高考的数学教案
编写教案可以帮助教师更好地掌握教学目标和教学内容,从而提高教学质量和效果。如何写出优秀的高考的数学教案?下面给大家分享一些高考的数学教案,希望对大家有所帮助。
高考的数学教案篇1
教学目标:1.进一步理解线性规划的概念;会解简单的线性规划问题;
2.在运用建模和数形结合等数学思想方法分析、解决问题的过程中;提高解决问题的能力;
3.进一步提高学生的合作意识和探究意识。
教学重点:线性规划的概念及其解法
教学难点:
代数问题几何化的过程
教学方法:启发探究式
教学手段:运用多媒体技术
教学过程:1.实际问题引入。
问题一:小王和小李合租了一辆小轿车外出旅游.小王驾车平均速度为每小时70公里,平均耗油量为每小时6公升;小李驾车平均速度为每小时50公里,平均耗油量为每小时4公升.现知道油箱内油量为60公升,两人驾车时间累计不能超过12小时.问小王和小李分别驾车多少时间时,行驶路程最远?
2.探究和讨论下列问题。
(1)实际问题转化为一个怎样的数学问题?
(2)满足不等式组①的条件的点构成的区域如何表示?
(3)关于x、y的一个表达式z=70x+50y的几何意义是什么?
(4)z的几何意义是什么?
(5)z的最大值如何确定?
让学生达成以下共识:小王驾车时间x和小李驾车时间y受到时间(12小时)和油量(60公升)的限制,即
x+y≤12
6x+4y≤60①
x≥0
y≥0
行驶路程可以表示成关于x、y的一个表达式:z=70x+50y由数形结合可知:经过点B(6,6)的直线所对应的z最大.
则zmax=6×70+6×50=720
结论:小王和小李分别驾车6小时时,行驶路程最远为720公里.
解题反思:
问题解决过程中体现了那些重要的数学思想?
3.线性规划的有关概念。
什么是“线性规划问题”?涉及约束条件、线性约束条件、目标函数、线性目标函数、可行解、可行域和最优解等概念.
4.进一步探究线性规划问题的解。
问题二:若小王和小李驾车平均速度为每小时60公里和40公里,其它条件不变,问小王和小李分别驾车多少时间时,行驶路程最远?
要求:请你写出约束条件、目标函数,作出可行域,求出最优解。
问题三:如果把不等式组①中的两个“≤”改为“≥”,是否存在最优解?
5.小结。
(1)数学知识;(2)数学思想。
6.作业。
(1)阅读教材:P.60-63;
(2)课后练习:教材P.65-2,3;
(3)在自己生活中寻找一个简单的线性规划问题,写出约束条件,确定目标函数,作出可行域,并求出最优解。
《一个数列的研究》教学设计
教学目标:
1.进一步理解和掌握数列的有关概念和性质;
2.在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;
3.进一步提高问题探究意识、知识应用意识和同伴合作意识。
教学重点:
问题的提出与解决
教学难点:
如何进行问题的探究
教学方法:
启发探究式
教学过程:
问题:已知{an}是首项为1,公比为的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?
研究方向提示:
1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;
2.研究所给数列的项之间的关系;
3.研究所给数列的子数列;
4.研究所给数列能构造的新数列;
5.数列是一种特殊的函数,可以从函数性质角度来进行研究;
6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。
针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。
课堂小结:
1.研究一个数列可以从哪些方面提出问题并进行研究?
2.你最喜欢哪位同学的研究?为什么?
课后思考题:1.将{an}推广为一般的无穷等比数列:1,q,q2,…,qn-1,…,上述一些研究结论会有什么变化?
2.若将{an}改为等差数列:1,1+d,2+d,…,1+(n-1)d,…,是否可以进行类比研究?
开展研究性学习,培养问题解决能力
一、对“研究性学习”和“问题解决”的认识研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。
“问题解决”(problemsolving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。
问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。
二、“问题解决”课堂教学模式的建构与实践以研究性学习活动为载体,以培养问题解决能力为核心的课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。
(一)关于“问题解决”课堂教学模式
通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。
(二)数学学科中的问题解决能力的培养目标
数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。
(三)“问题解决”课堂教学模式的教学流程
(四)“问题解决”课堂教学评价标准
1.教学目标的确定;
2.教学方法的选择;
3.问题的选择;
4.师生主体意识的体现;
5.教学策略的运用。
(五)了解学生的数学问题解决能力的途径
(六)开展研究性学习活动对教师的能力要求
高考的数学教案篇2
一、教学内容分析
向量作为工具在数学、物理以及实际生活中都有着广泛的应用。
本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用。
二、教学目标设计
1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路。
2、了解构造法在解题中的运用。
三、教学重点及难点
重点:平面向量知识在各个领域中应用。
难点:向量的构造。
四、教学流程设计
五、教学过程设计
(一)、复习与回顾
1、提问:下列哪些量是向量?
(1)力(2)功(3)位移(4)力矩
2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[说明]复习数量积的有关知识。
(二)、学习新课
例1(书中例5)
向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看
例2(书中例3)
证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立。
证法(二)向量法
[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)
例3(书中例4)
[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明。
(三)、巩固练习
1、如图,某人在静水中游泳,速度为km/h。
(1)如果他径直游向河对岸,水的流速为4km/h,他实际沿什么方向前进?速度大小为多少?
答案:沿北偏东方向前进,实际速度大小是8km/h。
(2)他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?
答案:朝北偏西方向前进,实际速度大小为km/h。
(四)、课堂小结
1、向量在物理、数学中有着广泛的应用。
2、要学会从不同的角度去看一个数学问题,是数学知识有机联系。
(五)、作业布置
1、书面作业:课本P73,练习8.44
高考的数学教案篇3
教学设计
整体设计
教学分析
对余弦定理的探究,教材是从直角三角形入手,通过向量知识给予证明的.一是进一步加深学生对向量工具性的认识,二是感受向量法证明余弦定理的奇妙之处,感受向量法在解决问题中的威力.课后仍鼓励学生探究余弦定理的其他证明方法,推出余弦定理后,可让学生用自己的语言叙述出来,并让学生结合余弦函数的性质明确:如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广.还要启发引导学生注意余弦定理的几种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、化简的目的.
应用余弦定理及其另一种形式,并结合正弦定理,可以解决以下问题:(1)已知两边和它们的夹角解三角形;(2)已知三角形的三边解三角形.在已知两边及其夹角解三角形时,可以用余弦定理求出第三条边,这样就把问题转化成已知三边解三角形的问题.在已知三边和一个角的情况下,求另一个角既可以应用余弦定理的另一种形式,也可以用正弦定理.用余弦定理的另一种形式,可以(根据角的余弦值)直接判断角是锐角还是钝角,但计算比较复杂.用正弦定理计算相对比较简单,但仍要根据已知条件中边的大小来确定角的大小.
根据教材特点,本内容安排2课时.一节重在余弦定理的推导及简单应用,一节重在解三角形中两个定理的综合应用.
三维目标
1.通过对余弦定理的探究与证明,掌握余弦定理的另一种形式及其应用;了解余弦定理与勾股定理之间的联系;知道解三角形问题的几种情形.
2.通过对三角形边角关系的探索,提高数学语言的表达能力,并进一步理解三角函数、余弦定理、向量的数量积等知识间的关系,加深对数学具有广泛应用的认识;同时通过正弦定理、余弦定理数学表达式的变换,认识数学中的对称美、简洁美、统一美.
3.加深对数学思想的认识,本节的主要数学思想是量化的数学思想、分类讨论思想以及数形结合思想;这些数学思想是对于数学知识的理性的、本质的、高度抽象的、概括的认识,具有普遍的指导意义,它是我们学习数学的重要组成部分,有利于加深学生对具体数学知识的理解和掌握.
重点难点
教学重点:掌握余弦定理;理解余弦定理的推导及其另一种形式,并能应用它们解三角形.
教学难点:余弦定理的证明及其基本应用以及结合正弦定理解三角形.
课时安排
2课时
教学过程
第1课时
导入新课
思路1.(类比导入)在探究正弦定理的证明过程中,从直角三角形的特殊情形入手,发现了正弦定理.现在我们仍然从直角三角形的这种特殊情形入手,然后将锐角三角形转化为直角三角形,再适当运用勾股定理进行探索,这种导入比较自然流畅,易于学生接受.
思路2.(问题导入)如果已知一个三角形的两条边及其所夹的角,根据三角形全等的判断方法,这个三角形是大小、形状完全确定的三角形,能否把这个边角关系准确量化出来呢?也就是从已知的两边和它们的夹角能否计算出三角形的另一边和另两个角呢?根据我们掌握的数学方法,比如说向量法,坐标法,三角法,几何法等,类比正弦定理的证明,你能推导出余弦定理吗?
