高中数学简洁教案大全
教案可以帮助教师从学生实际情况出发,面向大多数学生,调动学生学习的积极性。好的高中数学简洁教案大全要怎么写?小编给大家带来高中数学简洁教案大全,供大家参考。
高中数学简洁教案大全篇1
教学目标:
1、在新学期能够以积极的学习态度投入到学习中去,并用高昂的兴趣参与学习。
2、熟悉新学期音乐课的要求,并能够有意识的遵守,以良好的学习习惯规范自己在课堂中的表现。
教学重点:
养成良好的学习习惯
教学过程:
一.师生互相问好,拉近彼此的距离。
二.师生共同演绎节目,学生表演,老师表演,增进彼此感情,与孩子打成一片。
三.讲述新学期音乐课要求:
1、按时按顺序进入教室,不迟到,不早退。
2、进入教室不得高声喧哗打闹,保持安静状态。
3、认真保持教室卫生,不乱扔果皮纸屑,不随地吐痰。
4、课堂上发言积极有序,有礼有节,争做文明小学生。
5、做到爱护公共物品,轻拿轻放,损坏照价赔偿。
6、上课保持良好的状态,以积极的态度认真学习。
四、习惯养成训练,听音乐做出相关要求:
1、起立、坐下
2、安静
3、师生问好
4、请坐好
5、同桌面对
五、分组选拨,并对小组长提出要求
1、四人一小组
2、讲述课堂要求,小组合作学习,评价真实客观,学会欣赏别人;正当优秀小组,小组团结合作,富有创新;组长根据组员的表现,从纪律、学习习惯、上课表现上进行评价计分,获得3分就可获得一张绿卡。
小结:
希望第一节课能让师生互相留下印象,更好的进行今后的音乐教学,把音乐课上的更加的有声有色。
高中数学简洁教案大全篇2
教学目标
1.明确等差数列的定义.
2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3.培养学生观察、归纳能力.
教学重点
1.等差数列的概念;
2.等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具准备
投影片1张(内容见下面)
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6;①
10,8,6,4,2,…;②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2,。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式(n≥1)
推导出公式:(V)课后作业
一、课本P118习题3.21,2
二、1.预习内容:课本P116例2P117例4
2.预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
板书设计
课题
一、定义
1.(n≥2)
一、通项公式
2.公式推导过程
例题
教学后记
高中数学简洁教案大全篇3
一、说教材
(1)说教材的内容和地位
本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。
(2)说教学目标
根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:
1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。
2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。
3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。
(3)说教学重点和难点
依据课程标准和学生实际,我确定本课的教学重点为
教学重点:集合的基本概念及元素特征。
教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。
二、说教法和学法
接下来则是说教法、学法
教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。
总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。
三、说教学过程
接着我来说一下最重要的部分,本节课的教学过程:
这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。多层次、多角度地加深对概念的理解。提高学生学习的兴趣,以达到良好的教学效果。
第一环节:创设问题情境,引入目标
课堂开始我将提出两个问题:
问题1:班级有20名男生,16名女生,问班级一共多少人?
问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?
这里我会让学生以小组讨论的.形式进行讨论问题,事实上小组合作的形式是本节课主要形式。
待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。
安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。
很自然地进入到第二环节:自主探究
让学生阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。
让学生自主探究之后将进入第三环节:讨论辨析
小组合作探究(1)
让学生观察下列实例
(1)1~20以内的所有质数;
(2)所有的正方形;
(3)到直线的距离等于定长的所有的点;
(4)方程的所有实数根;
通过以上实例,辨析概念:
(1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。
(2)表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
小组合作探究(2)——集合元素的特征
问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?
问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?
集合中的元素必须是确定的
问题5:在一个给定的集合中能否有相同的元素?由此说明什么?
集合中的元素是不重复出现的
问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?集合中的元素是没有顺序的
我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。
小组合作探究(3)——元素与集合的关系
问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?
问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?
a属于集合A,记作a∈A
问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?
a不属于集合A,记作aA
小组合作探究(4)——常用数集及其表示方法
问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?
自然数集(非负整数集):记作N
正整数集:
整数集:记作Z
有理数集:记作Q实数集:记作R
设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。
第四环节:理论迁移变式训练
1.下列指定的对象,能构成一个集合的是
①很小的数
②不超过30的非负实数
③直角坐标平面内横坐标与纵坐标相等的点
④π的近似值
⑤所有无理数
A、②③④⑤B、①②③⑤C、②③⑤D、②③④
第五环节:课堂小结,自我评价
1.这节课学习的主要内容是什么?
2.这节课主要解释了什么数学思想?
设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。
第六环节:作业布置,反馈矫正
1.必做题课本习题1.1—1、2、3.
2.选做题已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a的值。
设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。
四、板书设计
好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:
集合
1.集合的概念
2.集合元素的特征
(学生板演)
3.常见集合的表示
4.范例研究
高中数学简洁教案大全篇4
教学目标:
掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.
教学重点:
二倍角公式的推导及简单应用.
教学难点:
理解倍角公式,用单角的三角函数表示二倍角的三角函数.
教学过程:
Ⅰ.课题导入
前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.
先回忆和角公式
sin(α+β)=sinαcosβ+cosαsinβ
当α=β时,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
当α=β时cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
当α=β时,tan2α=2tanα1-tan2α
Ⅱ.讲授新课
同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α
同学们是否也考虑到了呢?
另外运用这些公式要注意如下几点:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)时才成立,否则不成立(因为当α=π2 +kπ,k∈Z时,tanα的值不存在;当α=π4 +kπ2 ,k∈Z时tan2α的值不存在).
当α=π2 +kπ(k∈Z)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情况下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k∈Z)时,sin2α=2sinα=0成立].
同样在一般情况下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为 α2 的2倍,将 α2 作为 α4 的2倍,将3α作为 3α2 的2倍等等.
高中数学简洁教案大全篇5
一、说教材
等差数列为人教版必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的性质与应用等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
二、说学情
对于我校的高中学生,知识经验比较贫乏,虽然他们的智力发展已到了形式运演阶段,但并不具备教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、说教学目标
【知识与技能】能够准确的说出等差数列的特点;能够推导出等差数列的通项公式,并可以利用等差数列解决些简单的实际问题。
【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,锻炼知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。
【情感态度价值观】通过对等差数列的研究,激发主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
四、说教学重难点
【重点】等差数列的概念,等差数列的通项公式的推导过程及应用。
【难点】等差数列通项公式的推导,用“数学建模”的思想解决实际问题。
五、说教法与学法
数学教学是师生之间交往活动共同发展的课程,结合本节课的特点,我采取指导自主学习方法,并在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
六、说教学过程
(一)复习导入
类比函数,复习提问数列的函数意义,即数列可看作是定义域为正整数对应的一列函数值,从而数列的通项公式也就是相应函数的解析式。
设计意图:通过复习,为本节课用函数思想研究数列问题作准备,将课堂设置成为阶梯型教学,消除学生的畏难情绪。
(二)新课教学
教师创设具体情境,从具体事例中抽象出数学概念。
1.小明目前会100个单词,他打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92
2.小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25
通过练习1和2引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
接下来由学生尝试总结归纳等差数列的定义:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,
这个常数叫做等差数列的公差,通常用字母d来表示。
(三)深化概念
教师请学生深度剖析等差数列的概念,进一步强调
①“从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d(n≥1)
同时为配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。其中第一个数列公差小于0,第二个数列公差大于0,第三个数列公差等于0。由此强调:公差可以是正数、负数,也可以是0。
(四)归纳通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。由学生研究,分组讨论上述四个等差数列的通项公式。通过总结对比找出共同点猜想一般等差数列的通向公式应为怎样的形式整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
猜想等差数列的通项公式:an=a1+(n-1)d
此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法---迭加法:
在迭加法的证明过程中,我采用启发式教学方法。
利用等差数列概念启发学生写出n-1个等式。
对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。
在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想”的教学要求
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2,
即an=2n-1,以此来巩固等差数列通项公式的运用。
同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。
(五)应用举例
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。
先让学生求等差数列的第20项、30项等。向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
此外还可以联系实际建模问题,如建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?
