教案吧 > 学科教案 > 数学教案 >

初中数学教案设计怎么写

时间: 新华 数学教案

通过编写教案,教师可以提高教学质量和效率,从而提高学生的学习成绩和自信心。好的初中数学教案设计怎么写是怎样的?这里给大家提供初中数学教案设计怎么写,供大家参考。

初中数学教案设计怎么写篇1

数学教案:相反数

教学目标

1借助数轴理解相反数的概念,会求一个数的相反数;

2培养学生观察、猜想、归纳的能力,初步形成数形结合的思想。

重点难点

重点:理解相反数的概念和求一个数的相反数

难点:相反数概念的理解

教学过程

一激情引趣,导入新课

思考:

⑴数轴上与原点距离是2的点有______个,这些点表示的数是_____;与原点的距离是5的点有______个,这些点表示的数是_______

(2)数轴上与原点的距离是0.5的点有_____个,这些点表示的数是______,数轴上与原点的距离是的点有____个,这些点表示的&39;数是_______

一般地,设a是一个正数,数轴上与原点的距离是a的点有___个,它们分别在原点的____,表示____和____,我们说这两点关于原点对称。

二合作交流,探究新知。

相反数的概念

观察:+3.6和-3.6,6和-6,,和-每对数,有什么相同和不同?

归纳:像+3.6和-3.6、6和-6、,和-只有符号不同的两个数,叫互为相反数。其中一个叫另一个的相反数.

考考你:

(1)-8的相反数是___,7是____的相反数。

(2)a的相反数是_____.-a的相反数是____

(3)怎样表示一个数的相反数?

在这个数的前面添上“-”,就可表示这个数的相反数。如12的相反数是____,-9的相反数是_____,如果在这个数的前面添上“+”表示____.

(4)有人说一个数的前面带有“-”号这个数必是负数,你认为对吗?如果不对,请举一个反例。

(5)互为相反数在轴上的位置有什么特点?

(6)零的相反数是____.

三应用迁移,拓展提高

1关于相反数的概念

例1判断下列说明是否正确

(1)-(-3)表示-3的相反数,(2)-2.5的相反数是2.5()

(3)2.7与-3.7是互为相反数()(4)-π是相反数。

2求一个数的相反数

例2分别写出下列各数的相反数:1.3、-6、-、-(-3)、π-1

3理解-(-a)的含义

例3填空:(1)-(-0.8)=___,(2)–(-)=____,(3)+(+4)=____,(4)–(-11)=_____

四冲刺奥赛,培养智力

例4已经:a+b=0,b+c=0,c+d=0,d+f=0,则a,b,c,d四个数中,哪些数是互为相反数?哪些数相等?

例5若数与互为相反数,求a的相反数。

变式:如果x与互为相反数,且y≠0,则x的倒数是()

A2yBC-2yD

例6有理数a等于它的倒数,有理数b等于它的相反数,则等于()

A0B1C-1D2(第9届“希望杯”初一第2试)

四课堂练习,巩固提高

1.-1.6是____的相反数,___的相反数是0.3.

2.下列几对数中互为相反数的一对为().

A.-(-8)和-(+8)B.-(-8)与-(+8)C.+(-8)与+(+8)D-(-8)与+(-8)

3.5的相反数是____;x+1的相反数是___;的相a-b的反数是____.

4.若a=-13,则-a=_____若-a=7,则a=_____

5.若a是负数,则-a是___数;若-a是负数,则a是______数.

6有如下三个结论:

甲:a、b、c中至少有两个互为相反数,则a+b+c=0

乙:a、b、c中至少有两个互为相反数,则

丙:a、b、c中至少有两个互为相反数,则

其中正确结论的个数是()

A0B1C2D3

五反思小结,巩固升华

1什么叫互为相反数?

2一对互为相反数有什么特点?

3怎样表示一个数的相反数?

作业:作业评价,相反数

初中数学教案设计怎么写篇2

整式的加减——初中数学第一册教案(通用2篇)

整式的加减——初中数学第一册篇1

第9课3.4整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、 叙述合并同类项法则。

2、 练习题:(用投影仪显示、学生完成)

3、 叙述去括号与添括号法则。

4、 练习题:(用投影仪显示、学生完成)

5、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)(学生自学后,教师按以下提示点拔即可)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

提示:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

练习:P167 1、2

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)(口述:文字叙述的整式加减,对每个整式要添上括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

练习:P167 3

例3。(P166例3)(学生自学后,完成练习,教师矫正练习错误)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。(最好由学生归纳)

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B(视时间是否足够而定)

四、小结(用投影仪板演)

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 (可适当减少些)

整式的加减——初中数学第一册教案篇2

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

整式的加减(1)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程 

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(P166例1)

求单项式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)

=3x2-6x+5+4x2-7x-6       (去括号)

=7x2+x-1                (合并同类项)

例3。(P166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

P167:1,2,3,4。

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基础训练同步练习1。

初中数学教案设计怎么写篇3

三维目标

一、知识与技能

1.能灵活列反比例函数表达式解决一些实际问题.