推进新课
新知探究
提出问题
??1?通过对任意三角形中大边对大角,小边对小角的边角量化,我们发现了正弦定理,解决了两类解三角形的问题.那么如果已知一个三角形的两条边及这两边所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.怎样已知三角形的两边及这两边夹角的条件下解三角形呢?
?2?能否用平面几何方法或向量方法或坐标方法等探究出计算第三边长的关系式或计算公式呢?
?3?余弦定理的内容是什么?你能用文字语言叙述它吗?余弦定理与以前学过的关于三角形的什么定理在形式上非常接近?
?4?余弦定理的另一种表达形式是什么?
?5?余弦定理可以解决哪些类型的解三角形问题?怎样求解?
?6?正弦定理与余弦定理在应用上有哪些联系和区别?
活动:根据学生的认知特点,结合课件“余弦定理猜想与验证”,教师引导学生仍从特殊情形入手,通过观察、猜想、证明而推广到一般.
如下图,在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面,我们根据初中所学的平面几何的有关知识来研究这一问题.
如下图,在△ABC中,设BC=a,AC=b,AB=c,试根据b、c、∠A来表示a.
教师引导学生进行探究.由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形.在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于点D,那么在Rt△BDC中,边a可利用勾股定理通过CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB,AD表示,进而在Rt△ADC内求解.探究过程如下:
过点C作CD⊥AB,垂足为点D,则在Rt△CDB中,根据勾股定理,得
a2=CD2+BD2.
∵在Rt△ADC中,CD2=b2-AD2,
又∵BD2=(c-AD)2=c2-2c?AD+AD2,
∴a2=b2-AD2+c2-2c?AD+AD2=b2+c2-2c?AD.
又∵在Rt△ADC中,AD=b?cosA,
∴a2=b2+c2-2bccosA.
类似地可以证明b2=c2+a2-2cacosB.
c2=a2+b2-2abcosC.
另外,当A为钝角时也可证得上述结论,当A为直角时,a2+b2=c2也符合上述结论.
这就是解三角形中的另一个重要定理——余弦定理.下面类比正弦定理的证明,用向量的方法探究余弦定理,进一步体会向量知识的工具性作用.
教师与学生一起探究余弦定理中的角是以余弦的形式出现的,又涉及边长问题,学生很容易想到向量的数量积的定义式:a?b=abcosθ,其中θ为a,b的夹角.
用向量法探究余弦定理的具体过程如下:
如下图,设CB→=a,CA→=b,AB→=c,那么c=a-b,
c2=c?c=(a-b)?(a-b)
=a?a+b?b-2a?b
=a2+b2-2abcosC.
所以c2=a2+b2-2abcosC.
同理可以证明a2=b2+c2-2bccosA,
b2=c2+a2-2cacosB.
这个定理用坐标法证明也比较容易,为了拓展学生的思路,教师可引导学生用坐标法证明,过程如下:
如下图,以C为原点,边CB所在直线为x轴,建立平面直角坐标系,设点B的坐标为(a,0),点A的坐标为(bcosC,bsinC),根据两点间距离公式
AB=?bcosC-a?2+?bsinC-0?2,
∴c2=b2cos2C-2abcosC+a2+b2sin2C,
整理,得c2=a2+b2-2abcosC.
同理可以证明:a2=b2+c2-2bccosA,
b2=c2+a2-2cacosB.
余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍,即
a2=b2+c2-2bccosAb2=c2+a2-2accosBc2=a2+b2-2abcosC
余弦定理指出了三角形的三条边与其中的一个角之间的关系,每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,就可以求得第四个量.从而由三角形的三边可确定三角形的三个角,得到余弦定理的另一种形式:
cosA=b2+c2-a22bccosB=c2+a2-b22cacosC=a2+b2-c22ab
教师引导学生进一步观察、分析余弦定理的结构特征,发现余弦定理与以前的关于三角形的勾股定理在形式上非常接近,让学生比较并讨论它们之间的关系.学生容易看出,若△ABC中,C=90°,则cosC=0,这时余弦定理变为c2=a2+b2.由此可知,余弦定理是勾股定理的推广;勾股定理是余弦定理的特例.另外,从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对的角是钝角;如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从以上可知,余弦定理可以看作是勾股定理的推广.
应用余弦定理,可以解决以下两类有关解三角形的问题:
①已知三角形的三边解三角形,这类问题是三边确定,故三角也确定,有解;
②已知两边和它们的夹角解三角形,这类问题是第三边确定,因而其他两个角也确定,故解.不会产生利用正弦定理解三角形所产生的判断解的取舍的问题.
把正弦定理和余弦定理结合起来应用,能很好地解决解三角形的问题.教师引导学生观察两个定理可解决的问题类型会发现:如果已知的是三角形的三边和一个角的情况,而求另两角中的某个角时,既可以用余弦定理也可以用正弦定理,那么这两种方法哪个会更好些呢?教师与学生一起探究得到:若用余弦定理的另一种形式,可以根据余弦值直接判断角是锐角还是钝角,但计算比较复杂.用正弦定理计算相对比较简单,但仍要根据已知条件中边的大小来确定角的大小,所以一般应该选择用正弦定理去计算比较小的边所对的角.教师要点拨学生注意总结这种优化解题的技巧.
讨论结果:
(1)、(2)、(3)、(6)见活动.
(4)余弦定理的另一种表达形式是:
cosA=b2+c2-a22bccosB=c2+a2-b22cacosC=a2+b2-c22ab
(5)利用余弦定理可解决两类解三角形问题:
一类是已知三角形三边,另一类是已知三角形两边及其夹角.
应用示例
例1如图,在△ABC中,已知a=5,b=4,∠C=120°,求c.
活动:本例是利用余弦定理解决的第二类问题,可让学生独立完成.
解:由余弦定理,得
c2=a2+b2-2abcos120°,
因此c=52+42-2×5×4×?-12?=61.
例2如图,在△ABC中,已知a=3,b=2,c=19,求此三角形各个角的大小及其面积.(精确到0.1)
活动:本例中已知三角形三边,可利用余弦定理先求出边所对的角,然后利用正弦定理再求出另一角,进而求得第三角.教材中这样安排是为了让学生充分熟悉正弦定理和余弦定理.实际教学时可让学生自己探求解题思路,比如学生可能会三次利用余弦定理分别求出三个角,或先求出最小边所对的角再用正弦定理求其他角,这些教师都要给予鼓励,然后让学生自己比较这些方法的不同或优劣,从而深刻理解两个定理的.
解:由余弦定理,得
cos∠BCA=a2+b2-c22ab=32+22-?19?22×3×2=9+4-1912=-12,
因此∠BCA=120°,
再由正弦定理,得
sinA=asin∠BCAc=3×3219=33219≈0.5960,
因此∠A≈36.6°或∠A≈143.4°(不合题意,舍去).
因此∠B=180°-∠A-∠BCA≈23.4°.
设BC边上的高为AD,则
AD=csinB=19sin23.4°≈1.73.
所以△ABC的面积≈12×3×1.73≈2.6.
点评:在既可应用正弦定理又可应用余弦定理时,体会两种方法存在的差异.当所求的角是钝角时,用余弦定理可以立即判定所求的角,但用正弦定理则不能直接判定.
变式训练
在△ABC中,已知a=14,b=20,c=12,求A、B和C.(精确到1°)
解:∵cosA=b2+c2-a22bc=202+122-1422×20×12=0.7250,
∴A≈44°.
∵cosC=a2+b2-c22ab=142+202-1222×14×20=113140≈0.8071,
∴C≈36°.
∴B=180°-(A+C)≈180°-(44°+36°)=100°.
例3如图,△ABC的顶点为A(6,5),B(-2,8)和C(4,1),求∠A.(精确到0.1°)
活动:本例中三角形的三点是以坐标的形式给出的,点拨学生利用两点间距离公式先求出三边,然后利用余弦定理求出∠A.可由学生自己解决,教师给予适当的指导.
解:根据两点间距离公式,得
AB=[6-?-2?]2+?5-8?2=73,
BC=?-2-4?2+?8-1?2=85,
AC=?6-4?2+?5-1?2=25.
在△ABC中,由余弦定理,得
cosA=AB2+AC2-BC22AB?AC=2365≈0.1047,
因此∠A≈84.0°.
点评:三角形三边的长作为中间过程,不必算出精确数值.
变式训练
用向量的数量积运算重做本例.