这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型--等差数列。
设置此题的目的:
1.加强同学们对应用题的综合分析能力;
2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;
3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法。
(六)小结作业
小结:(由学生总结这节课的收获)
1.等差数列的概念及数学表达式。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
2.等差数列的通项公式:an=a1+(n-1),会知三求一。
3.用“数学建模”思想方法解决实际问题
作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。
激发学生学习数学的兴趣,以及认识到学习数学的重要性,将数学知识应用于实际问题的解决不仅回顾加深了本堂课的教学内容,开阔学生思维,还锻炼了学生学以致用、观察分析问题解决问题的能力。
七、说板书设计
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
高中数学简洁教案大全篇6
一、教学背景
《同角三角函数基本关系式》是人教版高中数学必修第四册第一章第二节中的内容。本节课的内容在教材中有着承上启下的作用,是在学习了任意角和弧度,并了解正弦、余弦、正切的基本概念之后进行教学的,同时同角三角函数的基本关系也为之后学习两角和差公式奠定了基础,起着衔接作用。运用同角三角函数关系,能够更好的解决有关三角函数中求同角的其他三角函数值使解题更方便。学生在获得三角函数定义的过程中已经充分认识到了借助单位圆、利用数形结合思想是研究三角函数的重要工具。本节课内容中所体现的数学思想与方法在整个中学数学学习中起重要作用。
高中学生已经具备了初等代数、初等几何的相关知识,以及一定的抽象思维能力和逻辑推理能力。学生已经比较熟练的掌握了三角函数定义的两种推导方法,从方法上看,学生已经对数形结合,猜想证明有所了解。从学习情感方面看,大部分学生愿意主动学习。从能力上看,学生主动学习能力、探究能力较弱。因而通过本节课的学习,学生能较好地培养学生的思维能力、推理能力、探究能力及创新意识。
根据新课标的要求,以及对教材和学情的分析,我确立了如下三维教学目标:
1、知识与技能目标:掌握三种基本关系式之间的联系,熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
2、过程与方法目标:牢固掌握同角三角函数的八个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力,能灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力。
3、情感与态度目标:通过用数学知识解决实际问题,让学生体会数学与自然及人类社会的密切联系,激发学生学习数学的兴趣,增强学生学习数学的信心。
根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的重点为:同角三角函数基本关系式sin2α+cos2α=1;tanα=sinα/cosα的运用。教学难点为:理三角函数值的符号的确定,同角三角函数的基本关系式的变式应用。
二、活动评价
在课堂教学过程中,我将对学生的学习情况进行及时而有效的评价。注重课程中的过程性评价,无论是在学生开始遇到问题、产生疑惑、给出猜想的时候,还是在逐步思考、交流、探索的教学过程中,我都会注重对于学生学习成果的评价。比如,在课堂讨论较难理解的问题时,我将先请一位平时善于解决数学问题的学生来回答,并请其他同学对其进行评价,然后再请大家给出不同的意见,从而形成良性的互动,在学生们的思维碰撞之中,正确、完善的结论将自然形成。从始至终,我都将贯彻以学生为主体、教师为主导的教学思想。
三、课程设计
在新课改理念的指导下,针对本课的教学目标和重难点,我将采用故事法、探究法、自主学习和合作探究等教学法,先从一个情境问题出发,然后引导学生循序渐进地对一组问题进行思考和探究,逐步归纳总结出同角三角函数的基本关系式,并在期间采用学生自评、小组互评、教师评价等多种方式,培养学生积极主动参与学习的兴趣。下面我将详细阐述本节课的教学过程。
1、趣味导入:上课伊始,我会通过多媒体讲述“蝴蝶效应”的故事,引导学生理解事物是普遍联系的观点,如果说南美亚马逊雨林中的一只蝴蝶与北美德克萨斯的龙卷风这两种看来是毫不相干的事物,都会有这样的联系,那么同一个角的三角函数应当也会有着非常密切的关系。通过这样的故事导入,能够激发学生的学习兴趣和探索热情,活跃其思维,为本节课的学习埋下伏笔。
2、温故知新:在这一环节,我将引导学生回顾三种常见三角函数的概念,单位圆中的任意角概念,以及初中学段学习的同角三角函数的两个基本关系式,进而引导学生思考如何证明任意角的三角函数也具备相应的基本关系。在这个过程中,我会请不同层次的学生起来回答,并请其他学生进行补充,引导全体学生进行复习和思考。学生依据以往证明三角函数平方关系的思路,能够较快想到利用单位圆中的勾股定理关系,证明得到sin2α+cos2α=1,同样的,根据任意角的正切函数定义,得到tanα=sinα/cosα。
接下来,我将引导学生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)学生可能会跃跃欲试,先用平方关系式计算余弦值,但却会遇到开方时判别正负号的问题,于是才会根据α是第二象限角这个条件进行判断。这时我将会引导学生学会先判断任意角的区间及其三角函数的符号,再利用公式进行计算的解题思路。这样学生就能够更轻松地探索出例2的解答方法。例2当中,由于根据余弦值的范围,确定α可能在第二或第三象限出现,于是学生就能够想到采用分类思想进行解答。通过学生的自主思考和我的适当引导,可以自然而然地突破本课的难点。
3、归纳总结
经过前面的师生共同参与的探究讨论,就逐步归纳总结出了同角三角函数的基本关系式。在这个过程中,我会根据不同学生的特点,分别请他们发言,并请其他同学进行补充,在师生互动中,共同推导出结论,这种方法既可以有效地突出本课的重点,又自然而然地突破了本课的难点。
4、实践应用
为巩固所学知识,我会从教材中分梯度选取习题,给学生进行课堂练习,并请2-3位同学在黑板上完成,在练习后我会进行及时讲解。
在布置作业时,为了使所有学生都能够根据自身情况巩固所学知识,我将布置一类“必做题”和一类“探究题”,其中“探究题”是提供给那些学有余力的学生在课余时间完成的,帮助其拓展思维,培养兴趣。
5、课程总结
本节课的内容是极富探索性,我通过提问式复习和情境问题导入,学生产生好奇心和探索热情。接着,以学生为主体,我来引导学生根据已学的知识和方法,循序渐进地进行探究,逐步归纳总结出同角三角函数的基本关系式,从而自然地完成本课的教学过程,同时帮助学生体会数形结合的思想方法。
在板书设计方面,我会用简洁、工整的方式给出相关探究问题,同时以多媒体辅助展示平移动画,便于学生进行观察和探究。
四、教学体会
本节课我主要采用的是“引导发现、合作探究”的教学方法,以学生熟知的足球运动为情境引入新课,以问题为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的形成、发展和应用的过程,在和谐、愉悦的氛围中获取知识,掌握方法。整个教学中既突出了学生的主体地位,又发挥了教师的指导作用。在课堂随机提问以及讨论结果的过程中,我采用多层次多角度的评价方式,不仅能促使学生思考问题,掌握学习知识的技巧和方法,还能调动学生积极性,激发课堂气氛。
高中数学简洁教案大全篇7
教学准备
1.教学目标
1、知识与技能:
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依
赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.
