初中教案数学简单
教案是指教学活动的计划和组织安排,包括教学目标、教学内容、教学方法、教学资源、评价方式等方面的设计。怎样写初中教案数学简单?这里提供初中教案数学简单分享,供大家参考。
初中教案数学简单篇1
一、教学目标
1、了解二次根式的意义;
2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、掌握二次根式的性质和,并能灵活应用;
4、通过二次根式的计算培养学生的&39;逻辑思维能力;
5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?
例2x是怎样的实数时,式子在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有x≥0,因此,x+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
初中教案数学简单篇2
一、素质教育目标
(一)知识教学点
1、能根据一个数的绝对值表示"距离",初步理解绝对值的概念。
2、给出一个数,能求它的绝对值。
(二)能力训练点
在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力。
(三)德育渗透点
1、通过解释绝对值的几何意义,渗透数形结合的思想。
2、从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
(四)美育渗透点
通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美。
二、学法引导
1、教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现"教为主导,学为主体"的教学要求,注意创设问题情境,使学生自得知识,自觅规律。
2、学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)
三、重点、难点、疑点及解决办法
1、重点:给出一个数会求出它的绝对值。
2、难点:绝对值的几何意义,代数定义的导出。
3、疑点:负数的绝对值是它的相反数。
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、三角板、自制胶片。
六、师生互动活动设计
教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义。
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了数轴、相反数。在练习本上画一个数轴,并标出表示-6,0及它们的相反数的点。
学生活动:一个学生板演,其他学生在练习本上画。
【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习。
(二)探索新知,导入新课
师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?
学生活动:思考讨论,很难得出答案。
师:在数轴上标出到原点距离是6个单位长度的点。
学生活动:一个学生板演,其他学生在练习本上做。
师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?
学生活动:产生疑问,讨论。
师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的。我们把这个距离叫+6与-6的绝对值。
2、4绝对值(1)
【教法说明】针对"互为相反数的两数只有符号不同"提出问题:"它们什么相同呢?"在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:"找到原点距离是6个单位长度的点"这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,时而紧张时而轻松,不知不觉学生已获得了知识。
师:-6的绝对值是表示-6的点到原点的距离,-6的绝对值是6;6的绝对值是表示6的点到原点的距离,6的绝对值是6、
提出问题:
(1)-3的绝对值表示什么?
(2)3的绝对值呢?
(3)a的绝对值呢?
学生活动:(1)(2)题根据教师的引导学生口答,(3)题讨论后口答。
一个数a的绝对值是数轴上表示数a的点到原点的距离。
数a的绝对值是a
【教法说明】由-6,6,-3,这些特殊的数的绝对值引出数的绝对值,逐层铺垫,由学生得出绝对值的几何意义,既理解了一个数的绝对值的含义也训练了学生口头表达能力,突破了难点。
(三)尝试反馈,巩固练习
师:字母可以表示任意数,若把a换成,9,0,-1,-0、4观察数轴,它们的绝对值各是多少?
学生活动:口答:,,,,
师:你在自己画的数轴上标出五个数,让同桌指出它们的绝对值。
学生活动:按教师要求自己又当"小老师"又当"学生"、教师找一组学生回答,并及时纠正出现的错误。
(出示投影1)
例求8,-8的绝对值。
师:观察数轴做出此题。
学生活动:口答
师:由此题目你能想到什么规律?
学生活动:讨论得出—互为相反数的两数绝对值相同。
【教法说明】这一环节是对绝对值的几何定义的巩固。这里对于绝对值定义的理解不能空谈"5的绝对值、-7的绝对值是多少"?而是与数轴相结合,始终利用表示这数的点到原点的距离是这个数的绝对值这一概念。教师先阐明这个字母可表示任意数,再把换成一组数,学生自己又把换成了一些数,指出它们的绝对值,这样既理解了数所表示的广泛含义,又巩固了绝对值的定义。然后,通过例题总结出了互为相反数的两数的绝对值相等这一规律,既呼应了前面内容,又升华了绝对值的概念。
师:观察数轴,在原点右边的点表示的数(正数)的绝对值有什么特点?
