的对称轴是
x=-,又b0,--.
设符合条件的f(x)存在,
①当--1时,即b1时,函数f(x)在[-1,0]上单调递增,则
②当-1-,即01时,则
(舍去).
综上所述,符合条件的函数为f(x)=x2+2x.
7.已知函数f(x)=x+的定义域为(0,+),且f(2)=2+.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:PMPN是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.
解:(1)∵f(2)=2+=2+,a=.
(2)设点P的坐标为(x0,y0),则有y0=x0+,x00,由点到直线的距离公式可知,PM==,PN=x0,有PMPN=1,即PMPN为定值,这个值为1.
(3)由题意可设M(t,t),可知N(0,y0).
∵PM与直线y=x垂直,kPM1=-1,即=-1.解得t=(x0+y0).
又y0=x0+,t=x0+.
S△OPM=+,S△OPN=x02+.
S四边形OMPN=S△OPM+S△OPN=(x02+)+1+.
当且仅当x0=1时,等号成立.
此时四边形OMPN的面积有最小值1+.
探究创新
8.有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1;
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2V1.
解:(1)设切去正方形边长为x,则焊接成的长方体的底面边长为4-2x,高为x,
V1=(4-2x)2x=4(x3-4x2+4x)(0
V1=4(3x2-8x+4).
令V1=0,得x1=,x2=2(舍去).
而V1=12(x-)(x-2),
又当x时,V10;当
当x=时,V1取最大值.
(2)重新设计方案如下:
如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;如图③,将图②焊成长方体容器.
新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=321=6,显然V2V1.
故第二种方案符合要求.
●思悟小结
1.函数知识可深可浅,复习时应掌握好分寸,如二次函数问题应高度重视,其他如分类讨论、探索性问题属热点内容,应适当加强.
2.数形结合思想贯穿于函数研究的各个领域的全部过程中,掌握了这一点,将会体会到函数问题既千姿百态,又有章可循.
●教师下载中心
教学点睛
数形结合和数形转化是解决本章问题的重要思想方法,应要求学生熟练掌握用函数的图象及方程的曲线去处理函数、方程、不等式等问题.
拓展题例
【例1】设f(x)是定义在[-1,1]上的奇函数,且对任意a、b[-1,1],当a+b0时,都有0.
(1)若ab,比较f(a)与f(b)的大小;
(2)解不等式f(x-)
(3)记P={xy=f(x-c)},Q={xy=f(x-c2)},且PQ=,求c的取值范围.
解:设-1x1
0.
∵x1-x20,f(x1)+f(-x2)0.
f(x1)-f(-x2).
又f(x)是奇函数,f(-x2)=-f(x2).
f(x1)
f(x)是增函数.
(1)∵ab,f(a)f(b).
(2)由f(x-)
-.
不等式的解集为{x-}.
(3)由-11,得-1+c1+c,
P={x-1+c1+c}.
由-11,得-1+c21+c2,
Q={x-1+c21+c2}.
∵PQ=,
1+c-1+c2或-1+c1+c2,
解得c2或c-1.
【例2】已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
(理)若g(x)=f(x)+,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
解:(1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上.
2-y=-x++2.
y=x+,即f(x)=x+.
(2)(文)g(x)=(x+)x+ax,
即g(x)=x2+ax+1.
g(x)在(0,2]上递减-2,
a-4.
(理)g(x)=x+.
∵g(x)=1-,g(x)在(0,2]上递减,
1-0在x(0,2]时恒成立,
即ax2-1在x(0,2]时恒成立.
∵x(0,2]时,(x2-1)max=3,
a3.
【例3】在4月份(共30天),有一新款服装投放某专卖店销售,日销售量(单位:件)f(n)关于时间n(130,nN__)的函数关系如下图所示,其中函数f(n)图象中的点位于斜率为5和-3的两条直线上,两直线的交点的横坐标为m,且第m天日销售量最大.
(1)求f(n)的表达式,及前m天的销售总数;
(2)按规律,当该专卖店销售总数超过400件时,社会上流行该服装,而日销售量连续下降并低于30件时,该服装的流行会消失.试问该服装在社会上流行的天数是否会超过10天?并说明理由.
解:(1)由图形知,当1m且nN__时,f(n)=5n-3.
由f(m)=57,得m=12.
f(n)=
前12天的销售总量为
5(1+2+3++12)-312=354件.
(2)第13天的销售量为f(13)=-313+93=54件,而354+54400,
从第14天开始销售总量超过400件,即开始流行.
设第n天的日销售量开始低于30件(1221.
从第22天开始日销售量低于30件,
即流行时间为14号至21号.
该服装流行时间不超过10天.
高中教案数学模板篇19
1.如图,已知直线L:的右焦点F,且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E。
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。
(文)若为x轴上一点,求证:
2.如图所示,已知圆定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足的取值范围。
3.设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且
⑴求椭圆C的离心率;
⑵若过A、Q、F三点的圆恰好与直线
l:相切,求椭圆C的方程.