2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.

二、过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

三、情感态度与价值观

1.积极参与交流,并积极发表意见.

2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

教学重点

掌握从物理问题中建构反比例函数模型.

教学难点

从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

教具准备

多媒体课件.

教学过程

一、创设问题情境,引入新课

活动1

问属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.

在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.

(1)求I与R之间的函数关系式;

(2)当电流I=0.5时,求电阻R的值.

设计意图:

运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.

师生行为:

可由学生独立思考,领会反比例函数在物理学中的综合应用.

教师应给“学困生”一点物理学知识的引导.

师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.

生:(1)解:设I=kR∵R=5,I=2,于是

2=k5,所以k=10,∴I=10R.

(2)当I=0.5时,R=10I=100.5=20(欧姆).

师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢?

生:这是古希腊科学家阿基米德的名言.

师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

阻力×阻力臂=动力×动力臂(如下图)

下面我们就来看一例子.

二、讲授新课

活动2

小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.

(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

设计意图:

物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.

师生行为:

先由学生根据“杠杆定律”解决上述问题.

教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.

教师在此活动中应重点关注:

①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

②学生能否面对困难,认真思考,寻找解题的途径;

③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.

师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.

生:解:(1)根据“杠杆定律”有

Fl=1200×0.5.得F=600l

当l=1.5时,F=6001.5=400.

因此,撬动石头至少需要400牛顿的力.

(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有

Fl=600,

l=600F.

当F=400×12=200时,

l=600200=3.

3-1.5=1.5(米)

因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.

生:也可用不等式来解,如下:

Fl=600,F=600l.

而F≤400×12=200时.

600l≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.

生:还可由函数图象,利用反比例函数的性质求出.

师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:

用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl(k为常数且k>0)

根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.

师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.

活动3

问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?

设计意图:

在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.

师生行为:

由学生先独立思考,然后小组内讨论完成.

教师应给予“学困生”以一定的帮助.

生:解:(1)∵y与x-0.4成反比例,

∴设y=kx-0.4(k≠0).

把x=0.65,y=0.8代入y=kx-0.4,得

k0.65-0.4=0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y与x之间的函数关系为y=15x-2

(2)根据题意,本年度电力部门的纯收入为

(0.6-0.3)(1+y)=0.3(1+15x-2)=0.3(1+10.6×5-2)=0.3×2=0.6(亿元)

答:本年度的纯收人为0.6亿元,

师生共析:

(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;

(2)纯收入=总收入-总成本.

三、巩固提高

活动4

一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1kg/m3时二氧化碳气体的体积V的值.

设计意图:

进一步体现物理和反比例函数的关系.

师生行为

由学生独立完成,教师讲评.

师:若要求出ρ=1.1kg/m3时,V的值,首先V和ρ的函数关系.

生:V和ρ的反比例函数关系为:V=990ρ.

生:当ρ=1.1kg/m3根据V=990ρ,得

V=990ρ=9901.1=900(m3).

所以当密度ρ=1.1kg/m3时二氧化碳气体的气体为900m3.

四、课时小结

活动5

你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得.

设计意图:

这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.

师生行为:

学生可分小组活动,在小组内交流收获,然后由小组代表在全班交流.

教师组织学生小结.

反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.

板书设计

17.2实际问题与反比例函数(三)

1.

2.用反比例函数的知识解释:在我们使用撬棍时,为什么动力臂越长越省力?

设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,

Fl=k即F=kl(k>0且k为常数).

由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.

活动与探究

学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.

(1)绿化带面积是多少?你能写出这一函数表达式吗?

(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?

x(m)10203040

y(m)

过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.

结果:(1)绿化带面积为10×40=400(m2)

设该反比例函数的表达式为y=kx,

∵图象经过点A(40,10)把x=40,y=10代入,得10=k40,解得,k=400.

∴函数表达式为y=400x.

(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。

初中数学教案设计怎么写篇4

教学设计思想:

本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

教学目标

知识与技能:

会用平方差公式对多项式进行因式分解;

会用完全平方公式对多项式进行因式分解;

能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;

提高全面地观察问题、分析问题和逆向思维的能力。

过程与方法:

经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。

情感态度价值观:

通过学习进一步理解数学知识间有着密切的联系。

教学重点和难点

重点:①运用平方差公式分解因式;②运用完全平方式分解因式。

难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式

关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。

初中数学教案设计怎么写篇5

一、教学目标

1、了解二次根式的意义;

2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3、掌握二次根式的性质和,并能灵活应用;

4、通过二次根式的计算培养学生的&39;逻辑思维能力;

5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

二、教学重点和难点

重点:

(1)二次根的意义;

(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

三、教学方法

启发式、讲练结合。

四、教学过程

(一)复习提问

1、什么叫平方根、算术平方根?