解:如例3题图,AB→=(-8,3),AC→=(-2,-4),
∴AB→=73,AC→=20.
∴cosA=AB→?AC→AB→AC→
=-8×?-2?+3×?-4?73×20
=2365≈0.1047.
因此∠A≈84.0°.
例4在△ABC中,已知a=8,b=7,B=60°,求c及S△ABC.
活动:根据已知条件可以先由正弦定理求出角A,再结合三角形内角和定理求出角C,再利用正弦定理求出边c,而三角形面积由公式S△ABC=12acsinB可以求出.若用余弦定理求c,可利用余弦定理b2=c2+a2-2cacosB建立关于c的方程,亦能达到求c的目的.
解法一:由正弦定理,得8sinA=7sin60°,
∴A1=81.8°,A2=98.2°.
∴C1=38.2°,C2=21.8°.
由7sin60°=csinC,得c1=3,c2=5,
∴S△ABC=12ac1sinB=63或S△ABC=12ac2sinB=103.
解法二:由余弦定理,得b2=c2+a2-2cacosB,
∴72=c2+82-2×8×ccos60°.
整理,得c2-8c+15=0,
解之,得c1=3,c2=5.∴S△ABC=12ac1sinB=63或S△ABC=12ac2sinB=103.
点评:在解法一的思路里,应注意用正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决,故解法二应引起学生的注意.
综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围;已知三边求角或已知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法,即已知两边及一角解三角形可用余弦定理解之.
变式训练
在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=2,C=60°.
(1)若△ABC的面积等于3,求a,b;
(2)若sinB=2sinA,求△ABC的面积.
解:(1)由余弦定理及已知条件,得a2+b2-2abcos60°=c2,即a2+b2-ab=4,
又因为△ABC的面积等于3,所以12absinC=3,ab=4.
联立方程组a2+b2-ab=4,ab=4,解得a=2,b=2.
(2)由正弦定理及已知条件,得b=2a,
联立方程组a2+b2-ab=4,b=2a,解得a=233,b=433.
所以△ABC的面积S=12absinC=233.
知能训练
1.在△ABC中,已知C=120°,两边a与b是方程x2-3x+2=0的两根,则c的值为…
()
A.3B.7C.3D.7
2.已知三角形的三边长分别为x2+x+1,x2-1,2x+1(x>1),求三角形的角.
答案:
1.D解析:由题意,知a+b=3,ab=2.
在△ABC中,由余弦定理,知
c2=a2+b2-2abcosC=a2+b2+ab
=(a+b)2-ab
=7,
∴c=7.
2.解:比较得知,x2+x+1为三角形的边,设其对角为A.
由余弦定理,得
cosA=?x2-1?2+?2x+1?2-?x2+x+1?22?x2-1??2x+1?
=-12.
∵0
即三角形的角为120°.
课堂小结
1.教师先让学生回顾本节课的探究过程,然后再让学生用文字语言叙述余弦定理,准确理解其实质,并由学生回顾可用余弦定理解决哪些解三角形的问题.
2.教师指出:从方程的观点来分析,余弦定理的每一个等式都包含了四个不同的量,知道其中三个量,便可求得第四个量.要通过课下作业,从方程的角度进行各种变形,达到辨明余弦定理作用的目的.
3.思考本节学到的探究方法,定性发现→定量探讨→得到定理.
作业
课本习题1—1A组4、5、6;习题1—1B组1~5.
设计感想
本教案的设计充分体现了“民主教学思想”,教师不主观、不武断、不包办,让学生充分发现问题,合作探究,使学生真正成为学习的主体,力求在课堂上人人都会有“令你自己满意”的探究成果.这样能够不同程度地开发学生的潜能,且使教学内容得以巩固和延伸.“发现法”是常用的一种教学方法,本教案设计是从直角三角形出发,以归纳——猜想——证明——应用为线索,用恰当的问题通过启发和点拨,使学生把规律和方法在愉快的气氛中探究出来,而展现的过程合情合理,自然流畅,学生的主体地位得到了充分的发挥.
纵观本教案设计流程,引入自然,学生探究到位,体现新课程理念,能较好地完成三维目标,课程内容及重点难点也把握得恰到好处.环环相扣的设计流程会强烈地感染着学生积极主动地获取知识,使学生的探究欲望及精神状态始终处于状态.在整个教案设计中学生的思维活动量大,这是贯穿整个教案始终的一条主线,也应是实际课堂教学中的一条主线.
备课资料
一、与解三角形有关的几个问题
1.向量方法证明三角形中的射影定理
如图,在△ABC中,设三内角A、B、C的对边分别是a、b、c.
∵AC→+CB→=AB→,
∴AC→?(AC→+CB→)=AC→?AB→.
∴AC→?AC→+AC→?CB→=AC→?AB→.
∴AC→2+AC→CB→cos(180°-C)=AB→AC→cosA.
∴AC→-CB→cosC=AB→cosA.
∴b-acosC=ccosA,
即b=ccosA+acosC.
同理,得a=bcosC+ccosB,c=bcosA+acosB.
上述三式称为三角形中的射影定理.
2.解斜三角形题型分析
正弦定理和余弦定理的每一个等式中都包含三角形的四个元素,如果其中三个元素是已知的(其中至少有一个元素是边),那么这个三角形一定可解.
关于斜三角形的解法,根据所给的条件及适用的定理可以归纳为下面四种类型:
(1)已知两角及其中一个角的对边,如A、B、a,解△ABC.
解:①根据A+B+C=π,求出角C;
②根据asinA=bsinB及asinA=csinC,求b、c.
如果已知的是两角和它们的夹边,如A、B、c,那么先求出第三角C,然后按照②来求解.求解过程中尽可能应用已知元素.
(2)已知两边和它们的夹角,如a、b、C,解△ABC.
解:①根据c2=a2+b2-2abcosC,求出边c;
②根据cosA=b2+c2-a22bc,求出角A;
③由B=180°-A-C,求出角B.
求出第三边c后,往往为了计算上的方便,应用正弦定理求角,但为了避免讨论角是钝角还是锐角,应先求较小边所对的角(它一定是锐角),当然也可以用余弦定理求解.
(3)已知两边及其中一条边所对的角,如a、b、A,解△ABC.
解:①asinA=bsinB,经过讨论求出B;
②求出B后,由A+B+C=180°,求出角C;
③再根据asinA=csinC,求出边c.
(4)已知三边a、b、c,解△ABC.
解:一般应用余弦定理求出两角后,再由A+B+C=180°,求出第三个角.
另外,和第二种情形完全一样,当第一个角求出后,可以根据正弦定理求出第二个角,但仍然需注意要先求较小边所对的锐角.
(5)已知三角,解△ABC.
解:满足条件的三角形可以作出无穷多个,故此类问题解不.
3.“可解三角形”与“需解三角形”
解斜三角形是三角函数这章中的一个重要内容,也是求解立体几何和解析几何问题的一个重要工具.但在具体解题时,有些同学面对较为复杂(即图中三角形不止一个)的斜三角形问题,往往不知如何下手.至于何时用正弦定理或余弦定理也是心中无数,这既延长了思考时间,更影响了解题的速度和质量.但若明确了“可解三角形”和“需解三角形”这两个概念,则情形就不一样了.
所谓“可解三角形”,是指已经具有三个元素(至少有一边)的三角形;而“需解三角形”则是指需求边或角所在的三角形.当一个题目的图形中三角形个数不少于两个时,一般来说其中必有一个三角形是可解的,我们就可先求出这个“可解三角形”的某些边和角,从而使“需解三角形”可解.在确定了“可解三角形”和“需解三角形”后,就要正确地判断它们的类型,合理地选择正弦定理或余弦定理作为解题工具,求出需求元素,并确定解的情况.
“可解三角形”和“需解三角形”的引入,能缩短求解斜三角形问题的思考时间.一题到手后,先做什么,再做什么,心里便有了底.分析问题的思路也从“试试看”“做做看”等不大确定的状态而变为“有的放矢”地去挖掘,去探究.
二、备用习题
1.△ABC中,已知b2-bc-2c2=0,a=6,cosA=78,则△ABC的面积S为()
A.152B.15C.2D.3
2.已知一个三角形的三边为a、b和a2+b2+ab,则这个三角形的角是()
A.75°B.90°C.120°D.150°
3.已知锐角三角形的两边长为2和3,那么第三边长x的取值范围是()
A.(1,5)B.(1,5)C.(5,5)D.(5,13)
4.如果把直角三角形的三边都增加同样的长度,则这个新三角形的形状为()
A.锐角三角形B.直角三角形
C.钝角三角形D.由增加的长度确定
5.(1)在△ABC中,a,b,c分别是角A,B,C所对的边,已知a=3,b=3,C=30°,则A=__________.