在原点左边的点表示的数(负数)的绝对值呢?
生:思考,不能轻易回答出来。
师:再看前面我们所求的,你能得出什么规律吗?
学生活动:思考后一学生口答。
教师纠正并板书:
正数的绝对值是它本身。
负数的绝对值是它的相反数。
0的绝对值是0。
师:字母可表示任意的数,可以表示正数,也可以表示负数,也可以表示0。
教师引导学生用数学式子表示正数、负数、0,并再提问:这时的绝对值分别是多少?
学生活动:分组讨论,教师加入讨论,学生互相补充回答。
教师板书:
师强调:这种表示方法就相当于前面三句话,比较起来后者更通俗易懂。
【教法说明】用字母表示规律是难点。这时教师放手,让学生有目的地考虑、分析,共同得出结论。
(四)归纳小结
师:这节课我们学习了绝对值。
(1)一个数的绝对值是在数轴上表示这个数的点到原点的距离;(2)求一个数的绝对值必须先判断是正数还是负数。
回顾反馈:
(出示投影2)
1、-3的绝对值是在_____________上表示-3的点到__________的距离,-3的绝对值是____________。
2、绝对值是3的数有____________个,各是___________;绝对值是2、7的数有___________个,各是___________;绝对值是0的数有____________个,是____________。
绝对值是-2的数有没有?
八、随堂练习
1、判断题
(1)数的绝对值就是数轴上表示数的点与原点的距离()(2)负数没有绝对值()
(3)绝对值最小的数是0()
(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大()(5)如果数的绝对值等于,那么一定是正数
2、填表
九、布置作业
课本第50页2、4。
初中教案数学简单篇3
一元一次方程——初中数学第一册教案(精选2篇)
一元一次方程——初中数学第一册篇1
一元一次方程的复习
复习目标:
(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)会解一元一次方程。
(3)会根据具体问题中的数量关系列出一元一次方程并求解。
重点、难点:
1.重点:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
会用一元一次方程解决实际问题。
2.难点:
一元一次方程的解法的灵活应用。
寻找实际问题中的等量关系。
【典型例题】
例1.
分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。
在这里特别注意:未知数的次数及系数。
这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。
解:
例2.
分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。
此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。
解:
将m=1代入关于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。
例4.
分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。
解:
例5.
分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。
解:
注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。
解:
例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。
分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm
解一:设车的速度为xm/s
经检验,符合题意。
答:车的速度为20m/s。
解二:设车身的长度为xm
经检验,符合题意。
答:车的速度为(1000+200)/60=20m/s
例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票
售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?
分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。
解:设团体票共2a张,零售票共a张,零售票价x元
经检验,符合题意。
答:零售票价为19.2元。
【模拟试题】
一.填空题。
1.已知方程的解比关于x的方程的解大2,则_________。
2.关于x的方程的解为整数,则__________。
3.若是关于x的一元一次方程,则k=_________,x=_________。
4.若代数式与的值互为相反数,则m=_________。
5.一元一次方程的解为x=0,那么a、b应满足的条件是__________。
二.解方程。
1.
2.
3.
4.
三.列方程解应用题。
1.一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?
2.分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?
【试题答案】
一.填空题。
1. 2.
3.1,1 4. 5.
二.解方程。
1. 2.
3. 4.
三.列方程解应用题。
1.买364个鸡蛋
2.戴红帽子4人,黄帽子3人
一元一次方程的复习
复习目标:
(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)会解一元一次方程。
(3)会根据具体问题中的数量关系列出一元一次方程并求解。
重点、难点:
1.重点:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
会用一元一次方程解决实际问题。
2.难点:
一元一次方程的解法的灵活应用。
寻找实际问题中的等量关系。
【典型例题】
例1.
分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。
在这里特别注意:未知数的次数及系数。
这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。
解:
例2.
分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。
此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。
解:
将m=1代入关于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。
例4.
分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。
解:
例5.
分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。
解:
注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。
解:
例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。
分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm
解一:设车的速度为xm/s
经检验,符合题意。
答:车的速度为20m/s。
解二:设车身的长度为xm
经检验,符合题意。
答:车的速度为(1000+200)/60=20m/s
例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票
售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?