2、过程与方法:
(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示函数的定义域;
3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.
教学重点/难点
重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学用具
多媒体
4.标签
函数及其表示
教学过程
(一)创设情景,揭示课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.
3、分析、归纳以上三个实例,它们有什么共同点;
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
(二)研探新知
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的.集合{f(x)x∈A}叫做函数的值域(range).
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)区间的概念
①区间的分类:开区间、闭区间、半开半闭区间;
②无穷区间;
③区间的数轴表示.
(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.
师:归纳总结
(三)质疑答辩,排难解惑,发展思维。
1、如何求函数的定义域
例1:已知函数f(x)=+
(1)求函数的定义域;
(2)求f(-3),f()的值;
(3)当a>0时,求f(a),f(a-1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.
例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.
分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.
所以s==(40-x)x(0<x<40)
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R.
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
巩固练习:课本P19第1
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
分析:
1、构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
2、两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:
课本P18例2
(四)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;
②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.
(五)设置问题,留下悬念
1、课本P24习题1.2(A组)第1—7题(B组)第1题
2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.
课堂小结
高中数学简洁教案大全篇8
一.教学目标:
1.知识与技能:认识正弦、余弦定理,了解三角形中的边与角的关系。
2.过程与方法:通过具体的探究活动,了解正弦、余弦定理的内容,并从具体的实例掌握正弦、余弦定理的应用。
3.情感态度与价值观:通过对实例的探究,体会到三角形的和谐美,学会稳定性的重要。
二.教学重、难点:
重点:
正弦、余弦定理应用以及公式的变形
难点:
运用正、余弦定理解决有关斜三角形问题。
知识梳理
1.正弦定理和余弦定理
在△ABC中,若角A,B,C所对的边分别是a,b,c,则
(1)S=2ah(h表示边a上的高)
(2)S=2bcsinA=2sinC=2acsinB
(3)S=2r(a+b+c)(r为△ABC内切圆半径)
问题1:在△ABC中,a=3,b2,A=60°求c及BC问题2在△ABC中,c=6A=30°B=120°求ab及C
问题3在△ABC中,a=5,c=4,cosA=16,则b=
通过对上述三个较简单问题的解答指导学生总结正余弦定理的应用;正弦定理可以解决
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边和其他两角
余弦定理可以解决
(1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两角
我们不难发现利用正余弦定理可以解决三角形中“知三求三”知三中必须要有一边
应用举例
【例1】(1)(2013·湖南卷)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB3b,则角A等于()
A.3B.4C.6
(2)(20__·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=2,B=45°,则sinC=______.
解析(1)在△ABC中,由正弦定理及已知得2sinA·sinB=3sinB,∵B为△ABC的内角,∴sinB≠0.3
∴sinA=2又∵△ABC为锐角三角形,
∴A∈02,∴A=3
(2)由余弦定理,得b2=a2+c2-2accosB=1+32-2×2=25,即b=5.c·sinB
所以sinCb4
答案(1)A(2)5
【训练1】(1)在△ABC中,a=3,c=2,A=60°,则C=
A.30°B.45°C.45°或135°D.60°
(2)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sinC=3sinB,则A=
A.30°B.60°C.120°D.150°
解析(1)由正弦定理,得sin60°sinC,解得:sinC=2,又c<a,所以C<60°,所以C=45°
(2)∵sinC=23sinB,由正弦定理,得c=23b,b2+c2-a2-3bc+c2-3bc+3bc3∴cosA=2bc==2bc2bc2,又A为三角形的内角,∴A=30°.
答案(1)B(2)A
规律方法
已知两角和一边,该三角形是确定的,其解是唯一的;
已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断。
【例2】(20__·临沂一模)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC.(1)求角A的大小;
(2)若sinB+sinC=3,试判断△ABC的形状。
解(1)由2asinA=(2b-c)sinB+(2c-b)sinC,
得2a2=(2b-c)b+(2c-b)c,
即bc=b2+c2-a2,b2+c2-a21
∴cosA=2bc=2,
∴A=60°.
(2)∵A+B+C=180°,
∴B+C=180°-60°=120°
由sinB+sinC=3,
得sinB+sin(120°-B)=3,
∴sinB+sin120°cosB-cos120°sinB=3.33
∴2sinB+2B=3,
即sin(B+30°)=1.∵0°<b<120°,<p="">
∴30°<b+30°<150°.<p="">
∴B+30°=90°,B=60°.
∴A=B=C=60°,
△ABC为等边三角形.
规律方法
解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;
或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系。另外,在变形过程中要注意A,B,C的范围对三角函数值的影响。
课堂小结
1.在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解。
2.正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化.如a2=b2+c2-2bccosA可以转化为sin2A=sin2B+sin2C-2sinBsinCcosA,利用这些变形可进行等式的化简与证明。
高中数学简洁教案大全篇9
数列的极限教学设计
西南位育中学肖添忆
一、教材分析
《数列的极限》为沪教版第七章第七节第一课时内容,是一节概念课。极限概念是数学中最重要和最基本的概念之一,因为极限理论是微积分学中的基础理论,它的产生建立了有限与无限、常量数学与变量数学之间的桥梁,从而弥补和完善了微积分在理论上的欠缺。本节后续内容如:数列极限的运算法则、无穷等比数列各项和的求解也要用到数列极限的运算与性质来推导,所以极限概念的掌握至关重要。