(2)在△ABC中,三个角A,B,C的对边边长分别为a=3,b=4,c=6,则bccosA+cacosB+abcosC的值为__________.
6.在△ABC中,若(a+b+c)(a+b-c)=3ab,并且sinC=2sinBcosA,试判断△ABC的形状.
7.在△ABC中,设三角形面积为S,若S=a2-(b-c)2,求tanA2的值.
参考答案:
1.A解析:由b2-bc-2c2=0,即(b+c)(b-2c)=0,得b=2c;①
由余弦定理,得a2=b2+c2-2bccosA,即6=b2+c2-74bc.②
解①②,得b=4,c=2.
由cosA=78,得sinA=158,
∴S△ABC=12bcsinA=12×4×2×158=152.
2.C解析:设角为θ,由余弦定理,得a2+b2+ab=a2+b2-2abcosθ,
∴cosθ=-12.∴θ=120°.
3.D解析:若x为边,由余弦定理,知4+9-x22×2×3>0,即x2<13,∴0
若x为最小边,则由余弦定理知4+x2-9>0,即x2>5,
∴x>5.综上,知x的取值范围是5
4.A解析:设直角三角形的三边为a,b,c,其中c为斜边,增加长度为x.
则c+x为新三角形的最长边.设其所对的角为θ,由余弦定理知,
cosθ=?a+x?2+?b+x?2-?c+x?22?a+x??b+x?=2?a+b-c?x+x22?a+x??b+x?>0.
∴θ为锐角,即新三角形为锐角三角形.
5.(1)30°(2)612解析:(1)∵a=3,b=3,C=30°,由余弦定理,有
c2=a2+b2-2abcosC=3+9-2×3×3×32=3,
∴a=c,则A=C=30°.
(2)∵bccosA+cacosB+abcosC=b2+c2-a22+c2+a2-b22+a2+b2-c22
=a2+b2+c22=32+42+622=612.
6.解:由正弦定理,得sinCsinB=cb,
由sinC=2sinBcosA,得cosA=sinC2sinB=c2b,
又根据余弦定理,得cosA=b2+c2-a22bc,
故c2b=b2+c2-a22bc,即c2=b2+c2-a2.
于是,得b2=a2,故b=a.
又因为(a+b+c)(a+b-c)=3ab,
故(a+b)2-c2=3ab.由a=b,得4b2-c2=3b2,
所以b2=c2,即b=c.故a=b=c.
因此△ABC为正三角形.
7.解:S=a2-(b-c)2,又S=12bcsinA,
∴12bcsinA=a2-(b-c)2,
有14sinA=-?b2+c2-a2?2bc+1,
即14?2sinA2?cosA2=1-cosA.
∴12?sinA2?cosA2=2sin2A2.
∵sinA2≠0,故12cosA2=2sinA2,∴tanA2=14.
第2课时
导入新课
思路1.(复习导入)让学生回顾正弦定理、余弦定理的内容及表达式,回顾上两节课所解决的解三角形问题,那么把正弦定理、余弦定理放在一起并结合三角、向量、几何等知识我们会探究出什么样的解题规律呢?由此展开新课.
思路2.(问题导入)我们在应用正弦定理解三角形时,已知三角形的两边及其一边的对角往往得出不同情形的解,有时有一解,有时有两解,有时又无解,这究竟是怎么回事呢?本节课我们从一般情形入手,结合图形对这一问题进行进一步的探究,由此展开新课.
推进新课
新知探究
提出问题
?1?回忆正弦定理、余弦定理及其另一种形式的表达式,并用文字语言叙述其内容.能写出定理的哪些变式?
?2?正、余弦定理各适合解决哪类解三角形问题?
?3?解三角形常用的有关三角形的定理、性质还有哪些?
?4?为什么有时解三角形会出现矛盾,即无解呢?比如:,①已知在△ABC中,a=22cm,b=25cm,A=135°,解三角形;,②已知三条边分别是3cm,4cm,7cm,解三角形.
活动:结合课件、幻灯片等,教师可把学生分成几组互相提问正弦定理、余弦定理的内容是什么?各式中有几个量?有什么作用?用方程的思想写出所有的变形(包括文字叙述),让学生回答正、余弦定理各适合解决的解三角形类型问题、三角形内角和定理、三角形面积定理等.可让学生填写下表中的相关内容:
解斜三角形时可
用的定理和公式适用类型备注
余弦定理
a2=b2+c2-2bccosA
b2=a2+c2-2accosB
c2=b2+a2-2bacosC(1)已知三边
(2)已知两边及其夹角
类型(1)(2)有解时只有一解
正弦定理
asinA=bsinB=csinC=2R
(3)已知两角和一边
(4)已知两边及其中一边的对角类型(3)在有解时只有一解,类型(4)可有两解、一解或无解
三角形面积公式
S=12bcsinA
=12acsinB
=12absinC
(5)已知两边及其夹角
对于正弦定理,教师引导学生写出其变式:a=2RsinA,b=2RsinB,c=2RsinC,利用幻灯片更能直观地看出解三角形时的边角互化.对于余弦定理,教师要引导学生写出其变式(然后教师打出幻灯片):∠A>90°?a2>b2+c2;∠A=90°?a2=b2+c2;∠A<90°?a2
以上内容的复习回顾如不加以整理,学生将有杂乱无章、无规碰撞之感,觉得好像更难以把握了,要的就是这个效果,在看似学生乱提乱问乱说乱写的时候,教师适时地打出幻灯片(1张),立即收到耳目一新,主线立现、心中明朗的感觉,幻灯片除以上2张外,还有:
asinA=bsinB=csinC=2R;a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC;cosA=b2+c2-a22bc,cosB=a2+c2-b22ac,cosC=a2+b2-c22ab.
出示幻灯片后,必要时教师可根据学生的实际情况略作点评.
与学生一起讨论解三角形有时会出现无解的情况.如问题(4)中的①会出现如下解法:
根据正弦定理,sinB=bsinAa=25sin133°22≈0.8311.
∵0°
于是C=180°-(A+B)≈180°-(133°+56.21°)=-9.21°或C=180°-(A+B)≈180°-(133°+123.79°)=-76.79°.
到这里我们发现解三角形竟然解出负角来,显然是错误的.问题出在哪里呢?在检验以上计算无误的前提下,教师引导学生分析已知条件.由a=22cm,b=25cm,这里a
讨论结果:
(1)、(3)、(4)略.
(2)利用正弦定理和余弦定理可解决以下四类解三角形问题:
①已知两角和任一边,求其他两边和一角.
②已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角).
③已知三边,求三个角.
④已知两边和夹角,求第三边和其他两角.
应用示例
例1在△ABC中,角A、B、C所对的边分别为a、b、c,b=acosC且△ABC的边长为12,最小角的正弦值为13.
(1)判断△ABC的形状;
(2)求△ABC的面积.
活动:教师与学生一起共同探究本例,通过本例带动正弦定理、余弦定理的知识串联,引导学生观察条件b=acosC,这是本例中的关键条件.很显然,如果利用正弦定理实现边角转化,则有2RsinB=2RsinA?cosC.若利用余弦定理实现边角转化,则有b=a?a2+b2-c22ab,两种转化策略都是我们常用的.引导学生注意对于涉及三角形的三角函数变换.内角和定理A+B+C=180°非常重要,常变的角有A2+B2=π2-C2,2A+2B+2C=2π,sinA=sin(B+C),cosA=-cos(B+C),sinA2=cosB+C2,cosA2=sinB+C2等,三个内角的大小范围都不能超出(0°,180°).
解:(1)方法一:∵b=acosC,
∴由正弦定理,得sinB=sinA?cosC.
又∵sinB=sin(A+C),∴sin(A+C)=sinA?cosC,
即cosA?sinC=0.
又∵A、C∈(0,π),∴cosA=0,即A=π2.
∴△ABC是A=90°的直角三角形.
方法二:∵b=acosC,
∴由余弦定理,得b=a?a2+b2-c22ab,
2b2=a2+b2-c2,即a2=b2+c2.
由勾股定理逆定理,知△ABC是A=90°的直角三角形.
(2)∵△ABC的边长为12,由(1)知斜边a=12.
又∵△ABC最小角的正弦值为13,
∴Rt△ABC的最短直角边长为12×13=4.
另一条直角边长为122-42=82,
∴S△ABC=12×4×82=162.