分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。
解:设团体票共2a张,零售票共a张,零售票价x元
经检验,符合题意。
答:零售票价为19.2元。
【模拟试题】
一.填空题。
1.已知方程的解比关于x的方程的解大2,则_________。
2.关于x的方程的解为整数,则__________。
3.若是关于x的一元一次方程,则k=_________,x=_________。
4.若代数式与的值互为相反数,则m=_________。
5.一元一次方程的解为x=0,那么a、b应满足的条件是__________。
二.解方程。
1.
2.
3.
4.
三.列方程解应用题。
1.一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?
2.分别戴着红色和黄色旅行帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?
【试题答案】
一.填空题。
1. 2.
3.1,1 4. 5.
二.解方程。
1. 2.
3. 4.
三.列方程解应用题。
1.买364个鸡蛋
2.戴红帽子4人,黄帽子3人
一元一次方程——初中数学第一册教案篇2
一元一次方程
一、教学目标 :
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果=9,则 = ;如果2=9,则 =
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是( )
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为、互为相反数则)
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为倒数 ,如:
(5)如果,则( )
A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )
A、 B、 C、 D、00
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )
A、+25=310 B、+(+25)=310 C、2[+(+25)]=310 D、[+(+25)]2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?
解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是( )
A、 B、 C、 D、
(2)下列方程中,属于一元一次方程的是( )
A、 B、 C、 D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?
解:设甲队胜了场,则平了 场,依题意可列得方程:
解得=
答:甲队胜了 场,平了 场。
(4)根据条件“一个数比它的一半大2”可列得方程为
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为
四、课外作业 P151习题5.1
一元一次方程
一、教学目标 :
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果=9,则 = ;如果2=9,则 =
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是( )
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为、互为相反数则)
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为倒数 ,如:
(5)如果,则( )
A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )
A、 B、 C、 D、00
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )
A、+25=310 B、+(+25)=310 C、2[+(+25)]=310 D、[+(+25)]2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?
解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是( )
A、 B、 C、 D、
(2)下列方程中,属于一元一次方程的是( )
A、 B、 C、 D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?
解:设甲队胜了场,则平了 场,依题意可列得方程:
解得=
答:甲队胜了 场,平了 场。
(4)根据条件“一个数比它的一半大2”可列得方程为
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为
四、课外作业 P151习题5.1
初中教案数学简单篇4
教学目标
1、经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。
2、通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。
3、通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。
4、通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。
重点
1、通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。
2、通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。
难点:利用数形结合的方法验证公式
教学方法:动手操作,合作探究课型新授课教具投影仪
情景设置:
你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)
新课讲解:
把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:
教师接着在介绍教材第94页例题的拼法及相关公式
提问:还能通过怎样拼图来解决以下问题
(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;
(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2
试用拼一个长方形的方法,把这个二次三项式因式分解。
这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作
了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。
小结:
从这节课中你有哪些收获?
(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)
学生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
学生拿出准备好的硬纸板制作
给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。
初中教案数学简单篇5
今天,我说课的内容是、湘教版七年级数学下册第五章第一节“轴对称图形”,下面,我就教材、教法、学法、教学程序和教学评价几个方面加以说明。
一、说教材
1、教材的地位和作用:“轴对称图形”是第五章“轴对称”的第一节的第一课时,是初中数学教学中的一则重要内容,它与我们的现实生活有着紧密的联系。实际生活中也随处可见轴对称图形及轴对称的应用。
2、学生情况分析、学生已经学过一些平面图形的特征,形成了一定的空间观念。日常生活中具有轴对称性质的很多事物,为学生奠定了感性基础。
二、教学目标
1、知识与技能:通过观察、分析现实生活实例和典型图形的过程,认识轴对称和轴对称图形,会找出简单的对称图形的对称轴,了解轴对称和轴对称图形的联系和区别。
2、过程与方法、通过折纸、剪纸等活动,培养学生探索知识的能力与思考问题的习惯。
3、情感态度价值观、通过欣赏现实生活中的轴对称图形,体验轴对称在现实生活中的广泛应用。
4、教学重难点、
教学重点、认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴。
教学难点、轴对称和轴对称图形的区别和联系。
三、说教法与学法
本节课我以“感受生活——动手操作——共同探讨——归纳总结————应用实践”的模式展开教学。让学生始终处于主动的学习状态,让学生有充分的思考机会。
1、教法、观察法、讨论法、探究法、多媒体电化教学。在课的开始,结合多媒体动画,从优美的生活场景中抽象出蝴蝶、蜻蜓、树叶这三个轴对称图形,激发学生的情趣,使学生产生探索的强烈愿望,体会到数学与生活的密切联系。
2、学法:观察猜想、共同探讨、动手操作、归纳总结、应用实践。“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。学习是一种过程,而不是结果.”可见,“学会学习”本身比“学会什么”更重要.