课本在内容展开时,以观察n时无穷等比数列an列anqn,(q1)与an1的发展趋势为出发点,结合数n21的发展趋势,从特殊到一般地给出数列极限的描述性定义。在n由定义给出两个常用极限。但引入部分的表述如“无限趋近于0,但它永远不会成为0”、“不管n取值有多大,点(n,an)始终在横轴的上方”可能会造成学生对“无限趋近”的理解偏差。
二、学情分析
通过第七章前半部分的学习,学生已经掌握了数列的有关概念,以及研究一些特殊数列的方法。但对于学生来说,数列极限是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡的阶段。
由于已有的学习经验与不当的推理类比,学生在理解“极限”、“无限趋近”时可能产生偏差,比如认为极限代表着一种无法逾越的程度,或是近似值。这与数学中“极限”的含义相差甚远。在学习数列极限之前,又曾多次利用“无限趋近”描述反比例函数、指数函数、对数函数的图像特征,这又与数列中“无限趋近”的含义有所差异,学生往往会因为常数列能达到某一个常数而否定常数列存在极限的事实。
三、教学目标与重难点教学目标:
1、通过数列极限发展史的介绍,感受数学知识的形成与发展,更好地把握极限概念的来龙去脉;
2、经历极限定义在漫长时期内发展的过程,体会数学家们从概念发现到完善所作出的努力,从数列的变化趋势,正确理解数列极限的概念和描述性定义;
3、会根据数列极限的意义,由数列的通项公式来考察数列的极限;掌握三个常用极限。教学重点:理解数列极限的概念
教学难点:正确理解数列极限的描述性定义
四、教学策略分析
在问题引入时着重突出“万世不竭”与“讲台可以走到”在认知上的矛盾,激发学生的学习兴趣与求知欲,并由此引出本节课的学习内容。在极限概念形成时,结合极限概念的发展史展开教学,让学生意识到数学理论不是一成不变的,而是不断发展变化的。数学的历史发展过程与学生的认知过程有着一定的相似性,学生在某些概念上的进展有时与数学史上的概念进展平行。比如部分学生的想法与许多古希腊的数学家一样,认为无限扩大的正多边形不会与圆周重合,它的周长始终小于其外接圆的周长。教师通过梳理极限发展史上的代表性观点,介绍概念的发展历程以及前人对此的一系列观点,能帮助学生发现自己可能也存在着类似于前人的一些错误想法。对数学发现的过程以认知角度加以分析,有助于学生学习数学家的思维方式,了解数学概念的发展,进而建构推理过程,使学生发生概念转变。在课堂练习诊断部分,不但要求回答问题,还需对选择原因进行辨析,进而强化概念的正确理解。
五、教学过程提纲与设计意图1.问题引入
让一名学生从距离讲台一米处朝讲台走动,每次都移动距讲台距离的一半,在黑板上写出表示学生到讲台距离的数列。这名学生是否能走到讲台呢?类比“一尺之捶,日取其半,万世不竭”,庄子认为这样的过程是永远不会完结的,然而“讲台永远走不到”这一结果显然与事实不同,要回答这一矛盾,让我们看看历史上的数学家们是如何思考的。【设计意图】
改编自芝诺悖论的引入问题,与庄子的“一尺之捶”产生了认知冲突,激发学生的学习兴趣与求知欲,并引出本节课的学习内容
2.极限概念的发展与完善
极限概念的发展经历了三个阶段:从早期以“割圆术”“穷竭法”为代表的朴素极限思想,到极限概念被提出后因“无穷小量是否为0”的争论而引发的质疑,再经由柯西、魏尔斯特拉斯等人的工作以及实数理论的形成,严格的极限理论至此才真正建立。【设计意图】
教师引导学生梳理极限发展史上的代表性观点,了解数学家们提出观点的时代背景,对照反思自己的想法,发现自己可能也存在着类似于前人的一些错误想法。教师在比较概念发展史上被否定的观点与现今数学界认可的观点时,会使学生产生认知冲突。从而可能使学生发生概念转变,抛弃不正确的、不完整的、受限的想法,接受新的概念。在数学教学中,结合数学史展开教学可以让学生意识到数学理论不是一成不变的,而是不断发展变化的,从而提升学生概念转变的动机。
3.数列极限的概念
极限思想的产生最早可追溯于中国古代。极限理论的完善出于社会实践的需要,不是哪一名数学家苦思冥想得出,而是几代人奋斗的结果。极限的严格定义经历了相当漫长的时期才得以完善,它是人类智慧高度文明的体现,反映了数学发展的辩证规律。今天的主题,极限的定义,援引的便是柯西对于极限的阐述。
定义:在n无限增大的变化过程中,如果无穷数列{an}中的an无限趋近于一个常数A,那么A叫做数列{an}的极限,或叫做数列{an}收敛于A,记作limanA,读作“n趋向于
n无穷大时,an的极限等于A”。
在数列极限的定义中,可用an-A无限趋近于0来描述an无限趋近于A。
如前阐述,柯西版本的极限定义虽然不是最完美的,但作为摆脱几何直观的首次尝试,也是历史上一个较为成功的版本,在历史上的地位颇高。有时,我们也称其为数列极限的描述性定义。
【设计意图】
通过比较历史上不同观点下的极限定义,教师呈现数列极限的描述性定义,分析该定义的历史意义,让学生进一步明确数列极限的含义。4.课堂练习诊断
由数列极限的定义得到三个常用数列的极限:(1)limCC(C为常数);
n(2)lim10(nN__);nnnn(3)当q判断下列数列是否存在极限,若存在求出其极限,若不存在请说明理由
20--20--(1)an;
nsinn;n(3)1,1,1,1,,1(2)an(4)an4(1n1000)
4(n1001)11-,n为奇数(5)ann
1,n为偶数注:
(1)、(2)考察三个常用极限
(3)考查学生是否能清楚认识到数列极限概念是基于无穷项数列的背景下探讨的。当项数无限增大时,数列的项若无限趋近于一个常数,则认为数列的极限存在。因此,数列极限可以看作是数列的一种趋于稳定的发展趋势。有穷数列的项数是有限的,因而并不存在极限这个概念。
(4)引用柯西的观点,解释此处无限趋近的含义,是指随着数列项数的增加,数列的项与某一常数要多接近就有多接近,由此得出结论:数列极限与前有限项无关且无穷常数数列存在极限的。
(5)扩充对三种趋近方式的理解:小于A趋近、大于A趋近和摆动趋近。本题中的数列没有呈现出以上三种方式的任意一种。避免学生将趋近误解为项数与常数间的差距不断缩小。练习若A=0.9+0.09+0.009+0.0009+...,则以下对A的描述正确的是_____.A、A是小于1的最大正数
B、A的精确值为1C、A的近似值为1
选择此选项的原因是_________①由于A的小数位都是9,找不到比A大但比1小的数;
②A是由无限多个正数的和组成,它们可以一直不断得加下去,但总小于2;
③A表示的数是数列0.9,0.99,0.999,0.9999,...的极限;
④1与A的差等于0.00…01。
注:此题是为考查学生对于无穷小量和极限概念的理解。由极限概念的发展史可以看出,数学家们曾长时期陷入对无穷小概念理解的误区中,极大地阻碍了对极限概念的理解。学生学习极限概念时可能也会遇到类似的误区。
练习顺次连接△ABC各边中点A1、B1、C1,得到△A1B1C1。取△A1B1C1各边中点A2、B2、C2并顺次连接又得到一个新三角形△A2B2C2。再按上述方法一直进行下去,那么最终得到的图形是_________.A、一个点
B、一个三角形
C、不确定
选择此选项的原因是_________.①
无限次操作后所得三角形的面积无限趋近于0但不可能等于0。②
当操作一定次数后,三角形的三点会重合。
③
该项操作可以无限多次进行下去,因而总能作出类似的三角形。
④
无限次操作后所得三角形的三个顶点会趋向于一点。
注:此题从无限观的角度考察学生对极限概念的的理解。学生容易忽视极限概念中的实无限,他们在视觉上采用无穷叠加的形式,但是会受最后一项的惯性思维,导致采用潜无限的思辨方式。所谓实无限是指把无限的整体本身作为一个现成的单位,是可以自我完成的过程或无穷整体。相对地,潜无限是指把无限看作永远在延伸着的,一种变化着成长着不断产生出来的东西。它永远处在构造中,永远完成不了,是潜在的,而不是实在的。持有潜无限观点的学生在理解极限概念时,会将极限理解为是一个渐进过程,或是一个不可达到的极值。
通过习题,分析总结以下三个注意点:
(1)数列{an}有极限必须是一个无穷数列,但无穷数列不一定有极限存在;
1}可以说随着n的无限增大,n1数列的项与-1会越来越接近,但这种接近不是无限趋近,所以不能说lim1;
nn(2)“无限趋近”不能用“越来越接近”代替,例如数列{(3)数列{an}趋向极限A的过程可有多种呈现形式。
【设计意图】
通过例题与选项原因的分析,消除关于数列极限理解的三类误区:
第一类是将数列极限等同于如下的三种概念:渐近线、最大限度或是近似值。第二类是学生对于数列趋向于极限方式的错误认知。第三类是对于无限的错误认知。
5.课堂小结
极限的描述性定义与注意点三个常用的极限
6.作业布置
1>任课老师布置的其他作业
2>学习魏尔斯特拉斯的数列极限定义,并用该定义证明习题的第一第二小问【设计意图】
通过与数列极限相关的延伸问题,完善极限概念的体系,为学生创设课后自主探究平台,感受静态定义中凝结的数学家的智慧。
高中数学简洁教案大全篇10
一、课程性质与任务
数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标