点评:以三角形为载体,以三角变换为核心,结合正弦定理和余弦定理综合考查逻辑分析和计算推理能力是高考命题的一个重要方向.因此要特别关注三角函数在解三角形中的灵活运用,及正、余弦定理的灵活运用.
变式训练
在△ABC中,角A、B、C所对的边分别是a、b、c,且cosA=45.
(1)求sin2B+C2+cos2A的值;
(2)若b=2,△ABC的面积S=3,求a.
解:(1)sin2B+C2+cos2A=1-cos?B+C?2+cos2A
=1+cosA2+2cos2A-1=5950.
(2)∵cosA=45,∴sinA=35.
由S△ABC=12bcsinA得3=12×2c×35,解得c=5.
由余弦定理a2=b2+c2-2bccosA,可得a2=4+25-2×2×5×45=13,
∴a=13.
例2已知a,b,c是△ABC中∠A,∠B,∠C的对边,若a=7,c=5,∠A=120°,求边长b及△ABC外接圆半径R.
活动:教师引导学生观察已知条件,有边有角,可由余弦定理先求出边b,然后利用正弦定理再求其他.点拨学生注意体会边角的互化,以及正弦定理和余弦定理各自的作用.
解:由余弦定理,知a2=b2+c2-2bccosA,即b2+52-2×5×bcos120°=49,
∴b2+5b-24=0.
解得b=3.(负值舍去).
由正弦定理:asinA=2R,即7sin120°=2R,解得R=733.
∴△ABC中,b=3,R=733.
点评:本题直接利用余弦定理,借助方程思想求解边b,让学生体会这种解题方法,并探究其他的解题思路.
变式训练
设△ABC的内角A,B,C的对边分别为a,b,c.已知b2+c2=a2+3bc,求:
(1)A的大小;
(2)2sinB?cosC-sin(B-C)的值.
解:(1)由余弦定理,得cosA=b2+c2-a22bc=3bc2bc=32,
∴∠A=30°.
(2)2sinBcosC-sin(B-C)
=2sinBcosC-(sinB?cosC-cosBsinC)
=sinBcosC+cosBsinC
=sin(B+C)
=sinA
=12.
例3如图,在四边形ABCD中,∠ADB=∠BCD=75°,∠ACB=∠BDC=45°,DC=3,求:
(1)AB的长;
(2)四边形ABCD的面积.
活动:本例是正弦定理、余弦定理的灵活应用,结合三角形面积求解,难度不大,可让学生自己独立解决,体会正、余弦定理结合三角形面积的综合应用.
解:(1)因为∠BCD=75°,∠ACB=45°,所以∠ACD=30°.
又因为∠BDC=45°,
所以∠DAC=180°-(75°+45°+30°)=30°.所以AD=DC=3.
在△BCD中,∠CBD=180°-(75°+45°)=60°,
所以BDsin75°=DCsin60°,BD=3sin75°sin60°=6+22.
在△ABD中,AB2=AD2+BD2-2×AD×BD×cos75°=(3)2+(6+22)2-2×3×6+22×6-24=5,所以AB=5.
(2)S△ABD=12×AD×BD×sin75°=12×3×6+22×6+24=3+234.
同理,S△BCD=3+34.
所以四边形ABCD的面积S=6+334.
点评:本例解答对运算能力提出了较高要求,教师应要求学生“列式工整、算法简洁、运算正确”,养成规范答题的良好习惯.
变式训练
如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.
(1)求cos∠CBE的值;
(2)求AE.
解:(1)因为∠BCD=90°+60°=150°,
CB=AC=CD,
所以∠CBE=15°.
所以cos∠CBE=cos(45°-30°)=6+24.
(2)在△ABE中,AB=2,
由正弦定理,得AEsin?45°-15°?=2sin?90°+15°?,
故AE=2sin30°cos15°=2×126+24=6-2.
例4在△ABC中,求证:a2sin2B+b2sin2A=2absinC.
活动:此题所证结论包含关于△ABC的边角关系,证明时可以考虑两种途径:一是把角的关系通过正弦定理转化为边的关系,若是余弦形式则通过余弦定理;二是把边的关系转化为角的关系,一般是通过正弦定理.另外,此题要求学生熟悉相关的三角函数的有关公式,如sin2B=2sinBcosB等,以便在化为角的关系时进行三角函数式的恒等变形.
证法一:(化为三角函数)
a2sin2B+b2sin2A=(2RsinA)2?2sinB?cosB+(2RsinB)2?2sinA?cosA=8R2sinA?sinB(sinAcosB+cosAsinB)=8R2sinAsinBsinC=2?2RsinA?2RsinB?sinC=2absinC.
所以原式得证.
证法二:(化为边的等式)
左边=a2?2sinBcosB+b2?2sinAcosA=a2?2b2R?a2+c2-b22ac+b2?2a2R?b2+c2-a22bc=ab2Rc(a2+c2-b2+b2+c2-a2)=ab2Rc?2c2=2ab?c2R=2absinC.
点评:由边向角转化,通常利用正弦定理的变形式:a=2RsinA,b=2RsinB,c=2RsinC,在转化为角的关系式后,要注意三角函数公式的运用,在此题用到了正弦二倍角公式sin2A=2sinA?cosA,正弦两角和公式sin(A+B)=sinA?cosB+cosA?sinB;由角向边转化,要结合正弦定理变形式以及余弦定理形式二.
高考的数学教案篇4
教学目标
1.理解同向不等式,异向不等式概念;
2.掌握并会证明定理1,2,3;
3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;
4.初步理解证明不等式的逻辑推理方法.
教学重点:定理1,2,3的证明的证明思路和推导过程
教学难点:理解证明不等式的逻辑推理方法
教学方法:引导式
教学过程
一、复习回顾
上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:
这一节课,我们将利用比较实数的方法,来推证不等式的性质.
二、讲授新课
在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.
1.同向不等式:两个不等号方向相同的不等式,例如:是同向不等式.
异向不等式:两个不等号方向相反的不等式.例如:是异向不等式.
2.不等式的性质:
定理1:若,则
定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向.在证明时,既要证明充分性,也要证明必要性.
证明
由正数的相反数是负数,得
说明:定理1的后半部分可引导学生仿照前半部分推证,注意向学生强调实数运算的符号法则的应用.
定理2:若,且,则.
证明:
根据两个正数的和仍是正数,得
∴说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数.
定理3:若,则
定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.
证明
说明:
(1)定理3的证明相当于比较与的大小,采用的是求差比较法;
(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若,则即.
定理3推论:若.
证明:
说明:
(1)推论的证明连续两次运用定理3然后由定理2证出;
(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;
(3)两个同向不等式的两边分别相减时,就不能作出一般的结论;
(4)定理3的逆命题也成立.(可让学生自证)
三、课堂练习
1.证明定理1后半部分;
2.证明定理3的逆定理.
说明:本节主要目的是掌握定理1,2,3的证明思路与推证过程,练习穿插在定理的证明过程中进行.
课堂小结
通过本节学习,要求大家熟悉定理1,2,3的证明思路,并掌握其推导过程,初步理解证明不等式的逻辑推理方法.
课后作业
1.求证:若
2.证明:若
板书设计
§6.1.2不等式的性质
1.同向不等式3.定理24.定理35.定理3
异向不等式
证明证明推论
2.定理1证明说明说明证明
第三课时
教学目标
1.熟练掌握定理1,2,3的应用;
2.掌握并会证明定理4及其推论1,2;
3.掌握反证法证明定理5.
教学重点:定理4,5的证明.
教学难点:定理4的应用.
教学方法:引导式
教学过程:
一、复习回顾
上一节课,我们一起
学习了不等式的三个性质,即定理1,2,3,并初步认识了证明不等式的逻辑推理方法,首先,让我们来回顾一下三个定理的基本内容.
(学生回答)
好,我们这一节课将继续推论定理4、5及其推论,并进一步熟悉不等式性质的应用.
二、讲授新课
定理4:若
若
证明:
根据同号相乘得正,异号相乘得负,得当
说明:(1)证明过程中的关键步骤是根据“同号相乘得正,异号相乘得负”来完成的;
(2)定理4证明在一个不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变.
推论1:若
证明:
①
又
∴②
由①、②可得.
说明:(1)上述证明是两次运用定理4,再用定理2证出的;
(2)所有的字母都表示正数,如果仅有,就推不出的结论.
(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.
推论2:若
说明:(1)推论2是推论1的特殊情形;
(2)应强调学生注意n∈N的条件.
定理5:若
我们用反证法来证明定理5,因为反面有两种情形,即,所以不能仅仅否定了,就“归谬”了事,而必须进行“穷举”.
说明:假定不大于,这有两种情况:或者,或者.