4.设椭圆的离心率为e=
(1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.
(2)求b为何值时,过圆x2+y2=t2上一点M(2,)处的切线交椭圆于Q1、Q2两点,而且OQ1OQ2.
5.已知曲线上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.
(1)求曲线的方程;
(2)设过(0,-2)的直线与曲线交于C、D两点,且为坐标原点),求直线的方程.
6.已知椭圆的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).
(Ⅰ)当m+n0时,求椭圆离心率的范围;
(Ⅱ)直线AB与⊙P能否相切?证明你的结论.
7.有如下结论:圆上一点处的切线方程为,类比也有结论:椭圆处的切线方程为,过椭圆C:的右准线l上任意一点M引椭圆C的两条切线,切点为A、B.
(1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积
8.已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(Ⅰ)求m的值与椭圆E的方程;
(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.
9.椭圆的对称中心在坐标原点,一个顶点为,右焦点与点的距离为。
(1)求椭圆的方程;
(2)是否存在斜率的直线:,使直线与椭圆相交于不同的两点满足,若存在,求直线的倾斜角;若不存在,说明理由。
10.椭圆方程为的一个顶点为,离心率。
(1)求椭圆的方程;
(2)直线:与椭圆相交于不同的两点满足,求。
11.已知椭圆的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作,其中圆心P的坐标为.
(1)若椭圆的离心率,求的方程;
(2)若的圆心在直线上,求椭圆的方程.
12.已知直线与曲线交于不同的两点,为坐标原点.
(Ⅰ)若,求证:曲线是一个圆;
(Ⅱ)若,当且时,求曲线的离心率的取值范围.
13.设椭圆的左、右焦点分别为、,A是椭圆C上的一点,且,坐标原点O到直线的距离为.
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过Q的直线l交x轴于点,较y轴于点M,若,求直线l的方程.
14.已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点的切线方程为为常数).
(I)求抛物线方程;
(II)斜率为的直线PA与抛物线的另一交点为A,斜率为的直线PB与抛物线的另一交点为B(A、B两点不同),且满足,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当时,若P的坐标为(1,-1),求PAB为钝角时点A的纵坐标的取值范围.
15.已知动点A、B分别在x轴、y轴上,且满足AB=2,点P在线段AB上,且
设点P的轨迹方程为c。
(1)求点P的轨迹方程C;
(2)若t=2,点M、N是C上关于原点对称的两个动点(M、N不在坐标轴上),点Q
坐标为求△QMN的面积S的最大值。
16.设上的两点,
已知,,若且椭圆的离心率短轴长为2,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
17.如图,F是椭圆(a0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为.点C在x轴上,BCBF,B,C,F三点确定的圆M恰好与直线l1:相切.
(Ⅰ)求椭圆的方程:
(Ⅱ)过点A的直线l2与圆M交于PQ两点,且,求直线l2的方程.
18.如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,且.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
19.如图,已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点.直线交椭圆于两不同的点.
20.设,点在轴上,点在轴上,且
(1)当点在轴上运动时,求点的轨迹的方程;
(2)设是曲线上的点,且成等差数列,当的垂直平分线与轴交于点时,求点坐标.
21.已知点是平面上一动点,且满足
(1)求点的轨迹对应的方程;
(2)已知点在曲线上,过点作曲线的两条弦和,且,判断:直线是否过定点?试证明你的结论.
22.已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点.
(1)求椭圆的方程:
(2)若点D为椭圆上不同于、的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线与椭圆交于、两点,证明直线与直线的交点在直线上.
23.过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点。
(1)用表示A,B之间的距离;
(2)证明:的大小是与无关的定值,
并求出这个值。
24.设分别是椭圆C:的左右焦点
(1)设椭圆C上的点到两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段的中点B的轨迹方程
(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为试探究的值是否与点P及直线L有关,并证明你的结论。
25.已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设与轴交于点,不同的两点在上,且满足求的取值范围.
26.如图所示,已知椭圆:,、为
其左、右焦点,为右顶点,为左准线,过的直线:与椭圆相交于、
两点,且有:(为椭圆的半焦距)
(1)求椭圆的离心率的最小值;
(2)若,求实数的取值范围;
(3)若,,
求证:、两点的纵坐标之积为定值;
27.已知椭圆的左焦点为,左右顶点分别为,上顶点为,过三点作圆,其中圆心的坐标为
(1)当时,椭圆的离心率的取值范围
(2)直线能否和圆相切?证明你的结论
28.已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(I)证明:为定值;
(II)若△POM的面积为,求向量与的夹角;
(Ⅲ)证明直线PQ恒过一个定点.
29.已知椭圆C:上动点到定点,其中的距离的最小值为1.
(1)请确定M点的坐标
(2)试问是否存在经过M点的直线,使与椭圆C的两个交点A、B满足条件(O为原点),若存在,求出的方程,若不存在请说是理由。
30.已知椭圆,直线与椭圆相交于两点.