1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)
第2单元不等式(8学时)
第3单元函数(12学时)
第4单元指数函数与对数函数(12学时)
第5单元三角函数(18学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第9单元立体几何(14学时)
第10单元概率与统计初步(16学时)
2.职业模块
第1单元三角计算及其应用(16学时)
第2单元坐标变换与参数方程(12学时)
第3单元复数及其应用(10学时)
高中数学简洁教案大全篇11
一、教材分析(说教材):
1.教材所处的地位和作用:
本节内容在全书和章节中的作用是:《》是中数学教材第册第章第节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。
2.教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3.重点,难点以及确定依据:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
二、教学策略(说教法)
1.教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。
2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3.学情分析:(说学法)
(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
4.教学程序及设想:
(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书
(8)布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
教学程序:
(一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分
高中数学集合教学反思
集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。
第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。
第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。
第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。
高中数学简洁教案大全篇12
高中数学数列知识点
数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N_或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。
通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。
数列通项公式的特点:
(1)有些数列的通项公式可以有不同形式,即不。
(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。
递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:
(1)有些数列的递推公式可以有不同形式,即不。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
等差数列通项公式
an=a1+(n-1)d
n=1时a1=S1
n≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
等差数列性质
一、任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq
四、对任意的k∈N_,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。
怎么样提高数学成绩
首先想要提升数学成绩,成为数学学霸的前提是要对数学有良好的学习兴趣。其次要学会课前预习,方便自己能够更加深入的吃透课堂上的知识点。然后还要学会总结复习,总结自己课堂上的问题,复习课堂上的重要知识点,从而提高自己的数学成绩。
提升数学成绩还要拥有一个错题本,和数学资料。认真对待自己的学习工具,多做练习题,找出自己的薄弱环节和自己常犯的题型,记在错题本上,常练习,常巩固。在自己的数学资料中摸索出适合自己的解题技巧,反复练习加以运用,一定会提升你的数学成绩。
学会听课,在课堂上勇于提问。数学最重要的部分都是在课本上,所以必须要掌握好课堂的45分钟。把握好数学课本,为自己打下一个好基础,这样才能更有效的提升你的数学成绩。学会做课堂笔记,把每节课的重要知识点记下来,以便接下来的复习。
学好数学的方法技巧整理
预习的方法
上课之前一定要抽时间进行预习,有时预习比做作业更重要,因为通过预习我们可以初步掌握课程的大致内容,听课就能够把握好重点,针对性比较强,还会带着问题去听课,听课效率就会比较高,上课听明白了,完成作业也会更好更快,最终会形成良性循环。
听懂课的习惯
注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
不断练习
不断练习是指多做数学练习题。希望学好数学,多做练习是必不可少的。做练习的原因有以下三点:第一,熟练和巩固学到的数学知识;二,引导同学灵活运用所学知识点以及独立思考独立做题的水平;第三,融会贯通。通过做题将所学的所有知识点结合起来,加深同学对数学体系化的理解。
高中数学简洁教案大全篇13
【教学目标】
1、知识与技能:
(1)掌握圆的标准方程。
(2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。
(3)会判断点与圆的位置关系。
2、过程与方法:
(1)进一步培养学生用代数方法研究几何问题的能力。
(2)加深对数形结合思想的理解和加强待定系数法的运用。
3、情感、态度与价值观:
(1)培养学生主动探究知识、合作交流的意识。
(2)让学生感受数学,体验数学;从走入数学到走出数学,生活处处有数学,数学就在我身边,体会到数学知识、思想方法和精神来源于生活,还要服务于生活;寓思想教育于教学。让学生体会到数学的美以及数学的价值与魅力。
【学情分析】
对圆的方程有个初步的认识以及在上章学习了直线与方程的基础上,学习圆的方程,学生还是可以接受。在教学过程中,主要采用启发性原则,并且与已经学过的直线方程进行类比,发挥学生的思维能力、想象能力,由易到难,逐步加深。
【重点难点】
重点:圆的标准方程和圆的标准方程特点的明确。
难点:会根据不同的条件写出圆的标准方程。
【教学过程】
第一学时评论(0)教学目标
教学活动活动1【导入】新闻联播片段
请结合数学中圆知识,谈谈你对这句话的理解?
活动2【讲授】问题1.
在直角坐标系中,以A(a,b)为圆心,r为半径的圆上的动点M(x,y)满足怎样的关系式?
活动3【活动】想一想!
圆心在坐标原点,半径长为r的圆的方程是什么?
活动4【导入】试试你的眼力!判断下列方程是否为圆的标准方程:
(x-2)2+y=8;
(x-2)2-y2=8;
(2x-2)2+y2=8;
(x-2)2+y2=0;
(x-2)2+y2=a;
(2x-2)2+(2y-4)2=8。
答案:都不是,第6个可以化为圆的标准方程。
活动5【活动】再试一下!
圆(x1)2+(ay2)2=1a的圆心坐标和半径分别是什么?
答案:圆心坐标为(1,—2),半径是√2
活动6【活动】问题2.
要写出圆的标准方程,只需知道圆的哪些量?
怎样判断一点是否在一个圆上?
学生回答,教师点评.
活动7【活动】例1
写出圆心为A(2,-3),半径长为5的圆的方程,并判断点M1(5,7),M2((√5,1)是否在这个圆上。
学生回答,教师点评后,学生阅读教科书上本题解法.
活动8【活动】探究
你能判断点M2在圆内还是在圆外吗?
学生回答,教师点评。
点与圆心距离比半径大等价于点在圆外。
点与圆心距离比半径小等价于点在圆内。
点与圆心距离等于半径等价于点在圆外等价于点的坐标满足方程。
活动9【讲授】解题收获
1.从确定圆的两个要素即圆心和半径入手,直接写出圆的标准方程——直接法。
2.类似于点与直线方程的关系:点在圆上等价于点坐标满足圆方程活动10【活动】试一试!
例2△ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.
师:△ABC的外接圆的圆心简称什么?
学生回答
师:△ABC的外心是什么的交点?
学生回答
师:求圆的标准方程,只需知道圆心坐标和圆的半径。这三点都在圆上,其坐标一定是满足所求圆的方程。这样就可以设出圆的标准方程。
学生阅读教材例2解法。
师:提示:方程组中
(1)(2)得到什么?