由推论2和定理1,当时,有;
当时,显然有
这些都同已知条件矛盾
所以.
接下来,我们通过具体的例题来熟悉不等式性质的应用.
例2已知
证明:由
例3已知
证明:∵
两边同乘以正数
说明:通过例3,例4的学习,使学生初步接触不等式的证明,为以后学习不等式的证明打下基础.在应用定理4时,应注意题目条件,即在一个等式两端乘以同一个数时,其正负将影响结论.接下来,我们通过练习来进一步熟悉不等式性质的应用.
三、课堂练习
课本P7练习1,2,3.
课堂小结
通过本节学习,大家要掌握不等式性质的应用及反证法证明思路,为以后不等式的证明打下一定的基础.
课后作业
课本习题6.14,5.
板书设计
§6.1.3不等式的性质
定理4推论1定理5例3学生
内容内容
证明推论2证明例4练习
高考的数学教案篇5
“随机抽样”教学设计及反思
浙江省杭州市余杭高级中学吴寅静
统计和概率的基础知识是一个未来公民的必备常识①,它是中小学数学课程的重要内容.
在高中阶段,统计的学习从《必修3》第二章开始,本节课是开篇.好的开端等于成功的一半,因此本课很重要.笔者有幸承担本次课题会研究课的教学任务,在接受专家、同行的点评和指导中,对高中阶段的统计教学有了更深的认识.
下面分教学准备、教学设计和教后反思与大家共享我的心得.
教学准备
接到任务后,笔者首先查阅了一些统计论著.可惜,统计专业知识介绍的书籍多,统计教学的论著少之又少.这也从一个侧面反映了我国对中学统计教学研究的不足.
一、教什么
起始课究竟上什么内容?笔者征询了同事们的意见,绝大多数人认为,由于义教阶段学生对全面调查、抽样调查、样本、样本容量等概念都已很熟悉,没必要再纠缠.因此,第一堂课除了简单介绍本章学习内容以及随机抽样的必要性和重要性外,应将“2.1.1简单随机抽样”作为重点,这样整堂课就比较充实,不至于没有内容可讲.也有人认为,《教师教学用书》建议“2.1随机抽样”约为5课时,因此第一课时应只介绍随机抽样而不必涉及抽样方法.
笔者在听取了这些建议,经过再三思考后,决定把本课的教学内容定位于章引言和“随机抽样”的开篇,但不涉及具体抽样方法.理由如下:
1.章引言是整章内容的概括和介绍,既有先行组织者的作用,同时也能以此引出本课需要学习的内容.作为起始课,章引言的作用不可忽略.
2.虽然学生在小学、初中都学过统计,但对为什么要随机抽样,怎么进行随机抽样等的认识还不足.
3.作为统计的起始课,更重要的是让学生通过一些具体的实例感受随机抽样的必要性和重要性,而不是介绍一些具体的抽样方法.
二、怎么教
上述内容定位对教师提出的最大挑战就是如何寻找合适的素材,这个素材既要贴近学生的生活,又能让学生比较容易地参与到抽样活动中,在活动中体会随机抽样.几经选择后,笔者从教材中近视率的背景图中得到启发,设置了一系列关于调查学生近视率的问题串,以此开展整堂课的教学.整个教学过程分解为以下几个部分:
1.通过章头图提供的信息让学生感受数据,提出质疑即:这些数据是怎么来的?
2.让学生调查班级的近视率,感受普查的作用.
3.通过调查年级和全市高一学生的近视率,感受抽样调查的必要性,感受如何才能使样本具有代表性.
4.在小组讨论和师生交流中体会统计结果的不确定性.
5.在小结中结合章头图进行总结回顾,引出本章的知识框架.
?教学设计
一、内容和内容解析
1.内容
本课主要内容是让学生了解:认识客观现象的第一步就是通过观察或试验取得观测资料,然后分析这些资料来认识此现象.获取有代表性的观测资料并正确地加以分析是正确认识未知现象的基础,也是统计所研究的基本问题.
2.内容解析
本课是高中统计的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在义教阶段已学了收集、整理、描述和分析数据等处理数据的基本方法.高中的统计学习将逐步让学生体会确定性思维与统计思维的差异,了解统计结果的随机性特征,知道统计推断可能出错.统计有两种:一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如人口普查.但在很多情况下我们无法采用描述性统计对所有个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常大,或者质量检查具有破坏性.
抽样调查是收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用样本数据来推断总体.其中蕴涵了重要的统计思想——样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则是保证样本能很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.
本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.
二、目标和目标解析
1.目标
(1)通过具体案例的分析,逐步学会从现实生活中提出具有一定价值的统计问题;
(2)结合实际问题情境,理解随机抽样的必要性和重要性,深刻理解样本的代表性.
2.目标解析
章引言列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.通过具体实例,引导学生尝试从实际问题中发现并提出统计问题.以培养学生从现实生活或其他学科中发现问题、提出问题的能力、意识和习惯.
对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大.出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查.教学中要通过一定实例让学生体会随机抽样的必要性和重要性.为了使由样本到总体的推断有效,样本必须是总体的代表.在对实例的分析过程中,探讨获取有代表性的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.
三、教学问题诊断分析
学生在初中已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对设计合理的抽样方法,以使样本具有好的代表性的意识还不强.在已有学习中,学习内容多以确定性数学为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学;这里,我们要通过具体问题,让学生体会统计的重要思想——用样本估计总体以及统计结果的不确定性.因此,学生已有知识经验与本节要达成的教学目标之间有较大差距.主要的困难有:对样本估计总体的思想、对统计结果的“不确定性”产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.
教学中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批灯泡的寿命等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本等,这样可以培养学生提出统计问题的能力.
因此,本课的教学难点是:理解怎样的抽样才是随机抽样,如何抽样才能更好地代表总体.
四、教学支持条件分析
准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.
五、教学过程设计
(一)感悟数据、引入课题
问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?
师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?
设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.
问题2:我们班级有很多同学都是戴眼镜的,你知道我们班的近视率吗?你是怎么知道的?
设计意图:通过与学生比较贴近的案例,让他们体会统计与日常生活的关系.
(二)操作实践、展开课题
问题3:如果我想了解我校所有高一学生的近视率,你打算怎么做呢?
师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.
设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.
问题4:你认为下列预测结果出错的原因是什么?
在1936年美国总统选举前,一份颇有名气的杂志(LiteraryDigest)的工作人员做了一次民意测验.调查兰顿(A.Landon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车量登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:
?
设计意图:通过案例让学生进一步体会到:在抽样调查中,样本的选择是至关重要的,样本能否代表总体,直接影响着统计结果的可靠性.
问题5:如果要调查下面这几个问题,你认为应该作全面调查还是抽样调查?大家对普查和抽样调查是怎么看的?普查一定好吗?请举例.
(1)了解全班同学每周的体育锻炼时间;
(2)调查市场上某个品牌牛奶的含钙量;
(3)了解一批日光灯的使用寿命.
设计意图:通过普查和抽样调查的比较,使学生感受抽样调查的必要性和重要性.
高考的数学教案篇6
“简单随机抽样“教学设计说明
一、本课教学内容的本质、地位、作用分析
(一)教材所处的地位和前后联系
本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.
(二)教学重点
①简单随机抽样的概念,
②常用实施方法:抽签法和随机数表法
(三)教学难点
对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.
二、教学目标分析
1、知识目标
(1)理解并掌握简单随机抽样的概念、特点和步骤.
(2)掌握简单随机抽样的两种方法:抽签法和随机数表法.
2、能力目标
(1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题.
(2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学问题的现象,加强观察问题、分析问题和解决问题的能力培养.
3、情感、态度目标
(1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.
(2)培养学生热爱生活、学会生活的意识,强化他们学生活的知识、学生存的技能,提高学生的动手能力.
三、教学问题诊断
本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.
如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。
1、创设情境,揭示课题
用多媒体展示情景:新闻报道全国高校毕业生就业率问题。举例说明一些实际问题,提出统计的概念。并提出思考问题:如何收集数据?请同学们举例说明.,请学生自由发言,对学生的发言进行补充,辨析普查与抽样调查。提出抽样调查的必要性。从实际问题入手,提出抽样调查的科学性。教师对学生的发言进行补充,同时向学生介绍我们所要研究的简单随机抽样、系统抽样、分层抽样都是不放回抽样.今天我们就来学习简单随机抽样.(板书课题)
2、学法指导,研探新知
思考1:
从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?
一般地,从N个个体中任意抽取一个,则每个个体被抽到的概率是多少?