(Ⅰ)若线段中点的横坐标是,求直线的方程;
(Ⅱ)在轴上是否存在点,使的值与无关?若存在,求出的值;若不存在,请说明理由.
31.直线AB过抛物线的焦点F,并与其相交于A、B两点。Q是线段AB的中点,M是抛物线的准线与y轴的交点.O是坐标原点.
(I)求的取值范围;
(Ⅱ)过A、B两点分剐作此撒物线的切线,两切线相交于N点.求证:∥;
(Ⅲ)若P是不为1的正整数,当,△ABN的面积的取值范围为时,求该抛物线的方程.
32.如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.
(Ⅰ)当时,求椭圆的方程及其右准线的方程;
(Ⅱ)在(Ⅰ)的条件下,直线经过椭圆的右焦点,与抛物线交于、,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;
(Ⅲ)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.
33.已知点和动点满足:,且存在正常数,使得。
(1)求动点P的轨迹C的方程。
(2)设直线与曲线C相交于两点E,F,且与y轴的交点为D。若求的值。
34.已知椭圆的右准线与轴相交于点,右焦点到上顶点的距离为,点是线段上的一个动点.
(I)求椭圆的方程;
(Ⅱ)是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由.
35.已知椭圆C:(.
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率k的取值范围;
(3)如图,过原点任意作两条互相垂直的直线与椭圆()相交于四点,设原点到四边形一边的距离为,试求时满足的条件.
36.已知若过定点、以()为法向量的直线与过点以为法向量的直线相交于动点.
(1)求直线和的方程;
(2)求直线和的斜率之积的值,并证明必存在两个定点使得恒为定值;
(3)在(2)的条件下,若是上的两个动点,且,试问当取最小值时,向量与是否平行,并说明理由。
37.已知点,点(其中),直线、都是圆的切线.
(Ⅰ)若面积等于6,求过点的抛物线的方程;
(Ⅱ)若点在轴右边,求面积的最小值.
38.我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。
(1)设F1、F2是椭圆的两个焦点,点F1、F2到直线的距离分别为d1、d2,试求d1d2的值,并判断直线L与椭圆M的位置关系。
(2)设F1、F2是椭圆的两个焦点,点F1、F2到直线
(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1d2的值。
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。
39.已知点为抛物线的焦点,点是准线上的动点,直线交抛物线于两点,若点的纵坐标为,点为准线与轴的交点.
(Ⅰ)求直线的方程;(Ⅱ)求的面积范围;
(Ⅲ)设,,求证为定值.
40.已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设与轴交于点,不同的两点在上,且满足求的取值范围.
41.已知以向量为方向向量的直线过点,抛物线:的顶点关于直线的对称点在该抛物线的准线上.
(1)求抛物线的方程;
(2)设、是抛物线上的两个动点,过作平行于轴的直线,直线与直线交于点,若(为坐标原点,、异于点),试求点的轨迹方程。
42.如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.
(Ⅰ)当时,求椭圆的方程及其右准线的方程;
(Ⅱ)在(Ⅰ)的条件下,直线经过椭圆的右焦点,
与抛物线交于、,如果以线段为直径作圆,
试判断点与圆的位置关系,并说明理由;
(Ⅲ)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.
43.设椭圆的`一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.
(Ⅲ)若AB是椭圆C经过原点O的弦,MNAB,求证:为定值.
44.设是抛物线的焦点,过点M(-1,0)且以为方向向量的直线顺次交抛物线于两点。
(Ⅰ)当时,若与的夹角为,求抛物线的方程;
(Ⅱ)若点满足,证明为定值,并求此时△的面积
45.已知点,点在轴上,点在轴的正半轴上,点在直线上,且满足.
(Ⅰ)当点在轴上移动时,求点的轨迹的方程;
(Ⅱ)设、为轨迹上两点,且0,,求实数,
使,且.
46.已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切。
(1)已知椭圆的离心率;
(2)若的最大值为49,求椭圆C的方程.
高中教案数学模板篇20
学习目标
明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.
学习过程
一、学前准备
复习:
(课本P28A13)填空:
(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;
(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;
(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;
(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;
二、新课导学
探究新知(复习教材P14~P25,找出疑惑之处)
问题1:判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
应用示例:
例1:从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
例2:7位同学站成一排,分别求出符合下列要求的不同排法的种数.
(1)甲站在中间;
(2)甲、乙必须相邻;
(3)甲在乙的左边(但不一定相邻);
(4)甲、乙必须相邻,且丙不能站在排头和排尾;
(5)甲、乙、丙相邻;
(6)甲、乙不相邻;
(7)甲、乙、丙两两不相邻。
反馈练习
1、(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?
2、5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列
3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.
当堂检测
1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()
A.42B.30C.20D.12
2、(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?
课后作业
1、(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?
2、(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?