(1)(3)得到什么?
然后,怎样就可以求出圆心坐标和半径。
活动11【讲授】解题收获
先设出圆的标准方程,再根据已知条件建立方程组,从而求出圆心坐标和半径的方法——待定系数法。
活动12【活动】动手折一折
请同学们准备一个锐角三角形纸片,能否用手工的方法找到此三角形外接圆的圆心?
学生回答过程.
把三角形的任意两个顶点重合进行对折,就可以得到边的垂直平分线,垂直平分线的交点即是三角形的外心。
师:把圆的弦对折,折线一定经过圆心。即圆心一定在弦的垂直平分线上。
活动13【活动】Let’stry
例3已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线m:x-y+1=0上,求圆心为C的圆的标准方程。
由学生阅读例3,学生总结解题步骤。
活动14【讲授】解题收获
由圆的几何性质直接求出圆心坐标和半径,然后写出标准方程——几何性质法。
活动15【活动】小结
一个方程
三种方法
一种思想
活动16【讲授】作业布置
作业:教材P124习题A组第2题和第3题.
课下探究:
(1)平面内到一定点的距离等于定长的点轨迹是圆。点的轨迹是圆的方法很多,请试着找出来,并和其他同学交流。
(2)直线方程有五种形式,圆除了标准方程,还有其它形式吗?
活动17【导入】结束语
圆心半径确定圆,
待定系数很普遍;
大家站在同一圆,
彰和谐平等友善;
半径就像无形线,
把大家心聚一点;
垂直平分折中线,
就能折出同心愿;
中国腾飞之梦圆。
活动18【测试】课堂测试
1.圆C:(x2)2+(y+1)2=3的圆心坐标为()
A(2,1)B(2,—1)C(—2,1)D(—2,—1)
2.以原点为圆心,2为半径的圆的标准方程是()
Ax2+y2=2Bx2+y2=4
C(x2)2+(y2)2=8Dx2+y2=√2
3圆心为(1,1)且与直线x+y=4相切的圆的方程是()
A(x1)2+(y1)2=2B(x1)2+(y1)2=4
C(x+1)2+(y+1)2=2D(x+1)2+(y+1)2=4
4圆A:(ax+2)2+y2=a+3,则此圆的半径为______________。
5已知一个圆的圆心在点C(—3,—4),且经过原点。
(1)求该圆的标准方程;
(2)判断点M(—1,0),N(1,—1),P(3,—4)和圆的位置关系。
6.已知△AOB的顶点坐标分别是A(8,0),B(0,6),O(0,0),求△AOB外接圆的方程.
7求过点A(1,—1)B(—1,1)且圆心在直线x+y2=0上的圆方程
参考答案:1B2B3A42或√2
5(1)(x+3)2+(y+4)2=25
(2)M在圆内,N在圆上,P在圆外。
6(x4)2+(y3)2=25。
7(x1)2+(y1)2=4
高中数学简洁教案大全篇14
【一】教学背景分析
1。教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。
2。学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3。教学目标
(1)知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题。
(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识。
(3)情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣。
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4。教学重点与难点
(1)重点:圆的标准方程的求法及其应用。
(2)难点:①会根据不同的已知条件求圆的`标准方程;
②选择恰当的坐标系解决与圆有关的实际问题。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
好学教育:
【二】教法学法分析
1。教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
2。学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境启迪思维深入探究获得新知应用举例巩固提高
反馈训练形成方法小结反思拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图。
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。
(二)深入探究——获得新知
问题二1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2。如果圆心在,半径为时又如何呢?
好学教育:
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。
(三)应用举例——巩固提高
I。直接应用内化新知
问题三1。写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点。
2。写出圆的圆心坐标和半径。
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。
II。灵活应用提升能力
问题四1。求以点为圆心,并且和直线相切的圆的方程。
2。求过点,圆心在直线上且与轴相切的圆的方程。
3。已知圆的方程为,求过圆上一点的切线方程。
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。
III。实际应用回归自然
问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。
好学教育:
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。
(四)反馈训练——形成方法
问题六1。求过原点和点,且圆心在直线上的圆的标准方程。
2。求圆过点的切线方程。
3。求圆过点的切线方程。
接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。
(五)小结反思——拓展引申
1。课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r的圆的标准方程为:
圆心在原点时,半径为r的圆的标准方程为:。
②已知圆的方程是,经过圆上一点的切线的方程是:。
2。分层作业
(A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。
3。激发新疑
问题七1。把圆的标准方程展开后是什么形式?
2。方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计
(一)突出重点抓住关键突破难点
好学教育:
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。
(二)学生主体教师主导探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。
(三)培养思维提升能力激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。
高中数学简洁教案大全篇15
教学目标:
(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.
(2)理解直线与二元一次方程的关系及其证明
(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.
教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.
教学用具:计算机
教学方法:启发引导法,讨论法
教学过程:
下面给出教学实施过程设计的简要思路:
教学设计思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.
肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.
学生或独立研究,或合作研究,教师巡视指导.
经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
……
教师组织评价,确定最优方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.
当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.
当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.
至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式.
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.
启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?
不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?
师生共同讨论,评价不同思路,达成共识:
回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即
(1)当时,方程可化为
这是表示斜率为、在轴上的截距为的直线.
(2)当时,由于、不同时为0,必有,方程可化为
这表示一条与轴垂直的直线.
因此,得到结论:
在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.
为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.
【动画演示】
演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.
至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.