思考2:
从6件产品中随机不放回抽取一个容量为3的样本,在这个抽样中,每一件产品被抽到的概率是多少?
一般地,从N个个体中随机抽取n个个体作为样本,则每个个体被抽到的概率是多少?
规律总结:
一般的,如果用简单随机抽样,个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的概率都相等。.
3实际运用,巩固升华
简单随机抽样体现了抽样的客观性和公平性,如何实施简单随机抽样呢?
高考的数学教案篇7
一、教学目标
【知识与技能】
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】
通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点
【重点】
掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】
二元二次方程与圆的一般方程及标准圆方程的关系。
三、教学过程
(一)复习旧知,引出课题
1、复习圆的标准方程,圆心、半径。
2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?
高考的数学教案篇8
1、教材分析
本节课位于数学必修一第一章第一节-----集合的第一课时,主要学习集合的基本概念与表示方法,在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,;在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
2、教学目标
知识与技能目标
①通过实例了解集合的含义;
②知道常用数集及其专用记号;
③了解集合中元素的确定性、互异性、无序性;
④会用集合语言表示有关数学对象。
⑤能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
过程与方法目标
①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。
②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力
情感态度与价值观目标
培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。
3、教学重难点
重点:集合的基本概念与表示方法。
难点:运用集合的三种常用表示方法正确表示一些简单的集合
4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。
5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。
6、教学思路:创设情境,从具体实例引入新课
师生共同分析实例,得出集合含义,明确有关规定
师生共同分析例子,学习元素与集合的关系及记号
自主学习常用数集及其记号
自主学习集合的两种表示方法
课堂练习,小结与课后作业
7、教学过程
7.1创设情境,引入课题
【活动】多媒体展示:1、草原一群大象在缓步走来。
2、蓝蓝的天空中,一群鸟在飞翔
3、一群学生在一起玩。
引导学生举出一些类似的例子问题
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是一群大象、一群鸟、一群学生)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。
【设计意图】通过多媒体展示,极大地调动起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。
7.2步步探索,形成概念
【活动1】观察下列对象:
①1~20以内的所有质数;
②我国从1991—2003年的13年内所发射的所有人造卫星
③金星汽车厂2003年生产的所有汽车;
④2004年1月1日之前与我国建立外交关系的所有国家;
⑤所有的正方形;
⑥到直线l的距离等于定长d的所有的点;
⑦方程x2+3x—2=0的所有实数根;
⑧新华中学2004年9月入学的所有的高一学生。
师生共同概括8个例子的特征,得出结论,给出集合的含义:把研究对象统称为元素,常用小写字母啊a,b,c….表示,把一些元素组成的总体叫做集合,常用大写字母A,B,C….来表示。
【设计意图】使学生自己明确集合的含义,培养学生的概括能力。
【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比如:
1)A={1,3},3、5哪个是A的元素?
2)B={身材较高的人},能否表示成集合?
3)C={1,1,3}表示是否准确?
4)D={中国的直辖市},E={北京,上海,天津,重庆}是否表示同一集合?
5)F={a,b,c}与G={c,b,a}这两个集合是否一样?
【分析】1)1,3是A的元素,5不是
2)我们不能准确的规定多少高算是身材较高,即不能确定集合的元素,所以B不能表示集合
3)C中有二个1,因此表达不准确
4)我们知道E中各元素都是属于中国的直辖市,但中国的直辖市并不
只有这几个,因此不相等。
5)F和G的元素相同,只不过顺序不同,但还是表示同一个集合
通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:
1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.
2)互异性:同一集合中不应重复出现同一元素.
3)无序性:集合中的元素没有顺序
4)集合相等:构成两个集合的元素完全一样
【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。
7.3集合与元素的关系
【问题】高一(4)班里所有学生组成集合A,a是高一(4)班里的同学,b是高一(5)班的同学,a、b与A分别有什么关系?
高考的数学教案篇9
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用教材难点:灵活应用等比数列及通项公式解决一般问题教材重点:等比数列的概念和通项公式
二、教学目标分析
1.知识目标
1)
2)掌握等比数列的定义理解等比数列的通项公式及其推导
2.能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是来源于现实生活并应用于现实生活
3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、教学对象分析:
1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四.教学策略选择与设计
1.课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2.情景导入
高考的数学教案篇10
【教学目标】
1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;
2.过程与方法:通过实例探究抽象基本不等式;
3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣
【教学重点】
应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程;
【教学难点】
基本不等式等号成立条件
【教学过程】
1.课题导入
基本不等式的几何背景:
如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?
教师引导学生从面积的关系去找相等关系或不等关系
2.讲授新课
1.探究图形中的不等关系
将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为。这样,4个直角三角形的面积的和是2ab,正方形的面积为。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。
当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有。
2.得到结论:一般的,如果
3.思考证明:你能给出它的证明吗?
证明:因为
当
所以,,即
4.1)从几何图形的面积关系认识基本不等式
特别的,如果a>0,b>0,我们用分别代替a、b,可得,
通常我们把上式写作:
2)从不等式的性质推导基本不等式
用分析法证明:
要证(1)
只要证a+b(2)
要证(2),只要证a+b-0(3)
要证(3),只要证(-)(4)
显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。
3)理解基本不等式的几何意义
探究:课本第98页的“探究”
在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b。过点C作垂直于AB的弦DE,连接AD、BD。你能利用这个图形得出基本不等式的几何解释吗?
易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB
即CD=.
这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.
因此:基本不等式几何意义是“半径不小于半弦”
评述:1.如果把看作是正数a、b的等差中项,看作是正数a、b的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.
2.在数学中,我们称为a、b的算术平均数,称为a、b的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.
例1已知x、y都是正数,求证:
(1)≥2;
(2)(x+y)(x2+y2)(x3+y3)≥8x3y3.
分析:在运用定理:时,注意条件a、b均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形.
解:∵x,y都是正数∴>0,>0,x2>0,y2>0,x3>0,y3>0
(1)=2即≥2.
(2)x+y≥2>0x2+y2≥2>0x3+y3≥2>0
∴(x+y)(x2+y2)(x3+y3)≥2·2·2=8x3y3
即(x+y)(x2+y2)(x3+y3)≥8x3y3.
3.随堂练习
1.已知a、b、c都是正数,求证
(a+b)(b+c)(c+a)≥8abc
分析:对于此类题目,选择定理:(a>0,b>0)灵活变形,可求得结果.
解:∵a,b,c都是正数
∴a+b≥2>0
b+c≥2>0
c+a≥2>0
高考的数学教案篇11
一、预习目标
预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。
二、预习内容
阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:
1、例1如果不用向量的方法,还有其他证明方法吗?
2、利用向量方法解决平面几何问题的“三步曲”是什么?
3、例3中,
⑴为何值时,F1最小,最小值是多少?
⑵F1能等于G吗?为什么?
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容。
课内探究学案
一、学习内容
1、运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题。
2、运用向量的有关知识解决简单的物理问题。
二、学习过程
探究一:
(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?
(2)举出几个具有线性运算的几何实例。
例1、证明:平行四边形两条对角线的平方和等于四条边的平方和。
已知:平行四边形ABCD。
求证:
试用几何方法解决这个问题,利用向量的方法解决平面几何问题的“三步曲”?
(1)建立平面几何与向量的联系,
(2)通过向量运算,研究几何元素之间的关系,
(3)把运算结果“翻译”成几何关系。
例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
探究二:两个人提一个旅行包,夹角越大越费力。在单杠上做引体向上运动,两臂夹角越小越省力。这些力的问题是怎么回事?
例3,在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力。你能从数学的角度解释这种现象吗?
请同学们结合刚才这个问题,思考下面的问题:
⑴为何值时,F1最小,最小值是多少?
⑵F1能等于G吗?为什么?
例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸。已知船的速度v1=10km/h,水流的速度v2=2km/h,问行驶航程最短时,所用的时间是多少(精确到0。1min)?