2、说出下列各式的意义,并计算

(二)引入新课

新课:二次根式

定义:式子叫做二次根式。

对于请同学们讨论论应注意的问题,引导学生总结:

(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

例1当a为实数时,下列各式中哪些是二次根式?

例2x是怎样的实数时,式子在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

例3当字母取何值时,下列各式为二次根式:

分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

(2)—3x≥0,x≤0,即x≤0时,是二次根式。

(3),且x≠0,∴x>0,当x>0时,是二次根式。

(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

例4下列各式是二次根式,求式子中的字母所满足的条件:

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

解:(1)由2a+3≥0,得。

(2)由,得3a—1>0,解得。

(3)由于x取任何实数时都有x≥0,因此,x+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

初中数学教案设计怎么写篇6

教学目的 知识技能使学生会用列一元二次方程的方法解决有关面积、体积方面和经济方面的问题.

数学思考 提高将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想.

解决问题通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关面积、体积方面和经济方面的问题.

情感态度 通过探究性学习,抓住问题的关键,揭示它的规律性,展示解题的简洁性的数学美.

教学难点 审题,从文字语言中挖掘有价值的信息.

知识重点 会用列一元二次方程的方法解有关面积、体积方面和经济方面的问题.

教学过程设计意图

教学过程

问题一:列方程解应用题的一般步骤?

师生共同回忆

列方程解应用题的步骤:

(1)审题;(2)设未知数;

(3)列方程;(4)求解;

(5)检验;(6)答.

问题二:矩形的周长和面积?长方体的体积?

问题三:如图,某小区内有一块长、宽比为1:2的矩形空地,计划在该空地上修筑两条宽均为2m的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m2,请求出原来大矩形空地的长和宽.

教师活动:引导学生读题,找到题目中的关键语句.

学生活动:在关键语句中找到反映相等关系的语句,探究解决办法.

教师活动:用多媒体演示分析,解题方法.

做一做

如图,有一块长80cm,宽60cm的硬纸片,在四个角各剪去一个同样的小正方形,用剩余部分做成一个底面积为1500cm2的无盖的长方体盒子.求剪去的小正方形的边长.

课堂练习:将一个长方形的长缩短5cm,宽增长3cm,正好得到一个正方形.已知原长方形的面积是正方形面积的,求这个正方形的边长.

问题四:某商场销售一种服装,平均每天可售出20件,每件赢利40元.经市场调查发现:如果每件服装降价1元,平均每天能多售出2件.在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的.如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?

学生活动:在众多的文字中,找到关键语句,分析相等关系.

教师活动:用多媒体帮助学生分析试题.提示学生检验解的合理性.

课堂练习:1.经销商以每双21元的价格从厂家购进一批运动鞋,如果每双鞋售价为a元,那么可以卖出这种运动鞋(350-10a)双.物价局限定每双鞋的售价不得超过进价的120%.如果商店要赚400元,每双鞋的售价应定为多少元?需要卖出多少双鞋?

2.某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价25%的.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价进货价)

复习列方程解应用题的一般步骤.

本题为后面解决有关面积、体积方面问题做铺垫.

提高学生的审题能力.使学生会解决有关面积的问题.

解决体积问题的问题

培养学生用数学的意识以及渗透转化和方程的思想方法.

强调对方程的解进行双重检验.

小结与作业

课堂

小结利用一元二次方程解决实际问题时,要注意通过实际要求检验根的合理性,要注意审题能力的培养.

本课

作业课本第43页习题2

课后随笔(课堂设计理念,实际教学效果及改进设想)

初中数学教案设计怎么写篇7

一、教材内容及设置依据

【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

二、教材的地位和作用

本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,

特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了

类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

三、对重点、难点的处理

【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型2、实际应用型3、方法多变型4、知识拓展型等。

【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)

四、关于教学方法的选用

根据本节课的内容和学生的实际水平,本节课可采用的方法:

1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

2、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。

3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。

五、关于学法的指导

“授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。

六、课时安排:1课时

教学程序:

一、复习铺垫:

首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。

1、45+(-23)2、9-(-5)

3、-28-(-37)4、(-13)+0

5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)

从四排学生中个推选一名学生代表板演6、7、8、题。

通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。

然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。

二、新知探索:

1、出示引例1:一架飞机作特技表演,起飞后的高度变化如下表:高度变化记作

上升4.5千米+4.5千米

下降3.2千米-3.2千米

上升1.1千米+1.1千米

下降1.4千米-1.4千米

此时飞机比起飞点高了多少米?

让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:

①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4

=1.3+1.1+(-1.4)=1.3+1.1-1.4

=2.4+(-1.4)=2.4-1.4

=1千米=1千米

教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学

43510