(三)练习巩固、总结提高、板书和作业等环节的设计
略
高中数学简洁教案大全篇16
在预习教材中的例4的基础上,证明:若分别是椭圆的左、右焦点,则椭圆上任一点p()到焦点的距离(焦半径),同时思考当椭圆的焦点在y轴上时,结论如何?(此题意图是引导学生去进一步探究,为进一步研究椭圆的性质做准备)
本堂课是在学生学习了椭圆的定义、标准方程的基础上,根据方程研究曲线的性质。按照学生的认知特点,改变了教材中原有安排顺序,引导学生从观察课前预习所作的图形入手,从分析对称开始,循序渐进进行探究。由教师点拨、指导,学生研究、合作、体验来完成。
本节课借助多媒体手段创设问题情境,指导学生研究式学习和体验式学习(兴趣是前提)。例如导入,通过“神州五号”这样一个人们关注的话题引入,有利于激发学生的兴趣。再如,这节课是学生第一次利用曲线方程研究曲线性质,为了解决这一难点,在课前设计中改变了教材原有研究顺序,让学生从观察一个具体椭圆图形入手,从观察到对称性这一宏观特征开始研究,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验几何性质的形成与论证过程,变静态教学为动态教学。在研究范围这一性质时,课前设计中,只要学生能根据不等式知识解出就可以了,但学生采用了多种方法研究,这时教师没有打断他的思路,而是引导帮助他研究,鼓励学生创新,从而也实现了以学生为主,为学生服务。
在离心率这一性质的教学中,充分利用多媒体手段,以轻松愉悦的动画演示,化解了知识的难点。
但也有不足的地方:在对具体例子的观察分析中,设计的问题过于具体,可能束缚了学生的思维,还没有放开。还有就是少讲多学方面也是我今后教学中努力的方向。
感悟:新课堂是活动的课堂,讨论、合作交流可课堂,德育教育的课堂,应用现代技术的课堂,因此新教育理念、新课改下的新课堂需要教师和学生一起来培育。
高中数学简洁教案大全篇17
今天我说课的课题是《锐角三角函数》(第一课时),所选用的教材为人教版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法和学法分析,教学过程分析四个方面加以说明。
一、教材的地位和作用
本节教材是人教版初中数学新教材九年级下第28章第一节内容,是初中数学的重要内容之一。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,也是高中进一步研究三角函数、反三角函数、三角方程的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
从学生的年龄特征和认知特征来看:
九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
从学生已具备的知识和技能来看:
九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础
从心理特征来看:初三学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
从学生有待于提高的知识和技能来看:
学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析。
3、教学重、难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:理解正弦函数意义,并会求锐角的正弦值。
难点确定为:根据锐角的正弦值及一边,求直角三角形的其他边长。
二、教学目标分析
新课标指出,教学目标应从知识技能、数学思考、问题解决、情感态度等四个方面阐述,而这四维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识技能为主线,渗透情感态度,并把前面两者通过数学思考充分体现在问题解决中。借此结合以上教材分析,我将四个目标进行整合,确定本节课的教学目标为:
1.理解锐角正弦的意义,并会求锐角的正弦值;
2.初步了解锐角正弦取值范围及增减性;
3.掌握根据锐角的正弦值及直角三角形的一边,求直角三角形的其他边长的方法;
4.经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力;
5.通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学方法和学法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的学情情况,本节课我采用“三动五自主”的教学模式,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和合作交流的形式,在教师的指道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
本节课的教法采用的是情境引导和探究发现教学法,在教学过程中,通过适宜的问题情境引发新的认知冲突;建立知识间的联系。教师通过引导、指导、反馈、评价,不断激发学生对问题的好奇心,使其在积极的自主活动中主动参与概念的建构过程,并运用数学知识解决实际问题,享受数学学习带来的乐趣。
本节课的学习方法采用自主探究法与合作交流法相结合。本节课数学活动贯穿始终,既有学生自主探究的,也有小组合作交流的,旨在让学生从自主探究中发展,从合作交流中提高。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(一)自主探究
1、复习旧知,温故知新
1、已知:在Rt△ABC中,∠C=900,∠A=350,则∠B=0
2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,则BC=
设计意图:建构注意主张教学应从学生已有的知识体系出发,相似的三角形性质是本节课深入研究锐角正弦的认知基础,这样设计有利于引导学生顺利地进入学习情境。
2、创设情境,提出问题
利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(二)自主合作
1、发现问题,探求新知(要求学生独立思考后小组内合作探究)
1、(播放绿化荒山的视频)课本P74问题与思考,求的值
2、课本P75思考:求的值
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。
2、分析思考,加深理解
1、课本P75探索,
问:与有什么关系?你能解释吗?
2、正弦函数定义:在Rt△ABC中,∠C=900,,把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=
对定义的几点说明:
1、sinA是一个完整的符号,表示∠A的正切习惯上省略“∠”的符号.
2、本章我们只研究锐角∠A的正弦.
3、sinA的范围:0
设计意图:数学教学论指出,数学概念要明确其内涵和外延(条件、结论、应用范围等),通过对锐角正弦定义阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生引入到下一环节。
(三)自主展示(强化训练,巩固双基)
1、(例1课本P76)已知:在Rt△ABC中,∠C=900,根据图中数据
求sinA和sinB
2、判断对错(学生口答)
(1)若锐角∠A=∠B,则sinA=sinB()
(2)sin600=sin300+sin300()
3、如图,将Rt△ABC各边扩大100倍,则tanA的值()
A.扩大100倍B.缩小100倍C.不变D.不确定
4、如图,平面直角坐标系中点P(3,-4),OP与x轴的夹角为∠1,求sin∠1的值。
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(四)自主拓展(提高升华)
1、课本习题28.1第1、2、题;
2、选做题:已知:在Rt△ABC中,∠C=900,sinA=,周长为60,求:斜边AB的长?
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
(五)自主评价(小结归纳,拓展深化)
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是那个方面进行归纳,我设计了这么三个问题:
①通过本节课的学习,你学会了哪些知识;
②通过本节课的学习,你最大的体验是什么;
③通过本节课的学习,你掌握了哪些学习数学的方法?
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,为了使课堂效益达到最佳状态,我设计以下问题加以追问:
1、sinA能为负吗?
2、比较sin450和sin300的大小?
设计要求:(1)先学生独立思考后小组内探究
(2)各组交流展示探究结果,并且组内或各组之间自主评价.
设计意图:
(1)有一定难度需要学生进行合作探究,有利于培养学生善于反思的好习惯.
(2)学生通过互评自评,可以使学生全面了解自己的学习过程,感受自己的成长和进步,同时促进学生对学习及时进行反思,为教师全面了解学生的学习状况,改进教学,实施因材施教提供重要依据。我的说课到此结束,敬请各位老师批评、指正,谢谢!
教学反思
1.本教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学。
2.在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用。
3.正弦是生活中应用较广泛的三角函数。因而在本节课的设计中力求贴近生活。又从意大利比萨斜塔提炼出了数学问题,让学生体会学数学、用数学的乐趣。
高中数学简洁教案大全篇18
一.课标要求:
1.分类加法计数原理、分步乘法计数原理
通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;
2.排列与组合
通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;
3.二项式定理
能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。
二.命题走向
本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。
排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。
考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目。
三.要点精讲
1.排列、组合、二项式知识相互关系表
2.两个基本原理
(1)分类计数原理中的分类;
(2)分步计数原理中的分步;
正确地分类与分步是学好这一章的关键。
3.排列
(1)排列定义,排列数
(2)排列数公式:系==n·(n-1)…(n-m+1);
(3)全排列列:=n!;
(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;
4.组合
(1)组合的定义,排列与组合的区别;
(2)组合数公式:Cnm==;
(3)组合数的性质
①Cnm=Cnn-m;②;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;
5.二项式定理
(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;
(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk;
6.二项式的应用
(1)求某些多项式系数的和;
(2)证明一些简单的组合恒等式;
(3)证明整除性。
①求数的末位;
②数的整除性及求系数
;③简单多项式的整除问题;
(4)近似计算。当x充分小时,我们常用下列公式估计近似值:
①(1+x)n≈1+nx
;②(1+x)n≈1+nx+x2;
(5)证明不等式。
四.典例解析
题型1:计数原理
例1.完成下列选择题与填空题
(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。
A.81B.64C.24D.4
(2)四名学生争夺三项冠军,获得冠军的可能的种数是()
A.81B.64C.24D.4
(3)有四位学生参加三项不同的竞赛,
①每位学生必须参加一项竞赛,则有不同的参赛方法有;
②每项竞赛只许有一位学生参加,则有不同的参赛方法有;
③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有。
例2.(06江苏卷)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法(用数字作答)。
点评:分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的问题时,用分类的方法可以有效的将之化简,达到求解的目的。
题型2:排列问题
例3.(1)(20__四川理卷13)
展开式中的系数为?_______________。
【点评】:此题重点考察二项展开式中指定项的系数,以及组合思想;
(2).20__湖南省长沙云帆实验学校理科限时训练
若n展开式中含项的系数与含项的系数之比为-5,则n等于()
A.4B.6C.8D.10
点评:合理的应用排列的公式处理实际问题,首先应该进入排列问题的情景,想清楚我处理时应该如何去做。
例4.(1)用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答);
(2)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).