变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。
三、反思总结
结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题。
代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。
本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。
高考的数学教案篇12
教学分析
教学目标:
1、掌握幂函数的概念;熟悉α=1,2,3,?,-1时的1幂函数的图象和性质;能利用幂函数的性质解决实际问题。
2、通过学生对情境的观察、思考、归纳、总结形成结论,培养学生的发现问题,解决问题的力。
二、教学重难点:
重点:幂函数的定义,图象与性质。
难点:幂函数的图象与性质。
三、教学准备:
教师:将幂函数图象提前画在小黑板上。
四、教学导图:
情境引入函数的概念幂课堂练习
画出α=1,2,3,?,-1图象
师生交流归纳出五个具体幂函数的性质
课堂练习例题分析课堂小结课后作业
教学设计
教学过程:
(一)教学内容:幂函数概念的引入。
设计意图:从学生熟悉的背景出发,为抽象出幂函数的概念做准备。这样,既可以让学生体会到幂函数来自于生活,又可以通过对这些案例的观察、归纳、概括、总结出幂函数的一般概念,培养学生发现问题、解决问题的能力。
师生活动:
教师:前面我们学习了指数函数与对数函数,这两类描述客观世界变化规律的数学模型。但是同学们知道,不是所有的客观世界变化规律都能用这两种数学模型来描述。今天,我们将学习新的一类描述客观世界变换规律的数学模型,也就是本书二点三节的幂函数。首先我们来看这样几个实际问题。第一个问题,如果老师现在准备购买单价为每千克1元的蔬菜W千克,老师总共需要花的钱P是多少?
教师:非常好,老师总共需要花的钱P=W。第二个问题,如果正方形的边长为a,那么正方形的面积S等于多少?
教师:回答的非常正确。面积S=.下面的问题都很简单,请同学们跟上老师的思路。第三个问题,如果正方体的边长为a,那么他的体积V等于多少了?
教师:对。正方体的体积V=。第四个问题,如果已知一个正方形面积等于S,那么这个正方形边长a等于多少了?
教师:非常正确。通过前面对指数幂的学习,根式与分数指数幂是可以相互转换的,所以根号下S就等于S的二分之一次方。那么我们的边长a=。最后一个问题,认真听,某人内骑自行车行进了1KM,那他的平均速度v等于多少?
教师:回答非常正确。因为我们知道v×t=s
所以v==。好,现在我们一起来观察黑板上这五个具体表达式,我们可以看出第一个表达式中P是W的函数,那第二个表达式了?
教师:非常好,第三个表达式了?
教师:第四个表达式了?
教师:第五个了?
教师:大家回答得非常正确。如果将上面的函数自变量全用x代替,函数值全用y来代替,那么我们可以得到第一个表达式为。。。。。。
教师:第二个表达式?
教师:第三个表达式?
教师:第四个表达式?
教师:第五个表达式?
教师:回答的非常好。那现在请同学们仔细观察老师用x,y写成的这五个函数它们有哪些共同特征。等一下请同学起来给大家分享一下你观察的结果。给大家一分钟时间思考。(一分钟后。。。)有那个同学主动给大家分享一下你得出哪些共同特征?
教师:还有其他的共同特征吗?
教师:同学们都回答的非常正确哈。以后了我们就把具有这样性质的函数叫做幂函数。现在我们来给幂函数下个确的定义。一般的,他形如的函数叫做幂函数,其中x是自变量,α是常数。同学们一定要注意,幂函数与前面学习的指数函数对数函数一样,都是形式化定义,必须具有定义所给的形式,才能叫做幂函数,否者都不是幂函数。
(二)教学内容:幂函数与指数函数的区别与联系。
设计意图:巩固幂函数的概念,让学生回顾前面学过的幂函数的特例,较少陌生感,并且用联系的观点,让学生比较幂函数与指数函数的区别,从而加深对幂函数概念的的理解与掌握。
师生活动:
教师:有的同学已经发现,今天学习的幂函数与前面学习的指数函数形式上有些相似,但是老师高手你们她们两个函数有着本质的区别。黑板上已经有五个幂函数的具体例子,请同学们说几个前面学习过的指数函数的例子。
教师:非常好。还有其他的吗?
教师:那现在我们通过观察黑板上的例子找到这两个函数本质上的区别与联系.同学们发现了吗?她们有哪些相同点?哪些不同点?
教师:不同了?
教师:回答非常正确哈。所以同学们一定不要混淆了这两类函数,记清楚那个函数的自变量在底数,那个函数的自变量在指数。我们已经明确给出了幂函数的定义,并且却别了幂函数与指数函数。现在我们来做一个练习。
(三)教学内容:课堂练习
设计意图:进一步巩固幂函数概念的理解.
师生活动:
教师:练习,判断下列函数是否为幂函数。请同学么能严格按照定义,自己动手做一下这几个题目。好。。。第一个是幂函数吗?
教师:为什么了?
教师:非常正确,第二个?
教师:很好,第三个了?
教师:到底是还不是?好好根据定义判断,也不要忘了形式间的等价转换。
教师:对的,它是一个幂函数,因为我们知道,所以根据定义就是一个幂函数。第四个了?
教师:因为我们知道幂前面的系数必须是1,而本题为2,所以不是。第五个了?
高考的数学教案篇13
教学目标:
1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。
2、会求一些简单函数的反函数。
3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。
4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。
教学重点:
求反函数的方法。
教学难点:
反函数的概念。
教学过程:
一、创设情境,引入新课
1、复习提问
①函数的概念
②y=f(x)中各变量的意义
2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。
3、板书课题
由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。
二、实例分析,组织探究
1、问题组一:
(1)这两组函数的图像有什么关系?这两组函数有什么关系?
(2)由,已知y能否求x?
(3)是否是一个函数?它与有何关系?
(4)与有何联系?
2、问题组二:
(1)函数y=2x1(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?
(2)函数(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?
(3)函数()的定义域与函数()的值域有什么关系?
3、渗透反函数的概念。
(教师点明这样的函数即互为反函数,然后师生共同探究其特点)
从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。
通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。
三、师生互动,归纳定义
1、(根据上述实例,教师与学生共同归纳出反函数的定义)
函数y=f(x)(x∈A)中,设它的值域为C。我们根据这个函数中x,y的关系,用y把x表示出来,得到x=j(y)。如果对于y在C中的任何一个值,通过x=j(y),x在A中都有的值和它对应,那么,x=j(y)就表示y是自变量,x是自变量y的函数。这样的函数x=j(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。记作:。考虑到"用x表示自变量,y表示函数"的习惯,将中的x与y对调写成。
2、引导分析:
1)反函数也是函数;
2)对应法则为互逆运算;
3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;
4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;
5)函数y=f(x)与x=f(y)互为反函数;
6)要理解好符号f;
7)交换变量x、y的原因。
3、两次转换x、y的对应关系
(原函数中的自变量x与反函数中的函数值y是等价的,原函数中的函数值y与反函数中的自变量x是等价的)
四、应用解题,总结步骤
1、(投影例题)
【例1】求下列函数的反函数
(1)y=3x—1(2)y=x1
【例2】求函数的反函数。
(教师板书例题过程后,由学生总结求反函数步骤。)
2、总结求函数反函数的步骤:
1、由y=f(x)反解出x=f(y)。
2、把x=f(y)中x与y互换得。
3、写出反函数的定义域。
【例3】(1)有没有反函数?
(2)的反函数是________。
(3)(x<0)的反函数是__________。
在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。
通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。
通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。
题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。
五、巩固强化,评价反馈
1、已知函数y=f(x)存在反函数,求它的反函数y=f(x)
(1)y=—2x3(xR)(2)y=—(xR,且x)
(3)y=(xR,且x)
2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。
六、反思小结,再度设疑
本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。
进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。
七、作业
习题2.4第1题,第2题
进一步巩固所学的知识。
教学设计说明
"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。
反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。
高考的数学教案篇14
[学习目标]
(1)会用坐标法及距离公式证明Cα+β;
(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα-β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题.
[学习重点]
两角和与差的正弦、余弦、正切公式
[学习难点]
余弦和角公式的推导
[知识结构]
1.两角和的余弦公式是三角函数一章和、差、倍公式系列的基础.其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)
2.通过下面各组数的值的比较:①cos(30°-90°)与cos30°-cos90°②sin(30°+60°)和sin30°+sin60°.我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ.但不排除一些特例,如sin(0+α)=sin0+sinα=sinα.
3.当α、β中有一个是的整数倍时,应首选诱导公式进行变形.注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例.
4.关于公式的正用、逆用及变用
高考的数学教案篇15
教学目标:
1.理解流程图的选择结构这种基本逻辑结构.
2.能识别和理解简单的框图的功能.
3.能运用三种基本逻辑结构设计流程图以解决简单的问题.
教学方法:
1.通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.
2.在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.
教学过程:
一、问题情境
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为
其中(单位:)为行李的重量.
试给出计算费用(单位:元)的一个算法,并画出流程图.
二、学生活动
学生讨论,教师引导学生进行表达.
解算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.
在上述计费过程中,第二步进行了判断.
三、建构数学
1.选择结构的概念:
先根据条件作出判断,再决定执行哪一种
操作的结构称为选择结构.
如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.
2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判
断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执
行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和
两个退出点.
3.思考:教材第7页图所示的算法中,哪一步进行了判断?