3、教学准备
教师准备:课前制作动态演示的多媒体课件;模具、实物、投影、胶水。
学生准备、剪刀、各种美术颜色、美工刀一把、白纸若干。
四、说教学过程
创设情境,激发兴趣(用多媒体演示生活中的有关画面)
故事引入:(师讲故事的过程中播放动画)
实验探究
探究一
问题1:这些美丽的图形来自生活。认真观察这些图形有什么共同特征?用自己的语言来描述.
问题2:你能将图中的窗花沿某条直线对折,使直线两旁的部分完全重合吗?其他图形呢?(在学生通过观察、概括、小组讨论的基础上,教师适时引导学生进行归纳验证、方法一:动手操作“扎纸”实验。)
方法二、利用多媒体,用动画的形式演示,总结,得出轴对称图形的概念、轴对称图形、对称轴。
这样设计目的在于引导学生积极思考,在同伴的帮助下,经过自己的努力主动地获取知识。也有利于培养学生观察能力,概括能力和语言表达能力。
练习:请大家拿出你们准备的图形,动手折一折,画一画,找出它们的对称轴,有几条呢?
探究二
学生活动.做“印墨迹”实验:取一张质地较软、吸水性能好的纸,在纸的一侧滴一滴墨水,将纸迅速对折、压平,并用手指压出清晰的折痕,再将纸打开后铺平,观察所得到的图案有什么特征?
完成上面实验后,启发引导学生有什么发现?在于同伴交流的基础上,教师适时引导学生进行归纳总结,得出轴对称的概念、
接下来给学生例举生活中的轴对称现象,在加深印象的同时,让学生体会到数学来源于生活,生活处处有数学。
问题3、你能说出轴对称与轴对称图形的区别与联系吗?先给学生一分钟时间思考,然后与同伴交流自己的看法,再在全班进行交流。为了让学生更好的体会特征,可利用多媒体,展示具有代表性的图片。最后教师加以点评,得出二者的区别与联系。
拓展应用
1、让学生设计一个优美的轴对称图案。展示自己的作品,体会创作时的快乐和意想不到的图案美和成就感.
2、欣赏反思,提升认识。师、请看这里!音乐声中,教师配音介绍,学生谈感受。舞姿优美典雅的舞蹈——“千手观音”、雄伟壮丽的人民大会堂、历史悠久的北京天坛、巍峨高耸的法国埃菲尔铁塔、
课堂小结
(1)、本节课学到了哪些知识?
(2)、说说自己在本节课中的体会或困惑?课后作业
1、教科书第117页习题5.1的第1、2、3、题。
2、教科书第114练习第1、2题
五、教学实践活动的收获与反思、
1、在学习中实践,我学习了金石中学几位老师的课堂教学,提升了自己教育教学能力。
2、在实践中反思,在实践研修的过程中,我充分感受到课堂不只是教师个人的舞台,还应是师生心灵对话、情感交流的舞台。教师只有在课堂上搭建起师生互动的教学交流平台,加强师生间的情感交流,营造民主、平等、和谐的氛围,才有利于促进学生创造性思维的培养。教师和学生分享彼此的思考、见解和知识,交流彼此的理念、情感和体验,才能更好地实现教学相长。
3、在反思中收获,在今后的教育教学实践中,我会静下心来采他山之玉,纳百家之长,慢慢地走,慢慢地教,走出自己的一路风采。