点评:排列问题不可能解决所有问题,对于较复杂的问题都是以排列公式为辅助。
题型三:组合问题
例5.荆州市20__届高中毕业班质量检测(Ⅱ)
(1)将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只放入2个白球和2个黑球,则所有不同的放法种数为(C)A.3B.6C.12D.18
(2)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()
A.10种B.20种C.36种D.52种
点评:计数原理是解决较为复杂的排列组合问题的基础,应用计数原理结合
例6.(1)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有种;
(2)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有()
(A)150种(B)180种(C)200种(D)280种
点评:排列组合的交叉使用可以处理一些复杂问题,诸如分组问题等;
题型4:排列、组合的综合问题
例7.平面上给定10个点,任意三点不共线,由这10个点确定的`直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。求:(1)这些直线所交成的点的个数(除原10点外)。(2)这些直线交成多少个三角形。
点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。
例8.已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。
点评:本题是1999年全国高中数学联赛中的一填空题,据抽样分析正确率只有0.37。错误原因没有对c=0与c≠0正确分类;没有考虑c=0中出现重复的直线。
题型5:二项式定理
例9.(1)(20__湖北卷)
在的展开式中,的幂的指数是整数的项共有
A.3项B.4项C.5项D.6项
(2)的展开式中含x的正整数指数幂的项数是
(A)0(B)2(C)4(D)6
点评:多项式乘法的进位规则。在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令.在二项式的展开式中,要注意项的系数和二项式系数的区别。
例10.(20__湖南文13)
记的展开式中第m项的系数为,若,则=____5______.
题型6:二项式定理的应用
例11.(1)求4×6n+5n+1被20除后的余数;
(2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余数是多少?
(3)根据下列要求的精确度,求1.025的近似值。①精确到0.01;②精确到0.001。
点评:(1)用二项式定理来处理余数问题或整除问题时,通常把底数适当地拆成两项之和或之差再按二项式定理展开推得所求结论;
(2)用二项式定理来求近似值,可以根据不同精确度来确定应该取到展开式的第几项。
五.思维总结
解排列组合应用题的基本规律
1.分类计数原理与分步计数原理使用方法有两种:①单独使用;②联合使用。
2.将具体问题抽象为排列问题或组合问题,是解排列组合应用题的关键一步。
3.对于带限制条件的排列问题,通常从以下三种途径考虑:
(1)元素分析法:先考虑特殊元素要求,再考虑其他元素;
(2)位置分析法:先考虑特殊位置的要求,再考虑其他位置;
(3)整体排除法:先算出不带限制条件的排列数,再减去不满足限制条件的排列数。
4.对解组合问题,应注意以下三点:
(1)对“组合数”恰当的分类计算,是解组合题的常用方法;
(2)是用“直接法”还是“间接法”解组合题,其原则是“正难则反”;
(3)设计“分组方案”是解组合题的关键所在。
高中数学简洁教案大全篇19
一、教学目标:
1、知识与技能:
了解平面向量基本定理及其意义,理解平面里的任何一个向量都可以用两个不共线的向量来表示;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示。
2、过程与方法:
让学生经历平面向量基本定理的探索与发现的形成过程,体会由特殊到一般和数形结合的数学思想,初步掌握应用平面向量基本定理分解向量的方法,培养学生分析问题与解决问题的能力。
3、情感、态度和价值观
通过对平面向量基本定理的学习,激发学生的学习兴趣,调动学习积极性,增强学生向量的应用意识,并培养学生合作交流的意识及积极探索勇于发现的学习品质、
二、教学重点:
平面向量基本定理、
三、教学难点:
平面向量基本定理的理解与应用、
四、教学方法:
探究发现、讲练结合
五、授课类型:
新授课
六、教具:
电子白板、黑板和课件
七、教学过程:
(一)情境引课,板书课题
由导弹的发射情境,引出物理中矢量的分解,进而探究我们数学中的向量是不是也可以沿两个不同方向的向量进行分解呢?
(二)复习铺路,渐进新课
在共线向量定理的复习中,自然地、渐进地融入到平面向量基本定理的师生互动合作的探究与发现中去,感受着从特殊到一般、分类讨论和数形结合的数学思想碰撞的火花,体验着学习的快乐。
(三)归纳总结,形成定理
让学生在发现学习的过程中归纳总结出平面向量基本定理,并给出基底的定义。
(四)反思定理,解读要点
反思平面向量基本定理的实质即向量分解,思考基底的不共线、不惟一和非零性及实数对
的存在性和唯一性。
(五)跟踪练习,反馈测试
及时跟踪练习,反馈测试定理的理解程度。
(六)讲练结合,巩固理解
即讲即练定理的应用,讲练结合,进一步巩固理解平面向量基本定理。
(七)夹角概念,顺势得出
不共线向量的不同方向的位置关系怎么表示,夹角概念顺势得出。然后数形结合,讲清本质:夹角共起点。再结合例题巩固加深。
(八)课堂小结,画龙点睛
回顾本节的学习过程,小结学习要点及数学思想方法,老师的“教”与学生的“学”浑然一体,一气呵成。
(九)作业布置,回味思考。
布置课后作业,检验教学效果。回味思考,更加理解定理的实质。
八、板书设计:
1、平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数
2、基底:
(1)不共线向量
叫做表示这一平面内所有向量的一组基底;
(2)基底:不共线,不唯一,非零
(3)基底给定,分解形式唯一,实数对
存在且唯一;
(4)基底不同,分解形式不唯一,实数对
可同可异。
例1例2
3、夹角:
(1)两向量共起点;
(2)夹角范围:
例3
4、小结
5、作业
高中数学简洁教案大全篇20
教学分析
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习, 让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上 点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
三维目标
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
重点难点
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
教学难点:准确比较两个代数式的大小.
课时安排
1课时
教学过程
导入新课
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学 生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
推进新课
新知探究
提出问题
1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
3数轴上的任意两 点与对应的两实数具有怎样的关系?
4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例3:若一个数是非负数,则这个数大于或等于零.
实例4:两点之间线段最短.
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a应用示例
例1(教材本节例1和例2)
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.
变式训练
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )
A.f(x)>g(x) B.f(x)=g(x)
C.f(x)
答案:A
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a>0,b>0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.
∴a4-b4<4a3(a-b).
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.
变式训练
已知x>y,且y≠0,比较xy与1的大小.
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.
解:xy-1=x-yy.
∵x>y,∴x-y>0.
当y<0时,x-yy<0,即xy-1<0. ∴xy<1;
当y>0时,x-yy>0,即xy-1>0.∴xy>1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积, 住宅的采光条件是变好了,还是变坏了?请说明理由.
活动:解题关键首先是把文 字语言转换成数学语言,然后比较前后比值的大小,采用作差法.
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.
点评:一般地,设a、b为正实数,且a
变式训练
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )
A.a1+a8>a4+a5 B.a1+a8
C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定
答案:A
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
课堂小结
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.
作业
习题3—1A组3;习题3—1B组2.
设计感想
1.本节设计关注了教学方法 的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学 过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.
2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历 来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.
3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.